Some hydroids (Cnidaria: Hydrozoa) from the Mid-Atlantic Ridge, in the North Atlantic Ocean

D.R. Calder & W. Vervoort

Dale R. Calder, Centre for Biodiversity and Conservation Biology, Royal Ontario Museum, 100 Queen’s Park, Toronto, Ontario, Canada, M5S 2C6.
Willem Vervoort, Nationaal Natuurhistorisch Museum, P.O. Box 9517, 2300 RA Leiden, The Netherlands.

Key words: Cnidaria; Hydrozoa; Hydroida; Mid-Atlantic Ridge; deep water fauna; hydrothermalism. An account is given of some hydroids from the Mid-Atlantic Ridge, collected during dives of submersibles “Nautile” (operated by IFREMER, France) and “Alvin” (operated by Woods Hole Oceanographic Institution, U.S.A). The specimens came from three main sectors of the ridge: 15 species from localities near hydrothermal fields (540-1727 m) SW of the Azores, five species from an area (2565-3902 m) west of the Cape Verde Islands near Researcher Ridge, and one species from a site (4529-4578 m) within the Vema Fracture zone west of Guinea Bissau. In all, 21 species were distinguished, comprising two anthoathecates and 19 leptothecates. The families Lafoeidae and Sertulariidae were best represented, with six and four species respectively. Halecium profundum spec. nov., from the vicinity of Researcher Ridge, and Zygophyllum echinata spec. nov., from the Menez Gwen hydrothermal field area south-west of the Azores, are described. Cladocarpus cartieri was discovered, for just the second time, at another station near the Menez Gwen field. The fauna was comprised largely of deep-water species. However, some eurybathic boreal species frequent in the neritic zone (e.g. Grammaria abietina, Diphasia margareta, Sertularella tenella, Nemertesia antennina, N. ramosa) were represented at certain stations near the Azores. Also present at one of these stations was the typically shallow-water boreal athecate, Ectopleura larynx. Six of the species (Eudendrium planum, Halecium profundum, spec. nov., Acryptolaria longitheca, Cryptolarella abyssicola, Zygophyllum levinseni, and Opercularella spec.) were recorded from depths of 3000 m or more. The only species in samples from depths exceeding 4000 m was Cryptolarella abyssicola. None of the species is known to have a medusa stage in its life cycle.

Contents

Introduction ... 5
List of stations .. 5
Systematic account .. 9
Order Anthoathecatae Cornelius, 1992 9
Superfamily Eudendrioidea L. Agassiz, 1862 9
Family Eudendriidae L. Agassiz, 1862 9
Genus Eudendrium Ehrenberg, 1834 9
Eudendrium planum Bonnevie, 1898 10
Family Tubulariidae Fleming, 1828 10
Genus Ectopleura L. Agassiz, 1862 10
Ectopleura larynx (Ellis & Solander, 1786) 10
Order Leptothecatae Cornelius, 1992 13
Superfamily Laodicoeidea L. Agassiz, 1862 13
Family Tiarannidae Russell, 1940 13
Genus Stegolaria Stechow, 1913 13
Stegolaria geniculata (Allman, 1888) ... 13
Family-group Incertae Sedis ... 15
Genus Lafoeina M. Sars, 1874 ... 15
Lafoeina amirantensis (Millard & Bouillon, 1973) 15
?Opercularella spec. ... 16
Superfamily Halecioidea Hincks, 1868 .. 17
Family Haleciidae Hincks, 1868 .. 17
Genus Halecium Oken, 1815 ... 17
Halecium profundum spec. nov. .. 18
Halecium spec. ... 21
Superfamily Lafoeoidea A. Agassiz, 1865 ... 22
Family Lafoeidae A. Agassiz, 1865 ... 22
Subfamily Lafoeinae A. Agassiz, 1865 .. 22
Genus Acryptolaria Norman, 1875 ... 22
Acryptolaria longitheca (Allman, 1877) .. 22
Genus Cryptolarella Stechow, 1913 ... 25
Cryptolarella abyssicola (Allman, 1888) .. 25
Genus Grammaria Stimpson, 1854 .. 27
Grammaria abietina (M. Sars, 1850) ... 27
Subfamily Zygophylacinae Quelch, 1885 .. 28
Genus Zygophylax Quelch, 1885 ... 28
Zygophylax echinata spec. nov. .. 28
Zygophylax lelopi Ramil & Vervoort, 1992 .. 33
Zygophylax levinseni (Saemundsson, 1911) .. 35
Superfamily Sertularioidea Lamouroux, 1812 37
Family Sertulariidae Lamouroux, 1812 .. 37
Genus Diphasia L. Agassiz, 1862 ... 37
Diphasia margareta (Hassall, 1841) ... 37
Genus Sertularella Gray, 1848 ... 39
Sertularella gayi robusta Allman, 1874 ... 39
Sertularella tenella (Alder, 1856) ... 41
Genus Symplectoscyphus Marktanner-Turneretscher, 1890 43
Symplectoscyphus bathyalis Vervoort, 1972 .. 43
Superfamily Plumularioidea McCrady, 1859 45
Family Plumulariidae McCrady, 1859 ... 45
Genus Nemertesia Lamouroux, 1812 .. 45
Nemertesia antennina (Linnaeus, 1758) .. 45
Nemertesia ramosa (Lamarck, 1816) ... 47
Family Halopterididae Millard, 1962 .. 49
Genus Polyplumaria G.O. Sars, 1874 ... 49
Polyplumaria flabellata G.O. Sars, 1874 ... 50
Family Aglaopheniidae Marktanner-Turneretscher, 1890 52
Subfamily Aglaopheniinae Marktanner-Turneretscher, 1890 52
Tribe Cladocarpini Calder, 1997 ... 52
Genus Cladocarpus Allman, 1874 ... 52
Cladocarpus cartieri Bedot, 1921 ... 52
Introduction

The Mid-Atlantic Ridge constitutes an immense potential habitat in the deep-sea for predominantly epifaunal and generally opportunistic benthic invertebrates, such as hydroids. However, most currently known species of hydroids are neritic or upper bathyal in distribution (e.g., see Fraser, 1944; Naumov, 1960; Millard, 1975; Cornelius, 1995a, b), and the diversity of these cnidarians seems to be low in profundal regions (Kramp, 1951, 1956; Vervoort, 1966, 1972, 1985; Gage & Tyler, 1991; Calder, 1996, 1997).

Information exists on hydroids of several oceanic islands along or near the Mid-Atlantic Ridge range within the North Atlantic Ocean, including Iceland (summarized by Kramp, 1938) and the Azores (summarized by Rees & White, 1966; Cornelius, 1992a). However, virtually nothing is known about the occurrence or diversity of these cnidarians on the ridge itself except for an account of two species of Candela-brum (C. phrygium and C. serpentarii) by Segonzac & Vervoort (1995).

New information is provided here on some hydroid species collected from the Mid-Atlantic Ridge. The specimens available for study were acquired by the Centre de Tri d'Oceanographie Biologique (CENTOB, IFREMER, Brest, France), and are now in the collections of the Nationaal Natuurhistorisch Museum (Rijksmuseum van Natuurlijke Historie, RMNH), Leiden (The Netherlands), the Muséum National d'Histoire naturelle (MNHN), Paris (France) and the Royal Ontario Museum (ROMIZ), Toronto (Canada). These materials were obtained largely by submersible “Nautil” during investigations at three sites near the Azores (the “Lucky Strike” hydrothermal field at ca 37°18’N, the “Menez Gwen” hydrothermal field at ca 37°51’N, and the site at “Zone 38°20’N”), from an area near Researcher Ridge west of the Cape Verde Islands (ca 15°04’N to 15°35’N), and from the Vema Fracture Zone (ca 10°45’N). For a review of the biology of the Mid-Atlantic Ridge hydrothermal systems, see Van Dover (1995).

In the discussion of the species either a full or a restricted bibliography has been given; this has been indicated.

List of stations

Vema Fracture Zone, Mid-Atlantic Ridge, Vemanaute Dive PL 17, 10°45.43'-10°44.74'N, 40°51.96'-40°52.07'W, 4578 m, 09.ix.1988:

Cryptolarella abyssicola (Allman, 1888).

Mid-Atlantic Ridge, Faranaut Dive FR 03, 15°04.27’N 44°56.64’W, 2565 m, 21.iii.1992:

Halecium profundum spec. nov.; *Zygophylax levinseni* (Saemundsson, 1911).

Mid-Atlantic Ridge, Faranaut Dive FR 04, 15°04.57’N 45°57.63’W, ca 2600 m, 22.iii.1992:

Eudendrium planum Bonnevie, 1898.
Mid-Atlantic Ridge, Faranaut Dive FR 10, 15°35.33′N 46°45.06′W, 3410 m, 28.iii.1992:
Halecium profundum spec. nov.; Acryptolaria longitheca (Allman, 1877).

Mid-Atlantic Ridge, Faranaut Dive FR 13, 15°28.56′N 46°34.15′W, 3303 m, 31.iii.1992:
Eudendrium planum Bonnevie, 1898.

Mid-Atlantic Ridge, Faranaut Dive FR 13, 15°28.56′N 46°34.15′W, 3000 m, 31.iii.1992:
?Opercularella spec.; Acryptolaria longitheca (Allman, 1877); Zygophylax levenseni (Saemundsson, 1911).

Mid-Atlantic Ridge, Faranaut Dive FR 14, 15°28.75′N 46°33.56′W, 3289 m, 01.iv.1992:
Acryptolaria longitheca (Allman, 1877).

Mid-Atlantic Ridge, Faranaut Dive FR 18, 15°30.85′N 46°38.24′W, 3902 m, 4.iv.1992:
Acryptolaria longitheca (Allman, 1877).

Lucky Strike region, Mid-Atlantic Ridge, Alvin 2603, Station 4, 37°17.70′N 32°16.27′W, 1574 m, 29.v.1993, from basalt rock:

Lucky Strike hydrothermal field, Mid-Atlantic Ridge, Alvin 2606, Station 9, 37°17.20′N 32°16.50′W, 1630 m, 01.vi.1993:
Halecium spec.

Gravinaut Dive GRN 12-04, 23°19.67′N 45°14.65′W, 2500 m, 23.ix.1993:
Acryptolaria longitheca (Allman, 1888).

Seamount at Zone 38°20′N, Mid-Atlantic Ridge, DIVA 1, Dive DV 10, 38°20.50′N 30°40.30′W, 919 m, 17.v.1994:

Seamount at Zone 38°20′N, Mid-Atlantic Ridge, DIVA 1, Dive DV 10-1, 38°20.50′N 30°40.30′W, 913 m, 17.v.1994:
Sertularella gayi robusta Allman, 1874.

Seamount at Zone 38°20′N, Mid-Atlantic Ridge, DIVA 1, Dive DV 10-5, 38°20.50′N 30°40.30′W, 919 m, 17.v.1994:
Nemertesia ramosa (Lamarck, 1816).

Seamount at Zone 38°20′N, Mid-Atlantic Ridge, DIVA 1, Dive DV 11-2, 38°18.55′N 30°40.15′W, 715 m, 19.v.1994:
Diphasia margareta (Hassall, 1841).

Seamount at Zone 38°20'N, Mid-Atlantic Ridge, DIVA 1, Dive DV 11-5, 38°18.55'N 30°40.15'W, 788 m, 19.v.1994:

Nemertesia ramosa (Lamarck, 1816).

Menez Gwen region, Mid-Atlantic Ridge, DIVA 1, Dive DV 12-1, 37°51.32'N 31°30.53'W, 1062 m, 20.v.1994:

Lafoeina amirantensis (Millard & Bouillon, 1973); *Nemertesia antennina* (Linnaeus, 1758).

Menez Gwen region, Mid-Atlantic Ridge, DIVA 1, Dive DV 12-5, 37°50.90'N 31°32'W, 832 m, 21.v.1994:

Zygophylax echinata spec. nov.

Menez Gwen region, Mid-Atlantic Ridge, DIVA 1, Dive DV 13-4, 37°50'N 31°32'W, 877 m, 21.v.1994:

Polyplumaria flabellata G.O. Sars, 1874; *Cladocarpus cartieri* Bedot, 1921.

Menez Gwen region, Mid-Atlantic Ridge, DIVA 1, Dive DV 13-5, 37°49.80'N 31°30.50'W, 1003 m, 23.v.1994:

Sertularella gayi robusta Allman, 1874.

Lucky Strike hydrothermal field, Mid-Atlantic Ridge, DIVA 1, Dive DV 19-3, site "Nuno", 37°17.50'N 32°16.93'W, 1727 m, 27.v.1994:

Stegolaria geniculata (Allman, 1888).

Lucky Strike hydrothermal field, Mid-Atlantic Ridge, DIVA 2, Dive PL 02, site "Sintra", 37°17.50'N 32°16.47'W, 1600-1622 m, 04.vi.1994;

Sertularella tenella (Alder, 1856); *Symplectoscyphus bathyalis* Vervoort, 1972.
Fig. 1. Map of the Mid-Atlantic Ridge area showing the location of the principal sites. (Courtesy Dr Michel Segonzac, CENTOB\IFREMER).
Systematic account

Order Anthoathecatae Cornelius, 1992
Superfamily Eudendrioidea L. Agassiz, 1862
Family Eudendriidae L. Agassiz, 1862

Genus Eudendrium Ehrenberg, 1834

Eudendrium planum Bonnevie, 1898
(fig. 2a-b)

Eudendrium planum Bonnevie, 1898a: 483, pl. 26, figs 28-30; Bonnevie, 1899: 10, 50; Stechow, 1909: 29 (compared with *Eudendrium armstrongi* Stechow, 1909); Bedot, 1918: 129; Bedot, 1925: 186; Kramp, 1932a: 20-22, 68, text-figs 9, 10, 11, 31 (map); Kramp, 1939: 516; Kramp, 1963: 53, 106. (Full bibliography).

Type locality.— Unknown; it was described after material in the Oslo Museum without any locality record, but most probably from the deep Atlantic off Norway.

Material.— Mid-Atlantic Ridge, Faranaut Dive FR 04, one colony, 40 mm high, with one badly preserved hydranth, without gonophores, MNHN-Hy 1217.
Mid-Atlantic Ridge, Faranaut Stn FR 13, one colony, 90 mm high, with male gonophores, RMNH-Coel. 27309; fragment of a colony, 3.6 cm high, with male gonophores, RMNH-Coel. slide 3212.

Description.— Colonies slender, stiff, sparsely branched, up to 9.0 cm high, arising from creeping hydrorhizal stolons; growth monopodial with terminal hydranths. Hydrocaulus upright, polysiphonic basally, monosiphonic distally, giving rise to alternate pedicels and to a few irregularly disposed branches all in one plane; branches resembling hydrocaulus. Perisarc thick basally, becoming progressively thinner distally, terminating at bases of hydranths; annulations present at proximal ends of pedicels, monosiphonic branches, and central tubes of polysiphonic branches, occasional annulations elsewhere but mostly smooth. Pedicels long, each supporting a hydranth at distal end. Hydranths in poor condition, about 0.5 mm long from proximal end to base of hypostome, urn-shaped; hypostome large, flared. Tentacles filiform, number indeterminable.
Gonophores fixed sporosacs. Male gonophores with one or two chambers, borne on entire hydranths.
Nematocysts (in μm).—
macrobasic euryteles 12.9-14.1 × 5.5-6.4 (undischarged)
heterotrichous microbasic euryteles 7.5-8.4 × 3.9-4.6 (undischarged)

Remarks.— Identification of these hydroids is somewhat uncertain because female gonophores were lacking. Nevertheless, the specimen from Faranaut Stn FR 13 (RMNH-Coel. 27309) corresponds very closely with descriptions and illustrations of *Eudendrium planum* by Bonnevie (1898a) and Kramp (1932a). The colony from Stn FR 04 was a younger specimen, in poor condition. Both the male gonophores and the cnidome of this species are previously undescribed.
This species has been reported previously from deep waters of the northern North Atlantic. Bonnevie's (1898a) type specimen was of uncertain provenance; additional material has been described by Kramp (1932: 20; 1963: 53, 106) from deep water (1200 m) of Baffin Bay, West Greenland, 74°41'N 70°30'W, collected during the Godthaab Expedition and by Kramp (1939) from unknown depth in the Kara Sea.

Family Tubulariidae Fleming, 1828

Genus *Ectopleura* L. Agassiz, 1862

Ectopleura larynx (Ellis & Solander, 1786)
(fig. 3)

Tubularia larynx Ellis & Solander, 1786: 31; Fenchel, 1905: 507 et seq., pls 10-12 (full synonymy); Ralph, 1953: 68, fig. 12; Cornelius & Ryland, 1990: 116, fig. 4.5; Cairns et al., 1991: 16; Boero & Bouillon, 1993: 261; Schönborn, Arndt & Gosselck, 1993: 226-228, pl. 6 fig. 3; Cornelius & Ryland, 1995: 78, fig. 4.5; Östman, Myrdal, Nyvall, Lindström & Aguirre, 1995: 165-178, figs 1-45; Medel & López-González, 1996: 196. *Ectopleura larynx*; Petersen, 1990: 171-172; Schuchert, 1996: 109-110, fig. 65a, b. (Restricted bibliography).

Type Locality.— Mouth of the river Thames, England, attached to various objects, amongst which were sea shells (Ellis, 1755; Ellis & Solander, 1786).

Material.— Menez Gwen hydrothermal field, Mid-Atlantic Ridge, DIVA 1, Dive DV 14-6, several hydrocauli (8 with hydranth), up to 2.4 cm high, larger ones with gonophores, RMNH-Coel. 27277 and MNHN-Hy 1222.

Description.— Hydroids with upright hydrocauli, arising from a creeping, twisted, wrinkled hydrorhiza; perisarc of hydrorhiza varying in thickness, straw-coloured. Hydrocaulus unbranched, up to 2.4 cm high, 0.4 cm wide, invested with perisarc; each with a terminal hydranth. Perisarc of hydrocaulus

Fig. 2. *Eudendrium planum* Bonnevie, 1898. a, part of hydrocaulus, with pedicel and damaged hydranth; b, male gonophore, near base of hydranth; both slide no. 3212. Scale line for a equals 0.5 mm; scale line for b equals 0.25 mm.
Fig. 3. *Ectopleura larynx* (Ellis & Solander, 1786). Hydranth, oral view, with female gonophores, RMNH-Coel. 27277. Scale line equals 0.5 mm.

with occasional wrinkles but not annulated, relatively thick basally, becoming progressively thinner distally, terminating just below hydranth base, clear to straw-coloured. Hydranth vasiform with a bulbous base, up to 1.7 mm high, 1.2 mm wide, bearing an oral and an aboral whorl of tentacles, mouth region dome-shaped. Aboral tentacles filiform, approximately 20 in mature hydranths, reaching 2.8 mm long. Oral tentacles filiform, about 12 in number, bases adnate to hydranth, forming a series of longitudinal convexities along distal end of hydranth, length free up to 0.75 mm.

Gonophores fixed sporosacs. Female gonophores sac-shaped, arising from short, slender, dichotomously branched blastostyles inserted on hydranth just distal to aboral tentacles; distal end with 3-5 digitate projections. Male gonophores not seen.

Nematocysts (in μm).—

<table>
<thead>
<tr>
<th>Type</th>
<th>Size</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>desmonemes</td>
<td>3.8-4.6 × 3.0-3.6</td>
<td>(undischarged)</td>
</tr>
<tr>
<td>stenoteles (small)</td>
<td>6.7-7.3 × 5.4-5.7</td>
<td>(undischarged)</td>
</tr>
<tr>
<td>stenoteles (large)</td>
<td>10.6-21.1 × 9.5-10.1</td>
<td>(undischarged)</td>
</tr>
</tbody>
</table>
Remarks.—The classification of the family Tubulariidae has been extensively revised at the generic level by Petersen (1979, 1990). A major character widely utilized in earlier works on hydroids to differentiate tubulariid genera had been the presence or absence of a free medusa in the life cycle. Thus, among the better known genera of the family, the genus Tubularia had been differentiated from Ectopleura and Hybocodon in having fixed gonophores instead of free medusae. Hybocodon and Ectopleura were in turn distinguished from each other by the morphology of their medusae, those of the former having a bilaterally symmetrical umbrella with one large marginal tentacle, and those of the latter having a biradially symmetrical bell with two or four equally developed ones. According to the redefinitions of Petersen, hydroids referable to Tubularia are essentially characterized by having: (1) two or more whorls of oral tentacles, (2) aboral tentacles that continue as ridges over the proximal end of the hydranth, (3) hydrocauli arising basally from circular or lobed basal discs, and (4) asymmetrical gonophores. Those of Ectopleura have: (1) one whorl of oral tentacles, (2) aboral tentacles that do not continue as ridges over the proximal end of the hydranth, (3) hydrocauli arising basally from filiform stolons, and (4) symmetrical gonophores or free medusae. In Hybocodon, the hydroids have: (1) two closely-set whorls of oral tentacles, (2) aboral tentacles that continue as ridges over the proximal end of the hydranth, (3) hydrocauli arising basally from sparsely branched stolonal tubes, and (4) bilaterally symmetrical medusae. This classification of the family, though not adopted by us in earlier work (Calder, 1988; Vervoort, 1993b), has been followed here.

Tubulariid taxonomy has also been unsettled at the species level. As noted by Petersen (1990), descriptions of taxa have seldom focused on critical characters. In addition, the amount of variability within a species has frequently been underestimated, with various morphs of the same species sometimes being given different names. A number of characters, previously accorded little or no significance, were considered important in the taxonomy of the family by Petersen. Among these were the form and arrangement of the oral and aboral tentacles, the area of perisarc secretion, the structure of the stem, the type of attachment to the substrate (whether by basal discs or stolons), and the character of the blastostyles.

Specimens from the Menez Gwen hydrothermal field, examined here, corresponded in their morphology with Petersen’s (1990) diagnosis of Ectopleura. Moreover, in having about a dozen partially adnate and filiform oral tentacles, some 17-24 aboral tentacles, gonophores with 3-5 digitate projections at the end of each female gonophore, and wrinkled perisarc, they coincided with the account of Ectopleura larynx (Ellis & Solander, 1786) provided by Petersen (1990). This species is essentially boreal in distribution, according to Petersen, occurring from subarctic waters southward to Portugal and southern New England (Calder, 1975) in the North Atlantic. Ectopleura larynx also occurs in the North Pacific. There are no important recent distribution records that extend the distribution beyond that given by Petersen (1990: 171), but the Mediterranean should be added (Boero & Bouillon, 1993). For occurrence along coasts of the Iberian Peninsula see Medel & López-González (1996). Petersen explains occurrence of this species in the southern hemisphere as being due to transport by ships.
Additional records from that area are given by Schuchert (1996: 100) and are based on Ralph’s (1953) record of *Tubularia larynx* from Otago Harbour and Wellington Harbour.

The present record confirms that *E. larynx*, typically considered a neritic species (Broch, 1916), can penetrate to considerable depths in the bathyal zone.

Studies of the nematocyst complement of this species were conducted by Östman et al. (1995). Stenoteles, desmonemes, microbasic b-mastigophores and O-isorhizas were found in hydroids from Scandinavia. Specimens from the northern coast of Spain included euryteles as well as the categories of nematocysts noted above. No euryteles were seen in the Mid-Atlantic Ridge material, although specimens were too few in number to permit a thorough study.

Order Leptothecatae Cornelius, 1992

Superfamily Laodiceoidea L. Agassiz, 1862

Family Tiarannidae Russell, 1940

Genus Stegolaria Stechow, 1913

Stegolaria geniculata (Allman, 1888)

Cryptolaria geniculata Allman, 1888: 41-42, pl. 20 figs 1, 1a, 1b; Driesch, 1889: 198; Hartlaub, 1904: 13; Nutting, 1905: 948; Billard, 1908: 1356; Bedot, 1916b: 87; Bedot, 1918: 113; Bedot, 1925: 162.
Cryptolaria geniculata; Levinsen, 1893: 173, note (lapsus; reference of the species to Campanulinae).
Lafoea geniculata; Billard, 1910: 5. (Full bibliography).

Type locality.— Challenger Stn 173, “off Matuku, Fiji Islands; depth, 315 fathoms” (576 m) (Allman, 1888).

Material.— Lucky Strike hydrothermal field, Mid-Atlantic Ridge, DIVA 1, Dive DV 19-3, site “Nuno”, on rock fragment, two colonies, 2.0 and 2.4 cm high, with gonothecae, RMNH-Coel. 27276; one specimen, 2.5 cm high, with gonothecae, on RMNH-Coel. slide 3127.

Description.— Colonies erect, up to 2.5 cm high, anchored to substrate by hydrorhiza. Hydrocaulus geniculate, strongly polysiphonic basally with axial tube overgrown by accessory tubules, becoming monosiphonic at extreme distal end; nodes oblique, readily apparent only in monosiphonic parts. Branching irregular, in one plane; branches unbranched or secondarily branched, resembling hydrocaulus. Perisarc of moderate thickness. Hydrothecae alternately arranged, oriented in one plane on hydrocaulus and branches, adnate to axial tube, immersed to a varying degree in accessory tubes over proximal part, curving outwards and frontwards and becoming free distally; bore of hydrotheca narrowest at base, becoming gradually wider toward
Fig. 4. Stegolaria geniculata (Allman, 1888). a, part of branch with regenerated hydrotheca; b, branch with two damaged hydrothecae and a gonotheca; both slide no. 3127. Scale line for a equals 0.25 mm; scale line for b equals 0.5 mm.

...distal end; walls smooth; abcauline wall generally concave, free part of adcauline wall convex to nearly straight; no diaphragm apparent; perisarc of moderate thickness basally, thinning out distally; abcauline wall of axillary hydrothecae adnate to adjacent branch. Operculum damaged in present specimens, but comprising a roof-shaped enclosure with two longitudinally pleated valves seated within U-shaped embayments of margin. Fragments of hydranths only remaining.

Gonothecae elongate, widest in mid-region, narrowing towards either end, arising from and adnate to hydrocaulus and branches; distal end curving abruptly outwards and with a small part free; aperture distal, round, entire; perisarc of moderate thickness; operculum and gonophores lacking.

Remarks.—Stegolaria geniculata (Allman, 1888) is a deep-sea species, reported from areas in lower to middle latitudes of the Atlantic and Pacific Oceans (Vervoort, 1985; Ramil & Vervoort, 1992a). In the North Atlantic, it has been collected from bathyal and abyssal bottoms in the Bay of Biscay and vicinity (Vervoort, 1985; Álvarez-Claudio & Anadón, 1995), off the coast of Morocco (Vervoort, 1985; Ramil & Ver-
voort, 1992a), and in the Gulf of Guinea (Vervoort, 1985). *Stegolaria operculata* (Nutting, 1905), regarded as conspecific or likely so with *S. geniculata* (Millard, 1977b; Vervoort, 1985; Ramil & Vervoort, 1992a), has been reported from the Pacific and Indian Oceans.

Gonothecae of specimens from the "Lucky Strike" site resemble those described by Vervoort (1946) and Millard (1977b). No gonophores remained in them.

Family-group Incertae Sedis
Genus Lafoeina M. Sars, 1874

Lafoeina amirantensis (Millard & Bouillon, 1973)
(fig. 5a-c)

Type Locality.—Amirantes, Seychelles (Millard & Bouillon, 1973).

Material examined.—Menez Gwen region, Mid-Atlantic Ridge, DIVA 1, Dive DV 12-1, one colony, without gonothecae, on *Nemertesia antennina* (Linnaeus, 1758), RMNH-Coel. 27278.

Description.—Colony stolonal, with a hydrorhiza creeping over base of hydrocaulus of *Nemertesia antennina*. Hydrorhiza slender, branched, occasionally wrinkled, otherwise mostly smooth, attached side flattened, lacking internal septa, 36-49 μm wide, giving rise to hydrothecae and nematophores. Hydrothecae essentially sessile, cylindrical with smooth walls, constricted at base, flaring slightly to margin, 202-244 μm long, 81-124 μm wide, one hydrotheca with another regenerated at its distal end; no diaphragm could be clearly discerned. Operculum a folded and cone-shaped continuation of hydrothecal wall, with about 12 facets when closed, not distinctly marked at base from wall of hydrotheca. Nematophores tubular with distal end slightly enlarged, bearing a small terminal opening, 36-101 μm high, 16-20 μm wide at terminal bulb; each nematophore usually with one to several large nematocysts, oriented vertically, at distal end.

Gonophores not seen.

Remarks.—Hydroids described here closely correspond with the original description by Millard & Bouillon (1973) of *Egmundella amirantensis* from the Seychelles, and with later descriptions of the species from the Atlantic Ocean (e.g., Calder, 1991; Ramil & Vervoort, 1992). In having sessile instead of pedicellate hydrothecae, and in apparently lacking a true diaphragm, this species has been assigned to *Lafoeina* M. Sars, 1874, instead of *Egmundella* Stechow, 1921. Hydroids of *L. amirantensis* resemble *L. tenuis* M. Sars, 1874, type species of *Lafoeina*, but differ in having occasional instead of abundant nematophores that are also comparatively short instead of very long. Due to inadequate knowledge of the life cycles of species of *Lafoeina*, it is pres-
Fig. 5. *Lafoeina* amirantensis (Millard & Bouillon, 1973). a, hydrotheca; b, hydrotheca arising from an older one; c, nematotheca; all RMNH-Coel. 27278. Scale lines equal 0.10 mm.

Opercularella spec. (fig. 6)

Material.— Mid-Atlantic Ridge, Faranaut Dive FR 13, on *Acryptolaria longitheca* (Allman, 1877), several pedicels with hydranths, together reaching 2 mm high, without gonothecae, RMNH slide 3266.

Description.— Colony stolonal, up to 2.1 mm high, arising from hydrorhiza growing over another hydroid. Hydrorhiza generally smooth but with occasional wrinkles and bulges, 37-46 μm wide, giving rise to hydrothecal pedicels; internal septa lacking. Hydrothecal pedicels of varied length but quite long (up to 2 mm), 36-56 μm wide,
annulated basally, mostly smooth but with a few scattered wrinkles or annulations elsewhere, merging imperceptibly with hydrothecal base; perisarc thin. Hydrotheca deep, radially symmetrical, widest at margin, tapering gradually to base; thin diaphragm present; hydrothecal walls smooth, about 335 μm long from diaphragm to base of operculum, 150 μm wide at margin. Operculum a longitudinally folded continuation of hydrothecal wall, not demarcated basally from wall of hydrotheca, cone-shaped when closed, number of pleats about 10. Vestiges of hydranths only remaining. Nematophores lacking.

Remarks.— These hydroids lacked gonophores and could not be identified to species. However, they resemble and are considered possibly conspecific with specimens identified as "?Opercularella sp." by Calder (1996) from abyssal depths off Bermuda. The lack of gonophores in material from both Bermuda and the Mid-Atlantic Ridge precludes a more definite identification.

Superfamily Halecioidea Hincks, 1868
Family Haleciidae Hincks, 1868

Genus *Halecium* Oken, 1815

Type [by subsequent designation (Naumov, 1960, cf. ICZN, 1962)]: *Sertularia halecina* Linnaeus, 1758. In this genus the following taxa have been considered:

Halecium amphibolum Watson, 1993; *H. annulatum* Torrey, 1902; *H. antarcticum* Vanhöffen, 1910; *H. argenteum* Clarke, 1894; *H. banyulense* Motz-Kossowska, 1911 [= *H. muricatum* var. *banyulense* Motz-Kossowska, 1911]; *H. beanii* (Johnston, 1838) [= *H. edwardsianum* (D'Orbigny, 1846); *H. scutum* Clark, 1876a; *H. boreale* Von Lorenz, 1886]; *H. beringi* Naumov, 1960; *H. bermudense* Congdon, 1907; *H. birulai* Spasskii, 1929; *H. brashnikowi* Linko, 1911; *H. bruniense* Watson, 1975; *H. buchananae* Blackburn, 1937; *H. capillaire* (De Pourtalès, 1869); *H. conicum* Stechow, 1919; *H. corrugatissimum* Trebilco, 1928; *H. corrugatum* Nutting, 1899; *H. crenulatum* Hincks, 1874; *H. crinis* Stechow, 1913a; *H. curvicaule* Von Lorenz, 1886; *H. cymiforme* Allman, 1888; *H. cymosum* Fraser, 1935a; *H. delicatulum* Coughtrey, 1876 [= *H. flexile* Allman, 1888; *H. gracile* Bale, 1888; *H. parvulum* Bale, 1888; *H. balei* Fraser, 1911; *H. flexile* var. *japonica* Leloup, 1938b; *H. parvulum* var. *magnum* Millard, 1957]; *H. delictulum* var. *macrothecum* Leloup, 1960; *H. densum* Calkins, 1899; *H. dichotomum* Allman, 1888; *H. diminutivum*...
Fraser, 1940a; H. dubium Fraser, 1941; H. dufresnae Millard, 1977a; H. dyssymetrum Billard, 1929; H. exiguum Fraser, 1948; H. expansum Trebilcock, 1928; H. fasciculatum Fraser, 1938a; H. fastigiatum Allman, 1888; H. filicina Allman, 1877; H. flabellatum Fraser, 1935; H. flexum Fraser, 1948; H. fragile Hodgson, 1950; H. fraseri Ralph, 1958; H. fruticosum Fraser, 1943; H. galeatum Billard, 1937; H. gracile Verrill, 1873; H. groenlandicum Kram, 1911 [= H. polythea Linko, 1911]; H. halecinum (Linnaeus, 1758) [= H. geniculatum Norman, 1867]; H. halecinum var. minor Leloup, 1932; H. harrimani Nutting, 1901a [= H. robustum Nutting, 1901]; H. humile Pictet, 1893; H. incertum Naumov & Stepantsants, 1962; H. inhaec Millard, 1958; H. insolens Fraser, 1938a; H. interpelatum Ritchie, 1907; H. irregularare Bonnevie, 1899; H. jaederholmi Vervoort, 1972; H. kofoidiTorry, 1902; H. kukenholi Markstanner-Turneretscher, 1895; H. labiatum Billard, 1933; H. labrosum Alder, 1859 [= H. annulatum Stechow, 1919; H. reflexum Stechow, 1919; H. undulatum Billard, 1922]; H. laevem, Kramp, 1932b; H. lamourouxianum (D’Orbigny, 1846); H. lanceferi (Bourne, 1890) [= H. robustum Pieper, 1884]; H. lenticulare Trebilcock, 1928; H. lighbourni Calder, 1991; H. linki Auntslevich, 1980; H. liouvillei Billard, 1924; H. lucium Auntslevich, 1979; H. luteum Watson, 1975; H. macrocephalum Allman, 1877; H. magellanicum Hartlaub, 1905; H. marsupiale Bergh, 1887; H. mediterraneum Weismann, 1883; H. minor Fraser, 1935; H. minutum Broch, 1903; H. mirabile Shidlovskii, 1902; H. mirandum Auntslevich & Regel’, 1986; H. muricatum (Ellis & Solander, 1786) [= H. filiforme Alder, 1862]; H. muricatum f. abyssale Broch, 1918; H. mutilum Alder, 1876; H. nanum Alder, 1859 [= H. marki Congdon, 1907]; H. nanum var. alta Stechow, 1921a; H. nullinodium Fraser, 1935; H. ochotense Linko, 1911; H. ornatum Nutting, 1901; H. ovatum Totton, 1930; H. pallens Jäderholm, 1904; H. patagonicum (D’Orbigny, 1846); H. perexiguum Hirohito, 1995; H. petrosum Stechow, 1919; H. planum Bonnevie, 1899; H. pulchellum (De Pourtalès, 1869); H. pusillum M. Sars, 1857; H. pygmaeum Fraser, 1911; H. pyriforme Hirohito, 1995; H. regulare Fraser, 1938a; H. repens Jäderholm, 1907; H. reversum Nutting, 1901; H. scalariforme Billard, 1929; H. scandens Nutting, 1905; H. schneideri Bonnevie, 1899; H. secundum Jäderholm, 1904; H. septentrionale Markstanner-Turneretscher, 1895; H. sessile Norman, 1867 [= H. plumosum Hincks, 1868; H. articulatum Clark, 1875]; H. sibogae Billard, 1929; H. sibogae var. marocanum Billard, 1934; H. simplex Pictet, 1893; H. siphonatum (De Pourtalès, 1869); H. speciosum Nutting, 1901; H. tehuelchum (D’Orbigny, 1846); H. telescopicum Allman, 1888; H. tenellum Hincks, 1861 [= H. geniculatum Nutting, 1889; H. washingtoni Nutting, 1901]; H. tensum Fraser, 1941; H. tenue Fraser, 1938c; H. textum Kramp, 1911; H. tortile Bonnevie, 1898b; H. tortum Fraser, 1938a; H. vagans Fraser, 1938a; H. vasiiforme Fraser, 1935a, and H. wilsoni Calkins, 1899.

A new species, *Halecium profundum*, is described below.

Halecium profundum spec. nov.

(fig. 8a-e)

Halecium spec. Vervoort, 1972: 34, fig. 8a, b.

Material.—Mid-Atlantic Ridge, Faranaut Dive FR 03, on dead coral, up to 20 mm high colonies, with male and female gonothcae, type series [RMNH-Coel 27310; seven colonies or fragments, 6-20 mm high, three with female gonothcae and one with male (paratypes), two RMNH-Coel. slides 3213; four slides as MNHN-Hy 1218 (holotype)].

Mid-Atlantic Ridge, Faranaut Dive FR 10, on rock no. 11, one colony, 10 mm high, without gonothcae, MNHN-Hy 1151.

Description of female specimen from the type series.—Colony erect, 1.7 cm high, arising from a creeping hydrorhiza. Hydrocaulus weakly polysiphonic for a short distance at base, monosiphonic elsewhere, branched dichotomously; branches essentially in one plane, dichotomously branched like hydrocaulus; perisarc moderately thick basally, thin distally. Internodes very long and slender, length of those beyond basal
Fig. 8. *Halecium profundum* spec. nov. a, internode of hydrocaulus, RMNH-Coel. slide 3213, paratype; b, axillary hydrotheca at juncture of hydrocaulus and branch, slide 3213, paratype; c, hydrotheca, with one renovation, slide 3213, paratype; d, female gonotheca, slide 3213, paratype; e, male gonotheca, paratype, slide 3213. Scale lines for a and b equal 0.25 mm; scale line for c equals 0.10 mm; scale lines for d and e equal 0.5 mm.
ones 1.1-1.6 mm, width at nodes 80-140 μm; proximal end of each internode with a single node or with from 1-9 annulations, smooth elsewhere; distal end of internode slightly expanded, with a primary hydrotheca and an internode-bearing primary apophysis lateral to it, frequently with a secondary apophysis given off from opposite side, hydrotheca thus becoming axillary and growth form appearing dichotomous. Primary hydrothecae sessile, very shallow, widening from base to margin but rim not everted, commonly regenerated, as many as eight times; margin entire, sloping downward from higher adcauline to lower abcauline side; abcauline wall straight, not flaring, 26-33 μm long from margin to diaphragm; adcauline wall concave, adherent to adjacent apophysis, length from diaphragm to margin 55-72 μm; margin entire, 185-205 μm in diameter, abcauline side with a rounded bulge along wall of apophysis; diaphragm distinct, 117-163 μm wide, situated beneath a ring of small dEmocytes; supplemental hydrothecae sessile, abcauline margins longer and more flaring than in primary hydrotheca, rim sometimes everted. Hydranths missing or badly mutilated, morphology indeterminable.

Gonophores fixed sporosacs; colony female. Gonothecae reniform distally with rounded apex, base long, slender, tapered; gonothecal pedicel essentially an annulation inserting on front side of internode lateral to a hydrotheca; walls smooth throughout, perisarc thin; total length of gonotheca excluding pedicel 2.3-2.4 mm, maximum width in side view 0.7 mm, weakly compressed laterally; gonothecal aperture lateral, with a pair of short, confluent tubes each occupied by a hydrotheca.

Remaining colonies in type series reaching a maximum colony height of 2.0 cm. Male gonothecae elongate, slender, fusiform, narrowing basally, distal end tapered asymmetrically to a point, about 1.9 mm long, maximum diameter 325-361 μm, walls smooth.

Remarks.— Of the descriptions of more than 100 nominal species assigned to the genus Halecium worldwide, the Mid-Atlantic Ridge specimens most closely fit that of H. vagans Fraser, 1938a, a poorly characterized hydroid from neritic waters of the eastern North Pacific (Fraser, 1938a, 1948). However, the hydrothecae of H. profundum are flared, occasionally everted, and often renovated, while those of H. vagans are scarcely flaring and apparently not renovated. Gonothecae were lacking in Fraser’s material of H. vagans.

Halecium profundum is also similar to H. dubium Fraser, 1941, an abyssal species described from material collected at a depth of 1769 fathoms (3235 m) in the western North Atlantic (40°29'N 66°04'W). Fraser’s (1941) original account of H. dubium differs from H. profundum in having: (1) a slightly bushy instead of a dichotomous colony form, (2) less distinct nodes, (3) pedicellate and relatively long hydrophores, including renovated ones, instead of sessile hydrophores, and (4) broadly ovate and flat instead of cylindrical male gonothecae. The female gonothecae of H. dubium are currently unknown.

A hydroid described and illustrated by Vervoort (1972) as Halecium spec., from abyssal depths (4532-4097 m) in the eastern South Pacific Ocean off Chile, is inseparable morphologically from H. profundum. This material (RMNH-Coel. 27405, slide) was re-inspected; it is sterile and its identification therefore remained uncertain. It is here referred to H. profundum.

Etymology.— The specific name profundum, from Latin, refers to the abyssal provenance of this species.
Halecium spec.
(fig. 7)

Material examined.— Lucky Strike hydrothermal field, Mid-Atlantic Ridge, Alvin 2606, Station 9, one specimen, 3.2 cm high, without gonothecae, RMNH-Coel. slide 2359.

Description.— Colony erect, 3.2 cm high, pinnately branched. Hydrocaulus nearly straight where strongly polysiphonic, geniculate elsewhere; perisarc moderately thick except in young parts of colony; branches monosiphonic or polysiphonic, resembling distal end of hydrocaulus. Central tubes of hydrocaulus and branches divided into internodes by more or less distinct nodes. Internodes 0.8-1.3 mm long, 110-160 μm wide at nodes, with a bulge just distal to node but otherwise smooth; distal end of each internode with two apophyses, one directed upwards and supporting internode above, and another directed outwards and supporting a hydrothecal pedicel; branches, when present, inserting at base and from front side of apophysis supporting hydrothecal pedicel. Youngest pedicels appearing slightly swollen basally, separated from apophysis by a node, gradually increasing in diameter to base of hydrotheca; older pedicels sometimes appearing renovated, frequently with one or more nodes or irregular annulations between base and apophysis of each; pedicel and hydrotheca together trumpet-shaped. Hydrothecae shallow, with a diaphragm below an irregular ring of small desmocytes, widening distally, margin flaring; somewhat more strongly concave on adcauline than abcauline side; primary hydrothecae occasionally renovated to form 1-2 secondary hydrothecae; hydrothecal depth 47-64 μm from margin to diaphragm; diameter at diaphragm 103-123 μm, 157-182 μm at margin. Hydranths large with a conical hypostome; tentacles about 14-17, filiform, in one whorl, basal web absent.

Gonothecae not seen.

Remarks.— This specimen fits accounts of several species assigned to the genus Halecium Oken, 1815, especially those of H. filicula Allman, 1877, and H. muricatum forma abyssale Broch, 1918. They bear some resemblance, too, to H. marsupiale Bergh, 1887, and H. groenlandicum Kramp.

Fig. 7. Halecium spec. Hydrocaulus with two hydrothecal pedicels and hydrothecae, RMNH-Coel. slide 2359. Scale line equals 0.25 mm.
1911. However, the specimen clearly differs from *H. groenlandicum* in having deeper hydrothecae with distinctly flaring margins. Unlike in *H. marsupiale*, the proximal ends of the cauline internodes are not annulated or spirally twisted. No evidence of a pseudodiaphragm proximal to the hydrotheca, typically found in *H. muricatum* and its form *abyssale*, described by Broch (1918), could be observed. The “Lucky Strike” specimen, in lacking gonothecae, could not be identified with certainty, although it closely tallies with Allman’s (1877) account of *H. filicula*. Gonothecae are as yet unknown in *H. filicula*, a species described from deep water in the Gulf of Mexico. Other material identified as *H. filicula* has been reported from bathyal depths off the southeastern United States by Nutting (1895) and Fraser (1944).

Superfamily Lafoeoidea A. Agassiz, 1865

Family Lafoeidae A. Agassiz, 1865

Subfamily Lafoeinae A. Agassiz, 1865

Genus Acryptolaria Norman, 1875

Acryptolaria longitheca (Allman, 1877)

Acryptolaria longitheca (Allman, 1877)

(figs 9-11)

Cryptolaria longitheca Allman, 1877: 19, pl. 13, figs 4-5; Clarke, 1879: 240, 244, pl. 2 figs 7-13; Fewkes, 1881: 128; Bedot, 1912: 281; Stechow, 1913b: 30; Bedot, 1916: 88; Bedot, 1918: 114; Bedot, 1925: 162. *Lafoea (Cryptolaria) longitheca*; Bonnevie, 1899: 63; Billard, 1906b: 178.

Oswaldaria longitheca; Stechow, 1923b: 147.

Acryptolaria longitheca; Fraser, 1943: 78, pl. 16 fig. 5a, pl. 17 fig. 5b; Fraser, 1944: 212, pl. 41 fig. 192;

Cryptolaria crassicaulis Allman, 1888: 41, pl. 19 figs 3, 3a; Driesch, 1889: 198; Pictet & Bedot, 1900: 17, 18;

*Browne, 1907: 29; Ritchie, 1911: 833, pl. 87 fig. 4; Stechow, 1913a: 144; Stechow, 1913b: 11, 113, figs 86-87; Jäderholm, 1917: 7, pl. 1 fig.; Jäderholm, 1919: 8, pl. 2 fig. 2; Leloup, 1932: 146, fig. 16, pl. 16 fig. 3; Stranks, 1993: 7.

Oswaldaria crassicaulis; Stechow, 1921a: 256; Stechow, 1923b: 147; Leloup, 1940: 15.

Cryptolaria crassicaulis var. *dimorpha* Ritchie, 1911: 830, fig. 126, pl. 87 figs 5-6; Jarvis, 1922: 335.

(Full bibliography).

Type locality.— *Cryptolaria longitheca* Allman, 1877: “Dredged off Double-Headed Shot Key from a depth of 315 fathoms” (576 m); *Cryptolaria crassicaulis* Allman, 1888: Challenger Stn 344, 07°54’20"N 14°28’20"W, off Ascension Island, 420 fms (768 m); *Cryptolaria crassicaulis* var. *dimorpha* Ritchie, 1911: Thetis Stn 48, off Wollongong, Australia, seven to eight miles offshore, 55-56 fms (100-102 m).

Material.— Mid-Atlantic Ridge, Faranaut Dive FR 10, on rock no. 11, 3 colonies, 30-45 mm high, without coppiniae, MNHN-Hy. 1150.

Mid-Atlantic Ridge, Faranaut Dive FR 13, on sponge no. 2, colony 30 x 40 mm, with a coppinia,
Description.—Colonies erect, flabellate, up to 10.0 cm high, arising from a dense, creeping hydrorhizal mat; occasional stolonal hydrothecae also given off from hydrorhiza. Hydrocaulus geniculate, polysiphonic except at extreme distal end, with an axial tube overgrown by accessory tubes, irregularly branched; nodes indistinct; branches mostly in one plane, resembling hydrocaulus, sometimes secondarily branched. Perisarc fairly thick, especially in older parts of colony. Hydrothecae very long, slender, total length excluding renovations of margin 1660-1968 μm, occurring on hydrocaulus and branches, given off alternately in one plane, each adnate to axial

Fig. 9. Acryptolaria longitheca (Allman, 1877). a, part of hydrocaulus with hydrothecae, slide 3155; b, four gonothecae from coppinia, RMNH-Coel. 27307. Scale line for a equals 0.5 mm; scale line for b equals 0.25 mm.
tube for most of its length and immersed to a greater or lesser degree depending upon degree of stem and branch fasciculation, curving outwards and slightly forwards, becoming free distally; narrowest at base, gradually widening distally, free part nearly cylindrical. Hydrothecal walls smooth; perisarc of abcauline wall thicker basally than distally, more uniformly thin along adcauline wall; adnate part of adcauline wall nearly straight, free part convex; abcauline wall straight to slightly convex proximally, concave distally. Margin entire, slightly flaring, usually with several renovations; orifice round, diameter 272-340 μm. Operculum, diaphragm, desmocytes, and nematothecae absent.

Gonothecae densely aggregated into an elongate, vermiform coppinia surrounding hydrocaulus, lacking modified hydrothecae and nematothecae; gonothecae
adnate to one another over much of their height, flask-shaped, abruptly tapering distally to a short, free neck; orifice round, 80-103 \(\mu \)m in diameter. Gonophores fixed sporosacs, extruded as an acrocyst.

Remarks.—Mid-Atlantic Ridge material above was assigned to **Acryptolaria longitheca** (Allman, 1877) because of its close resemblance to hydroids, from the abyssal Northwest Atlantic Basin, that were attributed to that species by Vervoort (1972). Similar material was reported, as *A. longitheca*, from abyssal bottoms off Bermuda by Calder (1996). All of these hydroids are noteworthy for their extremely long hydrothecae, which taper to a decidedly slender base. The species is well distributed in deep water of the western Atlantic: off Double-Headed Shot Key, Florida, 315 fms (= 576 m) (Allman, 1877); Gulf of Mexico, 25°33'N 84°21'W, 101 fms (= 185 m) (Clarke, 1879); Dominica, Martinique and Barbados, 76-334 fms (= 139-611 m); South of Florida Keys, 24°18'N 80°58.5'W, 324 fms (= 593 m) and off Barbados, 13°11' 59°38'45"W, 4681 m (Vervoort, 1972), and Bermuda Pedestal, c. 32°35'N 64°55'W, 3011-3550 m (Calder, 1996). The present records indicate that the species is well distributed in deep water over the Mid-Atlantic Ridge.

Acryptolaria crassicaulis (Allman, 1888), originally described from off Ascension Island in the mid-South Atlantic Ocean, is much like *A. longitheca*. We find nothing to warrant separation of the two in an examination of their types (figs 10, 11), and refer *A. crassicaulis* to the synonymy of *A. longitheca* here. In turn, both appear close to **Acryptolaria conferta** (Allman, 1877).

Cryptolaria crassicaulis var. *dimorpha* Ritchie, 1911, is based on a specimen with adnate as well as independently developed, isolated hydrotheca, a phenomenon not uncommon in *Cryptolaria* and allied genera, particularly in young colonies. We have relegated this variety to the synonymy of *Acryptolaria longitheca* (Allman, 1877).

Genus Cryptolarella Stechow, 1913

Cryptolarella abyssicola (Allman, 1888)
(fig. 12)

Cryptolaria diffusa Allman, 1888: 42-43, pl. 21 fig. 1, 1a; Levinsen, 1893: 159, 173; Marktanner-Turneret-scher, 1895: 404; Ritchie, 1907a: 488; Bedot, 1912: 87; Bedot, 1918: 113; Bedot, 1925: 161.

Cryptolarella diffusa; Stechow, 1913a: 138; Stechow, 1913b: 29; Kramp, 1951: 123.

Cryptolaria humilis Allman, 1888: 39-40, pl. 18 figs 1, 1a, 1b; Browne, 1907: 16, 18, 29; Bedot, 1912: 88; Bedot, 1918: 114; Bedot, 1925: 162; Rees & White, 1966: 273.

Oswaldaria humilis; Stechow, 1921b: 229; Stechow, 1923b: 147.

Cryptolarella humilis - Vervoort, 1966: 118. (Full bibliography).

Type locality.—*Cryptolaria abyssicola* Allman, 1888: Challenger Stn 160, 42°42'S 134°10'E, south of
Australia, 2600 fms (4755 m); Cryptolaria diffusa Allman, 1888: Challenger Stn 101, off Sierra Leone, 04°48'N 14°20'W, 2500 fms (= 4572 m); Cryptolaria humilis; Allman, 1888: Challenger Stn 73, near the Azores, 38°30'N 31°14'W, 1000 fms (= 1829 m).

Material.— Vema Fracture Zone, Mid-Atlantic Ridge, Vemanaute Dive PL 17, 13 fragments, 1.5 cm high, without gonothecae, RMNH-Coel. 27786, two RMNH-Coel. slides 575.

Description.— Colonies erect, 1.5 cm high, arising from a creeping hydorphizal mat. Hydrocaulus polysiphonic except at distal end, axial tube somewhat crooked with indiscernible nodes, overgrown by wrinkled accessory tubes; irregularly branched, mostly in one plane, resembling hydrocaulus. Perisarc of moderate thickness proximally, thin distally. Hydrothecae long, slender, nearly cylindrical over much of length, tapering proximally; given off from all sides of hydrocaulus and branches, typically adnate to axial tube over most of length, immersed to varying degrees depending upon thickness of fasciculation of hydrocaulus and branches, curving outwards, becoming free distally, total length excluding renovations of margin 1.15-1.25 mm. Hydrothecal walls smooth; perisarc thin, adcauline wall convex, abcauline wall concave. Margin entire, slightly flaring, usually with several renovations; orifice round, diameter 154-177 μm. Operculum, diaphragm, desmocytes, and nematothecae absent.

Gonophores not seen.

Remarks.— Cryptolaria humilis Allman, 1888, originally described from Challenger Stn 73 (located on the Mid-Atlantic Ridge near the Azores), was regarded as conspecific with C. abyssicola by Vervoort (1966). He also regarded Cryptolaria diffusa Allman, 1888, from Challenger Stn 101 off Sierra Leone, as coterminous with C. abyssicola. This species has been reported (as either C. humilis or C. abyssicola) on several occasions from abyssal and bathyal bottoms of the Pacific and the Atlantic Oceans [South Australian Basin (Allman, 1888, type locality, see above); Celebes Sea, Tasman Sea and Kermadec Trench, 2470-4970 m (Vervoort, 1966); northern temperate Atlantic, 4540-4600 m (Kramp, 1915); off Saldanha and Still Bays, South Africa, 2740 and 200 m (Millard, 1975); northern part of the Bay of Biscay, 1980-4715 m (Vervoort, 1985; Ramil & Vervoort, 1992a)]. Cryptolarella diffusa is only known from the

Fig. 12. Cryptolarella abyssicola (Allman, 1888). Part of a polysiphonic branch with three hydrothecae, RMNH-Coel. slide 575. Scale line equals 0.5 mm.
type locality; while Cryptolarella humilis, since the original record by Allman (1888), has only recorded by Browne (1907) from deep water (754 m) of the Bay of Biscay. Both species are here considered to fall within the synonymy of Cryptolarella abyssicola (Allman, 1888) (see above). The latter is here recorded from a single locality in deep water of the Mid-Atlantic Ridge, falling well within the range of Atlantic deep water localities from which the species has so far been obtained.

Genus Grammaria Stimpson, 1854

Grammaria abietina (M. Sars, 1850)

(fig. 13)

Campanularia abietina M. Sars, 1850: 139.
Grammaria abietina; M. Sars, 1863: 34; Kramp, 1935: 127, fig. 55; Leloup, 1940: 16; Vervoort, 1942: 288; Fraser, 1944: 217-218, pl. 44 fig. 200; Naumov, 1960: 283-284, figs 20, 46E, 174, tab. 1 fig. 3; Calder, 1970: 1523, pl. 5 fig. 1; Cornelius, 1975: 382, fig. 3; Millard, 1977a: 12, fig. 3D-E; Cornelius & Ryland, 1990: 135, fig. 4.13; Cornelius, 1995a: 257-259, fig. 59; Cornelius, Manuel & Ryland, 1995: 92, fig. 411.

Grammaria abietina f. brevicylatha Broch, 1918: 18-21, fig. 5. (Restricted bibliography).

Type locality.— Off Bergen, Norway.

Material examined.— Menez Gwen hydrothermal field, Mid-Atlantic Ridge, DIVA 1, Dive DV 14-2, two young colonies, 1.3-2.2 cm high, without coppiniae, RMNH-Coel. 27290; one young colony, 7 mm high, without coppiniae, as RMNH-Coel. slide 3138.

Description.— Colonies all juvenile, unbranched, erect, up to 2.2 cm high. Hydrocaulus a polysiphonic rhizocaulus arising from converging hydrorhizal stolons adherent to substrate, straight to slightly curved but not geniculate, comprising an axial tube bearing hydrothecae arranged in 3-6 longitudinal series, axial tube overgrown by accessory tubes; nodes indistinct; perisarc thick basally, thinner in younger parts of colony. Hydrothecae narrowest at base, flaring slightly just below margin, nearly cylindrical over much of length, older hydrothecae becoming quite long due to numerous renovations of margin, total length excluding such renovations about 1.1-1.3 mm; each hydrotheca adnate to

Fig. 13. Grammaria abietina (M. Sars, 1850). Hydrocaulus with three hydrothecae, RMNH-Coel. 27290. Scale line equals 0.25 mm.
axial tube basally and immersed to a varying degree depending upon extent of stem fasciculation and margin renovation, curving abruptly outwards, free part becoming perpendicular or nearly so to axis of hydrocaulus distally. Hydrothecal walls smooth; perisarc of abcauline wall thick basally, becoming thin distally; perisarc more uniformly thin along adcauline wall; adnate part of adcauline wall nearly straight, free part convex except becoming concave just beneath margin or near location of original margin; abcauline wall straight to slightly convex proximally, concave distally. Margin entire, slightly flaring, usually with several or many renovations; orifice round, diameter 270-306 μm. Operculum, diaphragm, and nematothecae absent.

Remarks.— *Grammaria abietina* (M. Sars, 1850) is a circumpolar species (Naumov, 1960; Calder, 1970) ranging southward to the North Sea in the eastern Atlantic (Cornelius, 1975), and to southern New England in the western Atlantic (Fraser, 1944). This finding of *G. abietina* from the Menez Gwen hydrothermal field is south of the known range of the species in the North Atlantic, although its occurrence at a latitude of 37°N is not unexpected given the depth at which it was found. The species was reported from the southern hemisphere, near the Crozet Islands, by Millard (1977a). *Grammaria abietina* is a eurybathic species, having a reported depth range of 10 to 1500 m (Cornelius, 1975).

Genus Zygophylax Quelch, 1885

Type, by monotypy, *Zygophylax profunda* Quelch, 1885. In this genus the following species have been considered:

Zygophylax abyssicola (Stechow, 1926); *Z. africana* Stechow, 1923c; *Z. adhaerens* (Fraser, 1938a); *Z. antipathes* (Lamarck, 1816); *Z. arborescens* (Leloup, 1931); *Z. armata* (Ritchie, 1907b); *Z. bathyphila* Leloup, 1940; *Z. biarmata* Billard, 1905 [= *Z. inconstans* Millard, 1977b; *Z. halecioides* var. *annellata* (Picket & Bedot, 1900)]; *Z. bifurcata* Billard, 1942; *Z. brevithecata* Jäderholm, 1919; *Z. brevithecata* var. *sibogae* Billard, 1942; *Z. brownii* Billard, 1924; *Z. carolina* (Fraser, 1911); *Z. cervicornis* Nutting, 1905; *Z. concinna* (Ritchie, 1911); *Z. convallaria* (Allman, 1877); *Z. crassicaulis* (Fraser, 1943); *Z. crassitheca* Fraser, 1941; *Z. crozatensis* Millard, 1977a; *Z. curoitheca* (Stechow, 1913a); *Z. cytlifera* (Allman, 1888); *Z. elegans* (Fewkes, 1881); *Z. elongata* Ramil & Vervoort, 1992; *Z. flexii* (Picket & Bedot, 1900); *Z. gericulata* Clarke, 1894); *Z. geminocarpa* Millard, 1958; *Z. infundibulum* Millard, 1958; *Z. junceoides* Borradaile, 1905 (questionable species); *Z. leloupi* Ramil & Vervoort, 1992; *Z. levinseni* (Saemundsson, 1911) [= *Z. eleganctula* Leloup, 1940]; *Z. miliarum* Quelch, 1885; *Z. pinnata* (G.O. Sars, 1874) [= *Z. halecioides* (Allman, 1874)]; *Z. profunda* Quelch, 1885; *Z. recta* Jarvis, 1922; *Z. reflexa* (Fraser, 1948); *Z. rigida* Fraser, 1948; *Z. robusta* (Verrill, 1873); *Z. rufa* (Bale, 1884); *Z. sagamiensis* Hirohito, 1983; *Z. sibogae* Billard, 1918; *Z. stechowi* (Jäderholm, 1919); *Z. thyroscyphiformis* (Marktanner-Turneretscher, 1890); *Z. tizardensis* Kirkpatrick, 1890a; *Z. totoni* Rees & Vervoort, 1987; *Z. unilateralis* Totton, 1930; *Z. valdiviae* Stechow, 1923a.

A new species, *Zygophylax echinata*, is described below.

Zygophylax echinata, spec. nov.
(figs 14a-h, 15)

Material examined.— Menez Gwen region, Mid-Atlantic Ridge, DIVA 1, Dive DV 13-4, one colony,
with a coppinia, RMNH-Coel. 27285 and three fragments of colonies, 6-17 mm high, without coppini-
æae (paratypes); one colony in slide 3134 as MNHN-Hy 1220 (holotype).

Description of type series.— Fertile specimen only in fair condition; colony erect, 2.5 cm high, surrounded by a coppinia or part of one basally. Hydrocaulus weakly geniculate, strongly polysiphonic, about 350 μm in diameter near base; axial tube largely obscured throughout by accessory tubes, diameter at upper end 85-100 μm, giving rise to alternate hydrocladia directed to either side in one plane, cauline hydrothecae present between successive hydrocladia, including one in each axil (unless broken off), nodes if present not readily apparent; bases of hydrocladia and pedicels of cauline hydrothecae both surrounded by accessory tubes of stem; perisarc thick, especially at proximal end. Hydrocladia short, reaching 3 mm in length, polysiphonic at least basally, not secondarily branched, straight or very slightly geniculate; nodes on axial tube of hydrocladium apparently infrequent, transverse, at irregular intervals; hydrocladial apophyses prominent, located laterally or fronto-laterally on axial tube, directed alternately to left and right, each apophysis normally supporting a pedicellate hydrotheca, two lateral nematothecae evidently present when apophy-
ses not overgrown by accessory tubes and when nematothecae not dislodged. Nema-
thecae common on hydrocaulus and hydrocladia, short, tumbler-shaped, with rounded or stalk-like pedicels, walls smooth or slightly wrinkled, narrowing some-
what below rim, margin entire, round, straight or very slightly everted, frequently
renovated, length of non-renovated part 42-68 μm, 24-31 μm wide at orifice, pedicels 13-18 μm long. Hydrothecal pedicels smooth, short, adcauline side 29-111 μm in
length, abcauline side 26-117 μm, longest pedicels being axillary, each delineated
from apophysis below by a node, narrowest proximally, usually increasing slightly in
diameter distally, merging at diaphragm with base of hydrotheca. Hydrothecae
small, very slender, vase-shaped, distal part flaring and trumpet-shaped, walls smooth, perisarc moderately thin; diaphragm distinct, oblique, 46-68 μm in diameter;
abcauline wall convex over most of length, concave distally, 267-397 μm long exclud-
ing renovations; adcauline wall concave distally, slightly convex to slightly concave
basally, length without renovations 254-364 μm; margin entire, round, slightly evert-
ed, often repeatedly renovated, nearly perpendicular to main axis of hydrotheca,
diameter of original opening 94-117 μm.

Gonophores fixed sporosacs. Gonothecae aggregated into an oval coppinia sur-
rounding hydrocaulus basally; coppinia probably fragmentary, 2 mm high, 3.5 mm
wide; gonothecae flask-shaped, walls adnate to each other basally for approximately
570 μm, slightly less than 2/3 of total length, distal free part about 450 μm in height,
width maximal at top of contiguous part, then tapering distally to form a single, large
spine; orifice single, pyriform, about half-way between base and tip of spine. Nema-
tophorous ramules with nematothecae and hydrothecae growing over coppinia, but
not profusely so; nematothecae about 55 μm long, rim diameter 30 μm; hydrothecae
about 310 μm long, margin 90 μm in diameter.

Smaller paratypes resembling fertile colony but up to 1.7 cm high, about 290 μm
wide basally, branches reaching 6 mm long; one of these re-branched, resembling
hydrocaulus. Nematothecae 47-60 μm deep, margin diameter 23-30 μm. Hydrothecal
pedicels length abcauline side 26-65 μm, length adcauline side 20-52 μm. Hydrothecae
Fig. 14. Zygophylax echinata, spec. nov., RMNH-Coel. 27285, paratype. a, distal part of hydrocaulus, with hydrothecae and nematothecae; b, hydrotheca and nematotheca, on hydrocaulus; c, axillary hydrotheca; d, hydrotheca and nematotheca from distal end of hydrocladium; e, cauline nematothecae; f, hydrocladial apophysis with two lateral nematothecae and remnant of hydrothecal pedicel; g, three gonothecae and nematophorous ramule from coppinia; h, end of nematophorous ramule of coppinia, with nematothecae and hydrotheca. Scale lines for a and g equal 0.25 mm; scale lines for b, c, d, f, and h equal 0.10 mm; scale line for e equals 100 μm.
Fig. 15. *Zygophylax echinata*, spec. nov., holotype (slide 3134, NMNH-Hy. 1220). a, cauline hydrotheca and nematotheca; b, cauline hydrotheca; c, axillary hydrotheca, renovated, with adjacent nematotheca; d, nematotheca on apophysis of hydrocladium; e, nematotheca on hydrocaulus. Scale lines for a, b, and c equal 0.10 mm; scale lines for d and e equal 100 μm.
diameter at diaphragm 52-57 µm, diameter at margin 88-111 µm, adcauline wall length 286-371 µm, length abcauline wall 293-367 µm (all measurements of nematothecae and hydrothecae on non-renovated parts).

Remarks.— The specimens most closely resemble *Zygophylax sagamiensis*, described by Hirohito (1983) from upper bathyal depths (250-300 m) in Sagami Bay, Japan. In *Z. echinata*, the hydrothecae are vase-shaped and distinctly flared distally rather than being tubular to slightly curved outwards. Moreover, the hydrothecal pedicels of *Z. echinata* were consistently short and lacked annulations, instead of varying from short to very long and sometimes being annulated. The occurrence of one large distal spine instead of two smaller ones on the gonothecae, and the presence of distally flaring rather than tubular hydrothecae, distinguish *Z. echinata* from *Z. africana* Stechow, 1923a.

The Menez Gwen material also corresponds in some respects with illustrations of *Zygophylax inconstans* Millard, 1977b, by Izquierdo, García-Corrales & Bacallado (1986) from the Canary Islands, although hydrothecae in their material are much more robust. Ramil & Vervoort (1992a) considered *Z. inconstans*, and the material described by Izquierdo, et al. under that name, to be conspecific with *Z. biarmata* Billard, 1905. Gonothecae of *Z. biarmata* are decidedly different from those of *Z. echinata*, particularly in lacking a spine distal to the aperture.

Etymology.— The specific name *echinata*, from Latin, alludes to the prominent spine found at the distal end of the gonothecae of this species.

Zygophylax leloupi Ramil & Vervoort, 1992
(fig. 16a-c)

Zygophylax geniculata; Leloup, 1940: 13-14, pl. 1 fig. 9 [not *Zygophylax geniculata* (Clarke, 1894)].

Zygophylax leloupi Ramil & Vervoort, 1992a: 74, figs 16a-c, 17a-d; Bouillon, Massin & Kresevic, 1995: 55. (Full bibliography).

Type Locality.— Off the coast of Morocco, BALGIM Stn CP 90 (34°21.4'N 07°23.6'W, 890 m).

Material.— Seamount at Zone 38 20'N, Mid-Atlantic Ridge, DIVA 1, Dive DV 10, two colonies, 1.6 and 2.9 cm high, without coppiniae, two slides 3137 (RMNH-Coel. 27289 and ROMIZ B3004).

Description.— Colonies erect, up to 2.9 cm high, arising from a creeping hydrorhizal mat; specimens in fair condition only; nematothecae sparse. Hydrocaulus geniculate, polysiphonic except at distal end, with axial tube overgrown by accessory tubes, axial tube 197-262 µm wide, giving rise to outward- and upward-directed apophyses at regular intervals; each cauline apophysis typically bearing (except where broken off) a hydrocladium, or a hydrotheca or the remains of its pedicel, or both (with hydrotheca axillary), an axillary nematotheca also present on distal apophysis of one colony; hydrocaulus and hydrocladia without regular nodes; perisarc quite thick. Hydrocladia mostly unbranched, weakly geniculate, bearing fronto-lateral apophyses alternately directed to either side; each hydrocladal apophysis supporting a pedicellate hydrotheca, nematothecae or circular points of their original insertion occasionally present; nematothecae about 130 µm long, 60 µm wide at margin, tumbler-shaped with short pedicel, margin entire, not everted, sometimes renovated.
Fig. 16. *Zygophylax leloupi* Ramil & Vervoort, 1992a. a, part of hydrocaulus, with pedicel and hydrotheca; b, hydrotheca; c, nematotheca, with renovated margin, at base of hydrocladial apophysis; all slide 3137. Scale lines for a and b equal 0.25 mm; scale line for c equals 0.10 mm.

Hydrothecal pedicels each separated from its apophysis by node, moderately long, virtually all renovated repeatedly in present material and comprising a series of segments of decreasing age, 344-492 μm long, youngest part immediately below hydrotheca 82-246 μm in length, smooth, narrowest proximally, gradually increasing in diameter distally, merging at diaphragm with base of hydrotheca; diaphragm distinct, slightly oblique, diameter 115-131 μm. Hydrothecae deeply campanulate, somewhat curved, maximum total depth 574-648 μm, walls smooth, perisarc thin; adcauline wall convex except concave below margin; abcauline wall convex; margin entire, flaring, usually renovated, oblique to main axis of hydrotheca, diameter 292-325 μm; orifice round.

Coppinia not present.

Remarks.—The material studied here corresponds with the description and illustrations of *Zygophylax geniculata* (Clarke, 1894) from three bathyal stations near the Azores (38°30'30"N 26°50'15"W, 845 m; 37°55'N 25°23'45"W, 880 m; 38°45'30"N 28°07'45"W, 1095 m) by Leloup (1940). Ramil & Vervoort (1992a) founded a new species, *Zygophylax leloupi*, for specimens from bathyal bottoms off Morocco, and assigned Leloup's material to it. They considered *Zygophylax geniculata*, a smaller, poorly known species originally described (Clarke, 1894) from a depth of 458 fathoms.
(838 m) off the Pacific coast of Panama, to be a different species from the Atlantic hydroids studied by Leloup.

The geographical distribution of this species is restricted to the deeper water of the eastern Atlantic, where it has been found near the Azores, 845-1095 m depth (Leloup, 1940, as *Zygophylax geniculata*) and at the coast of Morocco off Rabat, 890-1378 m depth (Ramil & Vervoort, 1992a). The present record is in the vicinity of the localities given by Leloup (1940).

Zygophylax levinseni (Saemundsson, 1911)

(fig. 17a-c)

Lictorella Levinseni Saemundsson, 1911: 86-88, fig. 2a-i.

Zygophylax biarmata; Broch, 1918: 24-25 [not *Zygophylax biarmata* Billard, 1905].

Zygophylax elegantula Leloup, 1940: 11-12, pl. 1 fig. 8; Rees & White, 1966: 274; Rees & Vervoort, 1987: 78.

Zygophylax sp. Aguirrezabalaga et al., 1988: 229, fig. 12a-f. (Full bibliography).

Type locality.— Iceland, “habitat ad oram meridionalem Islandiae, prope insulas Vestmanneyjar, profund. 510 m” (Saemundsson, 1911).

Material.— Mid-Atlantic Ridge, Faranaut Dive FR 03, colonies and fragments up to 20 mm high, without coppiniae (MNHN-Hy 1221).

Mid-Atlantic Ridge, Faranaut Dive FR 13, on sponge no. 2 (and on *Acrvotolaria longitheca* on sponge no. 2), straggling colonies up to 33 mm, without coppiniae, RMNH-Coel. 27308; two colonies 14 and 33 mm high on RMNH-Coel. slides 3156; 14 mm high colony ROMIZ B3005.

Description.— Colonies erect, straggly, up to 3.3 cm high, arising from a creeping hydorhiza or hydorhizal mat attached to large sponge spicules; nematothecae abundant on hydorhiza and on accessory tubes of hydrocaulus, also present on axial tube of hydrocaulus, hydrocladia, and apophyses, occasionally on hydrothecal pedicels. Hydrocaulus geniculate, polysiphonic except at distal end, with axial tube overgrown by accessory tubes; axial tube 124-146 μm wide, bearing fronto-lateral apophyses alternately directed to either side; caulin apophyses each with a hydrotheca, or with a hydrocladium and an axial hydrotheca, one or more lateral nematothecae usually present; hydrocaulus and hydrocladia with distinct transverse nodes at irregular intervals, usually part-way between two apophyses; perisarc thin distally, thick proximally. Hydrocladia occasionally polysiphonic basally but usually monosiphonic throughout, unbranched, often very long, up to 18 mm in length, weakly geniculate, giving rise to frontal apophyses directed left and right at more or less regular intervals; hydrocladal apophyses each supporting a pedicellate hydrotheca and one or more lateral nematothecae or circular indications of their original insertion. Nema­tothecae tubular with short, often rounded pedicels, margin entire, round, slightly everted, frequently renovated, length of non-renovated part 94-237 μm, 36-55 μm wide at orifice. Hydrothecal pedicels 228-488 μm long, smooth, each delineated from apophysis by a node basally, narrowest proximally, gradually increasing in diameter distally, merging at diaphragm with base of hydrotheca. Hydrothecae cornucopia-
shaped, walls smooth, perisarc thin; diaphragm distinct, oblique, 94-117 μm in diameter; adcauline wall very slightly convex basally, concave elsewhere, 361-390 μm long, excluding renovations; abcauline wall convex, length without renovations 445-514 μm; margin entire, round, slightly flaring, repeatedly renovated, oblique to main axis of hydrotheca, diameter of original opening 166-179 μm.

Coppinia not present.

Remarks.—With slender, elongate, and gradually curved hydrothecae, and moderately long hydrothecal pedicels, these hydroids fit accounts of *Zygophylax levinseni* (Saemundsson, 1911), *Z. sibogae* Billard, 1918, and *Z. elongata* Ramil & Vervoort, 1992a. *Zygophylax abyssicola* (Stechow, 1926) appears to be similar (Ramil & Vervoort, 1992a), but was briefly described and has not been illustrated. All except *Z. abyssicola*, from the Indian Ocean off east Africa, have been reported from the North Atlantic; the type locality of *Z. sibogae*, nevertheless, is near the Kai Islands, Banda Sea.

Unlike *Zygophylax sibogae* as described by Billard (1918), Ralph (1958), Millard (1975), Hirohito (1983), Altuna Prados & Álvarez Claudio (1994), and others, the hydrothecae of Mid-Atlantic Ridge specimens lack the striking outward curvature a
short distance below the margin, and the pedicels are generally shorter than the hydrothecae. *Zygophylax levinseni* is distinguished from *Z. elongata* by the smaller and less curved hydrothecae, shorter hydrothecal pedicels, and laterally curved tubes at the distal ends of the gonothecae, and in lacking nematophorous ramules associated with the coppinia (Ramil & Vervoort, 1992a). Absence of coppinia in Faranaut material makes an identification of it difficult, particularly since certain species with very similar trophosomes have different gonosomes (Millard, 1977). Nevertheless, the size of hydrothecae and pedicels in our material corresponds more closely with measurements of *Z. levinseni* provided by Ramil & Vervoort (1992a), rather than with those of *Z. elongata*. We have thus referred our material to *Z. levinseni*, an Atlantic deep-water species with a reported bathymetric range of 183-3657 m, and a geographic range from Iceland southward to abyssal bottoms off the Cape Verde Islands (Saemundsson, 1911; Broch, 1918; Leloup, 1940; Ramil & Vervoort, 1992a; Altuna Prados & Álvarez Claudio, 1995). The present localities generally fit into that picture.

Superfamily Sertularioidea Lamouroux, 1812
Family Sertulariidae Lamouroux, 1812

Genus *Diphasia* L. Agassiz, 1862

Diphasia margareta (Hassall, 1841)
(fig. 18a, b)

Sertularia Margareta Hassall, 1841: 284, pl. 6 figs 3, 4.
Diphasia margareta; Cornelius, 1979: 263-265, fig. 11a-c; Izquierdo, García-Corrales, Bacallado & Vervoort, 1990: 32-33, fig. 2. (in figure: *Diphasia margareta*); Ramil & Vervoort, 1992a: 201-210, figs 52a-c, 53a-g, 54a-e, 55a-c, 56c-e, 57a, 58a-d; Boero & Bouillon, 1993: 264; Altuna Prados, 1995: 54; Álvarez-Claudio & Anadón, 1995: 239; Bouillon, Massin & Kresovic, 1995: 64; Medel & López-González, 1996: 203.
Diphasia pinaster; Hincks, 1868: 252-253, pl. 50 fig. 1.

Type locality.— *Diphasia margareta*: Ireland (Howth and Giant's Causeway) (Hassall, 1841); *Diphasia elegans*: Norway, "Habitat sat freqvens ad insulam Hvitingsö in prof. 150-200 orgyarum, fundo argillaceo" (G.O. Sars, 1874).

Material.— Seamount at Zone 38°20'N, Mid-Atlantic Ridge, DIVA 1, Dive DV 11-2, four fragments of colonies, reaching 2.2 cm high, without gonothecae, two slides 3130, RMNH-Coel. 27280; two colonies, 2.3 and 3.2 cm high, without gonothecae, MNHN-Hy 1145.

Description.— Colonies erect, up to 3.2 cm high, arising from a creeping hydrocaulus monosiphonic, straight, unbranched or with a single branch arising just below base of a hydrotheca. Basal part of hydrocaulus tubular, athecate, of varied length; remainder of hydrocaulus with opposite to sub-opposite pairs of hydrothecae at regular intervals, nodes mostly indistinct. Perisarc moderately thick. Adjacent hydrothecae of a pair separated from each other front and back, well spaced from adjacent pairs. Hydrothecae slender, horn-shaped with narrow base, 156-213
μm, expanding medially, tapering distally; axis oblique to that of internode; curving outwards, with orifice facing upwards and outwards; abcauline wall convex distally, concave medially and just below margin, 804-1050 μm long; adnate portion of adcauline wall convex, 508-640 μm long; free part of adcauline wall essentially straight or slightly concave, 246-492 μm in length. Hydrothecal perisarc thickest just proximal to midpoint of abcauline wall, becoming gradually thinner proximally and distally; perisarc on free part of adcauline wall thin, with a slight thickening just below margin. Hydrothecal walls smooth except for a pair of longitudinal striae along free part of adcauline wall, one each on front and back side, an additional pair also occasionally present. Hydrothecal margin slightly flaring, frequently renovated, with a U-shaped adcauline sinus, marginal teeth two, not prominent; orifice oval, 279-344 μm wide from adcauline sinus to abcauline wall. Operculum consisting of a large fingernail-shaped adcauline valve. Intrathecal teeth absent.

Remarks.— The nomenclature of Diphasia margareta (Hassall, 1841) was discussed by Cornelius (1979), who recognized the species as distinct from D. pinastrum (Cuvier, 1830). He referred Allman's (1888) record of Diphasia pinaster (Ellis and Solander, 1786) from Challenger Stn 75 (38°38'N 28°28'W, 450 fms (= 823 m), near the Azores and close to the present site, to D. margareta.

The morphology of Diphasia margareta is highly varied (Ramil & Vervoort, 1992a). Material from the Mid-Atlantic Ridge resembles specimens described and illustrated

Fig. 18. Diphasia margareta (Hassall, 1841). a, part of hydrocaulus, with three hydrothecal pairs; b, part of hydrocaulus, with base of a branch; both RMNH-Coel. slide 3130. Scale lines equal 0.5 mm.
from the Strait of Gibraltar by those authors. As in their hydroids, the abcauline wall of the hydrothecae in our specimens lacked a perisarcal ledge, tooth, or fold, and the hydrothecae were long and slender.

Diphasia margareta has a reported latitudinal distribution from Norway (G. O. Sars, 1874; as *Diphasia elegans*) to Guinea Bissau (Gili, Vervoort, & Pagès, 1989; as *Diphasia pectinata*) in the eastern Atlantic. Bathymetrically, it has been found between 135 and 1318 m (Ramil & Vervoort, 1992a).

Genus Sertularella Gray, 1848

Sertularella gayi robusta Allman, 1874

(fig. 19a-b)

Sertularella Gayi var. robusta Allman, 1873: 186 (nomen nudum).
Sertularella gayi var. robusta Allman, 1874: 474, pl. 66 figs 3, 3a; Allman, 1877: 22-23, pl. 15 figs 3-5;
Fewkes, 1881: 128, 130; Kirchenpauer, 1884: 41, 42, 53; Nutting, 1895: 179, fig. 1; Hartlaub, 1901:
62, 66; Nutting, 1904: 79, fig. 123, pl. 14 figs 6-7; Billard, 1906a: 331; Billard, 1906b: 157, 185, fig. 9b;
Bedot, 1912: 354; Bedot, 1916: 204; Bedot, 1918: 238; Bedot, 1925: 370; Stechow, 1925: 483; Ver­
oort, 1993a: 190.
Sertularella gayi robusta; Vervoort, 1972: 118, figs 36c-d; Ramil & Vervoort, 1992a: 223-225, figs 60b,
62a-c.
Sertularella Gayi var. elongata Billard, 1906: 311; 1906a: 157, 185-186, fig. 9c; Bedot, 1925: 370. (Full bib­
liography).

Type locality.—Deep water (371-1106 m) west of the Shetland Islands (Allman, 1874).

Material.—Seamount at Zone 38°20'N, Mid-Atlantic Ridge, DIVA 1, Dive DV 10-1, three very young colonies with 3-4 hydrothecae, 6-9 mm high, without gonothecae, RMNH-Coel. 27284.
Menez Gwen region, Mid-Atlantic Ridge, DIVA 1, Dive DV 15-3, one specimen, 10.7 cm high, without gonothecae, RMNH-Coel. 27273; one young colony, 3.1 cm high, and fragments of hydrocladia, without gonothecae, on three slides of which one RMNH-Coel. 3124, one MNHN-Hy 1223, and one ROMIZ B3006.

Description.—Colonies erect, up to 10.7 cm high; small specimens arising from a creeping hydrorhiza, large colony from a hydrorhizal mat. Hydrocaulus polysiphonic basally except in smallest hydroids, nearly straight when strongly polysiphonic, otherwise geniculate; axial tube bearing alternate hydrothecae, nodes oblique, sometimes obliterated; cauline internodes each bearing a hydrotheca at distal end. Large colony more or less alternately branched in one plane; hydrocladia unbranched, monosiphonic, geniculate, up to 2.5 cm long, most often arising from every third cauline internode although this varies, each branch inserting immediately beneath a hydrotheca; nodes of hydrocladia somewhat indistinct, oblique, internodes 1.6-2.7 mm long, 410-525 μm wide across nodes, proximalmost internode longest; each internode bearing a hydrotheca distally; hydrothecae alternate. Perisarc thin only in youngest parts of colony; light yellow in colour. Hydrothecae pitcher-shaped, walls essentially smooth, widest at junction of adcauline wall and internode, tapering in either direction and becoming narrowest at base and beneath margin; axis of hydrotheca oblique to that of cauline internode; adcauline wall adnate to internode for 1/2 or less of its
Fig. 19. *Sertularella gayi robusta* Allman, 1874. a, part of hydrocladium, with two hydrothecae, RMNH-Coel. 27273; b, part of hydrocaulus, with two hydrothecae, RMNH-Coel. 27284. Scale lines equal 0.5 mm.

length, convex basally, free part nearly straight except slightly concave immediately below margin, 574-689 μm adnate, 787-968 μm free; abcauline wall slightly convex to straight proximally, concave distally, 1017-1148 μm long; base diameter 344-410 μm; margin slightly flaring. Hydrothecal orifice 467-508 μm wide from adcauline to abcauline tooth, oblique to main axis of hydrotheca; margin with four distinct, equally developed teeth; submarginal teeth absent. Operculum of four valves. Very young colonies much less robust than large branched one; internode length 1.3-2.1 mm, width across nodes 312-394 μm; hydrothecae more slender, walls distinctly annulated, with ridges more pronounced on adcauline than on abcauline wall; length of adcauline wall adnate 361-541 μm, free 738-836 μm; length of abcauline wall 968-1099 μm; base diameter 254-361 μm; orifice diameter 361-443 μm.

Gonothecae not present.

Remarks.—The Menez Gwen material differs from Allman’s (1873, 1874) original description of *Sertularella Gayi* var. *robusta* in two ways, both considered insignificant. First, the hydrocladia are given off alternately in one plane, rather than from all sides
of the polysiphonic hydrocaulus. Notably, however, Allman found specimens in some dredgings in which the hydrocladia were "rather more pinnate". Thus, the arrangement of the hydrocladia appears to change with age and size of the colony. Secondly, the hydrocaulus of the large Menez Gwen specimen (RMNH-Coel. 27273) was unbranched, whereas an occasional polysiphonic branch was given off in Allman’s material. In more important aspects, our material corresponds so well with *S. gayi robusta* that we are convinced it is the same (sub)species.

Allman (1874) refrained from establishing the robust form as a species distinct from *S. gayi* (Lamouroux, 1821) because he found what he considered transitional forms between the two. We follow Vervoort (1972) and Ramil & Vervoort (1992a) in recognizing this form as a subspecies of *S. gayi*. Hydroids identified as *S. gayi* have been reported from the Azores, near the present collection site, by Jäderholm (1903), Leloup (1940), Rees & White (1966), and Cornelius (1992a). The distribution of *S. gayi robusta* has been summarized by Ramil & Vervoort (1992a: 225); it occurs in deeper water of both the eastern and western Atlantic. The record nearest to the present sites is that from south of Madeira by Billard (1906a, 1906b, as *Sertularella Gayi var. elongata* Billard, 1906).

Sertularella tenella (Alder, 1856)

(fig. 20a-b)

Sertularia tenella Alder, 1856: 357, pl. 13, figs 3-6.

Sertularella geniculata Hincks, 1874: 152-153, pl. 7 figs 13-14. (Restricted bibliography).

Type locality.—*Sertularella tenella*: Northumberland, U.K. (Alder, 1856, cf. Cornelius & Garfath, 1980); *Sertularella geniculata*: off Reykjavik, Iceland (Hincks, 1874).

Material.—Lucky Strike hydrothermal field, Mid-Atlantic Ridge, DIVA 2, Dive PL 02, site “Sintra”, on coral fragments, three colonies, up to 7 mm high, without gonothecae, RMNH-Coel. 27291; two fragmentary specimens, 7-13 mm high, without gonothecae, slide RMNH-Coel. 3139.

Description.—Colonies erect, up to 13 mm high, arising from a creeping hydrorhiza. Hydrocaulus monosiphonic, strongly geniculate, unbranched, divided into internodes by deeply cut, oblique nodes sloping alternately in opposite directions; perisarc moderately thick basally, thin distally. Internodes 1.1-2.4 mm long, extremely slender, 115-213 μm wide at nodes, each internode with a varying number of spiral annulations basally, distal end expanded and bearing a hydrotheca. Hydrothecae alternate, widely separated, pitch-shaped, widest just above base, tapering distally and becoming narrowest below margin, adcauline wall adnate to internode for 1/3 or less of its length, axis of hydrotheca oblique to that of caudine internode; hydrothecal walls distinctly rugose with about six annulations, these more pronounced on adcauline than on abcauline wall; adcauline wall mostly convex, becoming concave imme-
Fig. 20. *Sertularella tenella* (Alder, 1856). a, part of hydrocaulus, with two hydrothecae; b, hydrotheca; both RMNH-Coel. slide 3139. Scale line for a equals 0.5 mm; scale line for b equals 0.25 mm.

Immediately below margin, 197-279 \(\mu \)m adnate, 672-787 \(\mu \)m free; abcauline wall concave at distal end, nearly straight elsewhere, 738-836 \(\mu \)m long; base diameter 123-197 \(\mu \)m; margin slightly flaring. Hydrothecal orifice 287-312 \(\mu \)m wide from abcauline to abcauline tooth, perpendicular or nearly so to main axis of hydrotheca; margin with four distinct, equally developed teeth; submarginal teeth absent. Operculum of four valves.

Gonothecae not present.

Remarks.— The morphology of these small and exceedingly slender specimens most closely coincided with the original account of *Sertularella geniculata*, described by Hincks (1874) from material collected off Iceland. Most authors since Hartlaub (1901), except Nutting (1904) and Fraser (1944), have regarded *S. geniculata* to be conspecific with *S. tenella* Alder, 1856. The specimens are also much like hydroids from northern Canada assigned to *S. tenella* by Calder (1970).

Some accounts of *Sertularella gayi robusta* Allman, 1874, appear similar to those of *S. tenella*, although Allman's (1874) description of the subspecies was based on a particularly large (15 cm high), robust, polysiphonic, and regularly branched hydroid species. Mid-Atlantic Ridge material might represent very young colonies of *S. gayi robusta*, but its small and slender colony form appears quite different (compare with young colonies of *S. gayi robusta*, RMNH-Coel. 27284). Thus, we refer the specimens from the “Sintra” site to *S. tenella*.

This near-cosmopolitan species has been recorded from many North Atlantic
localities, ranging from Iceland and Spitzbergen in the north to the coasts of Angola in the south, usually but not exclusively on flustrid Bryozoa in the deeper parts of the littoral zone. It has, however, also been recorded as deep as 1000 m (Naumov, 1960).

Genus Symplectoscyphus Marktanner-Turneretscher, 1890

Symplectoscyphus bathyalis Vervoort, 1972
(fig. 21a-b)

Symplectoscyphus bathyalis Vervoort, 1972:174, figs 58-59, 60a; Stepan’yants, 1979: 70, pl. 12 fig. 4; Vervoort, 1993a: 239, 242-245, figs 54f-h, 55a-b, d, tab. 45. (Full bibliography).

Type Locality.— Bay of Biscay, 48°04’N 9°23’W, 1828 m (Vervoort, 1972).

Material examined.— Lucky Strike region, Mid-Atlantic Ridge, Alvin 2603, Station 4, one colony, 3.3 cm high, with gonothecae, RMNH-Coel. 27292; six fragments of specimens, up to 1.5 cm high, with gonothecae, two slides of which one RMNH-Coel. 2398 and one MNHN-Hy 1224. Lucky Strike hydrothermal field, Mid-Atlantic Ridge, DIVA 2, Dive PL 02, site “Sintra”, fragment of a colony, 14 mm high, with gonothecae, RMNH-Coel. 27292 as slide 3140.

Description.— Colonies erect, up to 3.3 cm high, arising from creeping hydrorhiza. Hydrocaulus polysiphonic basally in largest colony, monosiphonic throughout in others, with basal part tubular, athecate, of varied length, remaining part strongly geniculate and bearing alternate hydrothecae; branches, when present, essentially alternate, in one plane, secondary branches lacking in present material; hydrocaulus and branches divided into internodes by oblique nodes sloping alternately in opposite directions; perisarc thin in small hydroids, moderately thick in largest specimen. Internodes 1.4-1.9 mm long, very slender, 172-295 μm wide at nodes, each with distal end slightly expanded and bearing a hydrotheca. Hydrothecae widely separated, vase-shaped, narrowest at base, free part expanding slightly in diameter toward distal end, curved outwards, adcauline wall adnate to internode for less than 1/5 of its length, axis of hydrotheca oblique to that of cauline internode; hydrothecal walls smooth; adcauline wall convex basally, nearly straight to slightly concave distally, 205-295 μm adnate, 902-1164 μm free; abcauline wall generally concave throughout, 656-886 μm long; base diameter 213-262 μm; margin scarcely flaring. Hydrothecal orifice triangular, 402-508 μm wide from adcauline tooth to abcauline sinus, oblique to main axis of hydrotheca; margin frequently renovated, with three distinct, more or less equally developed teeth, one adcauline and two laterals; submarginal teeth absent. Operculum of three triangular valves.

Gonothecae pyriform with about seven well marked, transverse ribs, about 1.7 mm high, 1.0 mm wide at widest point about 2/3 of distance to orifice, occurring on both hydrocaulus and branches, each gonotheca inserting just proximal to base of hydrotheca and to one side of it; aperture distal, small, round, at end of a small funnel-shaped neck.

Remarks.— These hydroids correspond in most respects with the original account of *Symplectoscyphus bathyalis* from the Bay of Biscay, and from abyssal depths off the Golfo de Peñas, Chile, by Vervoort (1972). One of the colonies from the “Lucky
Fig. 21. *Symplectoscyphus bathyalis* Vervoort, 1972. a, part of hydrocaulus, with three hydrothecae; b, part of hydrocaulus, with hydrotheca and gonotheca (somewhat flattened in slide preparation), both RMNH-Coel. slide 2358. Scale lines equal 0.5 mm.

Strike” site (RMNH-Coel. 27292) is weakly polysiphonic basally, as in material of *S. bathyalis* from New Caledonia (Vervoort, 1993a). Hydrothecae of specimens from the Mid-Atlantic Ridge are elongate, even before the renovations of the margin, and especially resemble those of *S. bathyalis* from Chile (Vervoort, 1972). Considerable variation in hydrothecal shape was noted in specimens from New Caledonia by Vervoort (1993a).

Symplectoscyphus bathyalis is similar to and possibly conspecific with *S. paulensis* Stechow, 1923a, founded on sterile material. Gonothecae of hydroids ascribed to *S. paulensis* were described by Millard (1967). Like those in *S. bathyalis* (Vervoort, 1972, 1993a), the gonothecal walls of Mid-Atlantic Ridge specimens bear about seven ribs with thickened margins. These ribs are well developed and occur over the distal 2/3 or more of the gonothecae, rather than being light corrugations concentrated over the distal half, as described in *S. paulensis* (Millard, 1967, 1975; Vervoort, 1993a). Based on these differences, we continue to consider the two as separate species.

The species has so far exclusively been recovered from deep water of the Atlantic (Bay of Biscay, 48°04’N 09°23’W, 1828 m, Vervoort, 1972) and of the Pacific (Golfo de
Peñas, Chile, 46°59.5'S, 75°54'W, 2657-2470 m, Vervoort, 1972; northwestern tip of the Norfolk Ridge, SE of New Caledonia, 650-680 m, Vervoort, 1993a). The present records extend the distribution in deep water of the Atlantic Ocean.

Superfamily Plumularioidea McCrady, 1859
Family Plumulariidae McCrady, 1859
Genus Nemertesia Lamouroux, 1812

Nemertesia antennina (Linnaeus, 1758)
(fig. 22a-d)

Sertularia antennina Linnaeus, 1758: 811.
Nemertesia (Sertularia) antennina; Lamouroux, 1812:184.

Type Locality.— “Habitat in Oceano” (Linnaeus, 1758).

Material.— Menez Gwen region, Mid-Atlantic Ridge, DIVA 1, Dive DV 12-1, one colony, 8 cm high, with gonothecae, RMNH-Coel. 27278, and two fragments of a c. 70 mm high colony, RMNH-Coel. slide 3128.

Description.— Colonies erect, reaching 8 cm high, arising from a creeping hydroidal mat with numerous long nematothecae. Hydrocaulus coarse, monosiphonic, straight to very slightly geniculate in parts, divided at essentially regular intervals by transverse nodes, cauline internodes 640-1771 μm long, 221-398 μm wide at nodes; proximal cauline internodes each bearing a single distal apophysis, with these alternating more or less to left and right; upper cauline internodes with two opposite apophyses at distal end, with pairs arranged in alternating planes; cauline nematothecae several per internode, at various locations around tube; apophyses very long, directed obliquely upwards, each with a prominent dorsal mamelon proximally, typically with three nematothecae, one each on front and back in axil, and one distal to mamelon, an internal perisarcal ring sometimes visible distally. Perisarc fairly thick basally, thin distally. Hydrocladia long, slender, unbranched, up to 1 cm long, divided into a series of alternating athecate and thecate internodes by distinct, oblique nodes, occasionally with irregularities in the sequence of thecate and athecate internodes, diameter at nodes 42-98 μm, some internodes with an internal perisarcal ring at each end; basal internode usually shortest, 328-672 μm, athecate, commonly with two nematothecae, one at proximal end and one distally; thecate internodes 640-943 μm long, each with one hydrotheca, one median inferior nematotheca well separated from hydrotheca, and two lateral nematothecae extending well beyond hydrothecal margin; athecate internodes 705-1107 μm long, most often with one proximal and one
Fig. 22. Nemertesia antennina (Linnaeus, 1758). a, part of hydrocaulus, and apophyses, RMNH-Coel. slide 3128; b, apophysis and basal part of hydrocladium, with athecate and thecate internodes, RMNH-Coel. slide 3128; c, part of hydrocladiial internode, with hydrotheca and nematothecae, RMNH-Coel. slide 3128; d, gonotheca, RMNH-Coel. 27278. Scale lines for a, b, and d equal 0.25 mm; scale line for c equals 0.10 mm.

distal median nematotheca. All nematothecae bithalamic, movable, conical; unpaired ones (except those on hydrorhiza) frequently with adcauline wall slightly lower than abcauline. Hydrothecae usually near middle of thecate internodes, cup-shaped, small; abcauline wall straight to very slightly convex basally and convex distally, 85-104 μm long; adcauline wall convex, entirely adnate to internode, 111-150 μm long; axis of hydrotheca oblique to that of internode; margin entire, perpendicular to axis of hydrotheca; orifice round, 111-124 μm wide from adcauline to abcauline wall.

Gonophores fixed sporosacs. Fully developed gonothecae sparse in present mater-
Nemertesia antennina has a wide distribution in neritic and bathyal waters of the North Atlantic, and of other oceans (Fraser, 1944; Ralph, 1961; Millard, 1975; Cornelius, 1995b). The species was reported, together with Antennella secundaria, Polyplumaria flabellata, and Nemertesia belini, as part of a collection from a submarine cable located 32 miles (51.5 km) east-southeast of Pico, Azores, depth 1160 m, by Bedot (1921b). This location is in the vicinity of the “Menez Gwen” site, southwest of the Azores.
Fig. 23. *Nemertesia ramosa* (Lamarck, 1816). a, part of hydrocaulus, and two apophyses; b, apophysis and basal part of hydrocladium with thecate internodes; c, part of hydrocladial internode, with hydrotheca and nematothecae; all RMNH-Coel. slide 3136. Scale lines for a and c equal 0.10 mm; scale for b equals 0.25 mm.

given off alternately from left and right sides of hydrocaulus, each with a prominent dorsal mamelon, two nematothecae (or perisarcal pores indicating their location), one axillary and one distal to mamelon, and a distal internal perisarcal ring. Perisarc fairly thick basally, thinner distally. Hydrocladia with a maximum of five hydrothecae per clade, unbranched, up to 3.7 mm long, weakly curved with dorsal and frontal sides slightly convex, divided into a series of long, slender internodes by distinct, oblique nodes; regenerated branches with first internode of hydrocladium sometimes appearing short and atethecate, otherwise all hydrocladial internodes thecate, 670-1070 μm long, 40-70 μm wide across nodes, with a distinct internal perisarcal ring at proximal
and distal ends, occasionally with 1-2 additional rings proximal to base of hydrotheca; each internode with one hydrotheca, one median inferior nematotheca well separated from hydrotheca, two lateral nematothecae extending considerably beyond hydrothecal margin, and one median superior nematotheca; all nematothecae bithalamic and movable, sometimes missing. Hydrothecae at proximal end of internode, cup-shaped, small; abcauline wall straight to slightly convex basally and concave distally, 60-91 μm long; adcauline wall convex, entirely adnate to internode, 60-88 μm long; axis of hydrotheca nearly parallel to that of internode; margin entire, perpendicular to axis of hydrotheca; orifice round, 78-94 μm wide from adcauline to abcauline wall.

Gonothecae not present.

Remarks.— Our identifications of these two specimens are somewhat doubtful because both are small and their hydrocladia are biserial instead of multiserial in arrangement. Nevertheless, they conform with diagnoses of the genus Nemertesia, and of Nemertesia ramosa (Lamarck, 1816), in their morphology. Characters we consider significant, singly or in combination, include the presence of: (1) very long hydrocladal apophyses, each with a prominent basal mamelon, (2) one axillary nematotheca on each apophysis, and another distal to the mamelon, (3) homomerously segmented hydrocladia, with even the first internode thecate, (4) long and slender hydrocladal internodes, each with more or less distinct septa at the proximal and distal ends, (5) shallow, cup-shaped, and entirely adnate hydrothecae, with the abcauline walls slightly longer than the adcauline ones, (6) typically four nematothecae per hydrocladal internode (one median inferior, one pair of laterals, and one superior). The specimens also correspond very closely with the descriptions and illustrations of young colonies of N. ramosa, from bathyal waters south of Iceland, by Broch (1918). Finally, they resemble the descriptions and illustrations of hydroids, from the vicinity of the Strait of Gibraltar, that were identified as N. ramosa by Ramil & Vervoort (1992a).

Ramil & Vervoort (1992a) concluded that reliable records of Nemertesia ramosa existed only for locations in the Atlantic Ocean. The known latitudinal range of the species is from Iceland, the Faeroes, and Scotland (Broch, 1918) southward to South Africa (Millard, 1975). It was also reported along the southeast coast of Africa, in the Indian Ocean, by Millard. Nemertesia simplex (Allman, 1877) and N. rugosa (Nutting, 1900) from the western North Atlantic appear to be similar, but both need further study. Nemertesia ramosa has been reported previously from the Azores region, although from the neritic zone, by Pictet & Bedot (1900), Bedot (1921b), Rees & White (1966), and Cornelius (1992a). However, the species has been recorded as deep as 1182 m, off Morocco, by Ramil & Vervoort (1992a).

Lamouroux (1816) is sometimes credited as the author of the specific name ramosa, as used in the binomen Nemertesia ramosa, but his usage of it was predated by Lamarck's (1816), according to Van Praët (1979: 872, 915).

Family Halopterididae Millard, 1962

Genus Polyplumaria G. O. Sars, 1874

The authors disagree concerning the family assignment of this genus. One of us
(W.V.) is inclined, pending a cladistic study of Plumularioidea, to follow Schuchert (1997) in placing this genus in Plumulariidae; however the views of the co-author have here been followed (cf. Calder, 1997).

Polyplumaria flabellata G.O. Sars, 1874
(fig. 24a-c)

Type locality.— Norway, “habitat haud freqvens ad insulam Hvitingso in prof. 80-100 orgyarum spongiis affixa” (G.O. Sars, 1874).

Material examined.— Menez Gwen region, Mid-Atlantic Ridge, DIVA 1, Dive DV 12-5, two colonies, 7-18 cm high, with gonothecae, RMNH-Coel. 27275; three specimens, 3.5 cm high, two with gonothecae and one without, three slides 3126.
Menez Gwen region, Mid-Atlantic Ridge, DIVA 1, Dive DV 13-5, one specimen, 3.5 cm high, and pieces of three branches, with gonothecae, two slides 3129, one as RMNH-Coel. 27279, one as ROMIZ B3007; two colonies (or one colony broken in two), 13-17 cm high, with gonothecae, MNHN-Hy 1144.

Description.— Colonies up to 18 cm high, all broken off basally. Hydrocaulus polysiphonic except at extreme distal end, pinnately branched; branches opposite, in one plane, polysiphonic except distally, arising from accessory tubes of hydrocaulus, a few branches with secondary branches and resembling hydrocaulus. Axial tubes of hydrocaulus and branches frontal with accessory tubes posterior in younger parts of colony, completely overgrown in older parts, divided at irregular intervals by nodes into internodes of varied length with a varying number of apophyses; apophyses large, fronto-lateral, directed obliquely outwards and forwards, given off alternately towards left and right sides along axial tube, each with a prominent axillary mamelon and common with three nematothecae, two axillary and one distal to mamelon. Nematothecae abundant on axial and accessory tubes of hydrocaulus and branches, occurring at various locations around these tubes. Perisarc thick except at youngest points of colony. Hydrocladia unbranched, reaching about 3 mm long, weakly curved with upper side convex; basal internode of hydrocladium short, 215-273 µm in length, athecate, with one median nematotheca, node transverse or nearly so at proximal end, decidedly oblique at distal; remaining internodes of hydrocladium typically thecate with nodes strongly oblique at both ends, length 449-657 µm, diameter across nodes 72-104 µm, each internode with one hydrotheca, one median inferior nematotheca reaching to hydrothecal base, one pair of lateral nematothecae on distinct apophyses, an additional pair of laterals with one flanking each side of free adcauline wall of hydrotheca, and 1-3 median superior nematothecae; all nematothecae bithalamic, movable, conical with an adcauline sinus; hydrocladium occasionally with an athecate internode intermediate between thecate ones. Hydrothecae large, deeply campanulate, occurring at proximal end of internode, axis of hydrotheca at angle of about 45 degrees to that of internode; adcauline wall with a slight convexity in mid-
Fig. 24. *Polyplumaria flabellata* G. O. Sars, 1874. a, central axis of a branch, with apophysis and base of a hydrocladium; b, internode of hydrocladium, with hydrotheca and nematothecae; c, gonotheca, with basal nematothecae; all RMNH-Coel. slide 3126. Scale lines for a and c equal 0.25 mm; scale line for b equals 0.10 mm.

region, 176-228 μm long; adcauline wall more than 1/3 free, adnate part generally convex, 130-153 μm long, free part concave, 78-104 μm in length; margin entire, slightly flaring, perpendicular to axis of hydrotheca; orifice round, 146-163 μm wide from adcauline to abcauline wall. Gonophores fixed sporosacs. Gonothecae arising by short pedicels from apophyses of axial tubes on both hydrocaulus and branches, cornucopia shaped with tapered base, walls smooth, perisarc thin; total length of gonotheca excluding pedicel about 650 μm, width at widest point 380 μm; gonothecal aperture apical, 175 μm wide, with an opercular lid; commonly with 3-4 nematothecae at proximal end.

Remarks.—These specimens correspond very closely with the original account of *Polyplumaria flabellata* by G.O. Sars (1874), and are considered conspecific with that species. As in Sars's material, few of the hydrocladia are branched, and any secondary hydrocladia resemble the primary ones except in being shorter. No aberrant sec-
ondary hydrocladia, such as the long and slender athecate ones described in material from the Strait of Gibraltar region by Ramil & Vervoort (1992a), were observed.

Polyplumaria flabellata is known only from the eastern North and South Atlantic, with a reported range from Norway (G.O. Sars, 1874) and Iceland (Kramp, 1938) to upper bathyal waters off the Congo River (Vervoort, 1966). It extends bathymetrically from deeper neritic waters on downward well into the bathyal zone. The present localities well fit into the general pattern of the geographical distribution of the species.

Family Aglaopheniidae Marktanner-Turneretscher, 1890

Subfamily Aglaopheniinae Marktanner-Turneretscher, 1890

Tribe Cladocarpini Calder, 1997

Genus Cladocarpus Allman, 1874

Cladocarpus cartieri Bedot, 1921

(fig. 25a-d)

Cladocarpus pectiniferus; Pictet & Bedot, 1900: 49 [not *Cladocarpus pectiniferus* Allman, 1883].

Cladocarpus cartieri Bedot, 1921a: 326 [nomen nudum]; Ramil & Vervoort, 1992a: 101-103, fig. 25a-e.

Cladocarpus (?) cartieri Bedot, 1921b: 56, pl. 6 figs 59-60. (Full bibliography).

Type Locality. — “Stn 247, profondeur 318 m. Près de Pico, Açores” (Bedot, 1921b). The coordinates of this station were given in Ramil & Vervoort (1992a) as 38°24'N 28°01'25"W.

Material examined. — Menez Gwen region, Mid-Atlantic Ridge, DIVA 1, Dive DV 12-5, two fragmentary specimens, 1 cm high, without phylactocarps, slide 3135, RMNH-Coel. 27286.

Description. — Fragmentary colonies erect, up to 1 cm high, arising from an unknown substrate. Hydrocaulus monosiphonic, unbranched, lacking internal perisarcal ridges (“septa”); proximal part long, slender, somewhat crooked, with thick perisarc, nodes at irregular intervals, lacking apophyses and hydrocladia, with cauline nematothecae only at upper end, one of specimens also with several hydrothecae in this region; distal part divided into internodes by indistinct nodes; internodes slender, 640-820 μm long, 104-124 μm wide at nodes, each with a lateral apophysis distally and with three nematothecae, one cauline nematotheca on frontal side almost midway along internode and two axillary nematothecae, one on either side of apophysis. Apophyses relatively short, given off alternately from opposite sides of hydrocaulus, each directed upwards, supporting a hydrocladium. Hydrocladia unbranched, each inserted directly on apophysis, up to 3 mm long, with as many as five hydrothecae, divided into long internodes by slightly oblique nodes. Hydrocladal internodes 738-820 μm long, slender, 85-96 μm wide at nodes, each with one frontally-placed hydrotheca, one median inferior nematotheca, and one pair of lateral nematothecae; internodal ridges including one at base of inferior nematotheca, one on either side of intrathecal shelf, and occasionally with 1-2 others beneath hydrotheca. Hydrothecae well separated from each other, elongate, with a distinct bend just posterior to mid-region,
Fig. 25. *Cladocarpus cartieri* Bedot, 1921b. a, part of hydrocladium, with two hydrothecae and adjacent nematothecae; b, axillary nematotheca; c, cauline nematotheca; d, lateral nematotheca; all RMNH-Coel. slide 3135. Scale line for a equals 0.25 mm; scale lines for b, c and d equal 100 μm.

Total length 468-533 μm; adcauline wall entirely adnate, divided into two convex parts by a prominent constriction associated with an intrathecal perisarcal shelf, proximal part of wall shorter than distal; abcauline wall convex basally, concave over distal half; perisarc of moderate thickness. Hydrothecal aperture about 137-156 μm in diameter from adcauline to abcauline wall, plane of orifice very slightly oblique to axis of internode, margin entire except for a triangular anterior extension of adcauline wall between lateral nematothecae. Median inferior nematotheca one-chambered, immovable, anvil-shaped, separated from hydrotheca, aperture scoop-shaped, basal opening to internode large. Lateral nematothecae bottle-shaped, 117-138 μm long, one-chambered, immovable, projecting beyond hydrothecal margin, aperture slit-shaped, facing hydrothecal orifice, nematothecal chamber with large opening into lumen of internode.

Phylactocarps not present.
Remarks.— The type material of *Cladocarpus cartieri* was incorrectly identified as *Cladocarpus pectiniferus* Allman, 1883, by Pictet and Bedot (1900). The name *C. cartieri* first appeared as a nomen nudum (Bedot, 1921a, May), but was made available later that year by Bedot (1921b, December).

Our present report of *Cladocarpus cartieri* apparently represents the first record of the species since its original description by Bedot (1921b). The type material, from a station (38°24'N 28°01'25"W, 318 m) near Pico, Azores, was examined, described, and illustrated by Ramil & Vervoort (1992a). The phylactocarp of *C. cartieri* has yet to be described. Ramil & Vervoort (1992b) have drawn attention to the necessity to reconsider the genus allocation of several species hitherto classified in *Cladocarpus* because of differences in the structure of the gonosome. These morphological differences make it necessary to remove species that agree in structure of the phylactocarp with *Cladocarpus pectiniferus* (Allman, 1883) to the genus *Streptocaulus* Allman, 1883, type *Streptocaulus pulcherrimus* Allman, 1883 (for details see Ramil & Vervoort, 1992b), leaving in *Cladocarpus* the species that have a phylactocarpal morphology comparable to that of its type, *Cladocarpus formosus* Allman, 1874, and for the time being also such species of which the gonosome is still unknown. The genus allocation of *Cladocarpus cartieri* Bedot, 1921b, with unknown gonosome, consequently is provisional.

Acknowledgements

One of us (DRC) wishes to acknowledge support of the Natural Sciences and Engineering Research Council of Canada; thanks are also due to the Netherlands Organization for Scientific Research (Nederlandse Organisatie voor Wetenschappelijk Onderzoek, NWO) for funding to visit the Nationaal Natuurhistorisch Museum (Leiden), where much of this work was carried out. The authors wish to express their gratitude to the chief scientists J.-M. Auzende (Vemanaut), H. Bougault (Faranaut), Y. Fouquet (DIVA 1), A.-M. Alayse & D. Desbruyères (DIVA 2), all IFREMER, Brest, France; C. Langmuir (Lucky Strike), Lamont-Doherty Earth Observatory, U.S.A., J. Dubois (Gravinaut), Institut de Physique du Globe, Paris, as well as to the crews of both vessels and submersibles ‘Nautilus’ and ‘Alvin’, that participated in the cruises. We extend our gratitude to Dr. Michel Segonzac, director of CENTOB (IFREMER, Brest, France), for providing the hydroid specimens and the map reproduced here as figure 1.

References

1) Papers marked * were not available.
(3)3(17): 353-356, pls 12-14.

Bedot, M., 1918. Matériaux pour servir à l'histoire des hydroides. 6e période (1891 à 1900).— Revue suisse Zool., 26, suppl.: 1-376.

Bedot, M., 1925. Matériaux pour servir à l'histoire des hydriodes. 7e période (1901 à 1910).— Revue suisse Zool., 32, suppl.: 1-657.
Billard, A., 1922. Note sur deux espèces d'hydriodes du littoral d'Ostende (Obelia spinulosa Bale, Halecium undulatum sp.nov.).— Anns Soc. r. zool. malacol. Belg., 52(1921): 135-139, figs 1-3. [Though the article is nominally dated 1921 the publication date 1922 is indicated at the end.]
Broch, H., 1918. Hydroida. (Part II).— Danish Ingolf-Exped., 5(7): 1-205, figs 1-95, pl. 1, map.

Cornelius, P.F.S., 1979. A revision of the species of Sertulariidae (Coelenterata: Hydroida) recorded

Hincks, T., 1868. A history of the British hydroid zoophytes. Volume 1: i-lxviii + 1-338, frontispiece,

309: 1-162, figs 1-51.

Verrill, A.E., 1873. Report upon the Invertebrate animals of Vineyard Sound and the adjacent waters, with an account of the physical characters of the region.— Rep. U.S. Fish Commn, 1: 295-778.

