Distributional patterns of the American Peiratinae (Heteroptera: Reduviidae)

J.J. Morrone & M. del C. Coscarón


Key words: Heteroptera; Reduviidae; Peiratinae; distribution; patterns; parsimony analysis; endemicity.

Based on distributional data of 40 species of Peiratinae, historical relationships of five Amazonian areas (Paranaense, Atlantic, Pacific, Amazonian, and Cerrado) and two Chacoan areas (Chaco and Caatinga), were investigated through a parsimony analysis of endemicity (PAE). The resulting area cladogram indicates the following sequence of area fragmentation: (Cerrado (Caatinga (Chaco, ((Pacific, Amazonian), (Atlantic, Paranaense))))). It is proposed that these results reflect the gradual development of a diagonal of open formations (Chaco-Cerrado-Caatinga), which separated the former continuous tropical forest into two parts, namely, northwestern (Pacific plus Amazonian) and southeastern (Paranaense plus Atlantic).

Introduction

The Peiratinae (Heteroptera: Reduviidae) are worldwide in distribution, although mainly concentrated in the tropical areas (Willemse, 1985). They are represented in the Americas by 63 species and eight genera: Froeschneriella Coscarón (1 species), Phorastes Kirkaldy (2), Rasahus Amyot & Serville (26), Sirthenea Spinola (12), Thymbreus Stål (3), Tydides Stål (4), Eidmannia Taeuber (6), and Melanolestes Stål (9). Sirthenea is the only genus also distributed in the Old World. The American Peiratinae are mainly Neotropical, with a few species extending their range to the Nearctic (Coscarón, 1983b, 1984).

Within the Neotropical subregion, Peiratinae are basically associated to the forested areas of the Amazonian dominion, but they are also found in the so-called “diagonal of open formations” (Vanzolini, 1963; Vanin, 1976) or “savanna corridor” (Schmidt & Inger, 1951). This area extends across South America, from northeastern Brazil to the Chacoan dominion in Argentina, basically comprising the Caatinga, Cerrado, and Chaco of Cabrera & Willink (1973). Prado & Gibbs (1993), however, found different patterns of geographic distribution for several woody plant species from the dry seasonal forests of South America, which challenge the biogeographic importance of this diagonal.

Our objectives are twofold:

(1) to analyze the patterns of geographic distribution of the genera of American Peiratinae;

(2) to investigate the relationship of the areas of the diagonal of open formations with the rest of the Neotropics, based on a parsimony analysis of endemicity or PAE (Rosen, 1988).
Methods and data

The analysis was based on the distributional patterns of the species of American Peiratinae. Data were taken from the most recent revisions and from material provided by the following collections: American Museum of Natural History, New York (USA); British Museum (Natural History), London (United Kingdom); California Academy of Sciences, California (USA); Canadian National Collection of Insects, Arachnids and Nematodes, Ottawa (Canada); Fundación e Instituto Miguel Lillo, San Miguel de Tucumán (Argentina); Instituto Oswaldo Cruz, Rio de Janeiro (Brazil); Museo Argentino de Ciencias Naturales Bernardino Rivadavia, Buenos Aires (Argentina); Museo de La Plata, La Plata (Argentina); Museu Paranaense Emílio Goeldi, Belém (Brazil); Museum National d'Histoire Naturelle, Paris (France); Museu de Zoologia de São Paulo, São Paulo (Brazil); Naturhistoriska Riksmuseet, Stockholm (Sweden); Nationaal Natuurhistorisch Museum, Leiden (The Netherlands); Snow Entomological Museum, Kansas (USA); United States National Museum, Washington, D.C. (USA); Universidad Central de Venezuela, Maracay (Venezuela); Universitetets Zooloiske Museum, Copenhagen (Denmark); Zoological Museum, University of Helsinki, Helsinki (Finland); Zoologisches Museum der Humboldt Universität zu Berlin, Berlin (Germany); and private collection of Mr. A. Martínez, Salta (Argentina).

Areas of endemism

The units of the analysis (fig. 19) broadly coincide with some areas of Cabrera & Willink's (1973) scheme (approximate correspondence between brackets):

(1) Chaco (Chacoan dominion, with the exception of the Caatinga province).
(2) Cerrado (Cerrado province, Amazonian dominion).
(3) Caatinga (Caatinga province, Chacoan dominion).
(4) Pacific (basically the Pacific province, Amazonian dominion).
(5) Atlantic (Atlantic province, Amazonian dominion).
(6) Paranaense (Paranaense province, Amazonian dominion).
(7) Amazonian (remaining provinces of the Amazonian dominion).

Data analysis

Taxa were coded for their absence (0) or presence (1) in each area of endemism in a data matrix (Table I). Different taxonomic levels were coded hierarchically: species, subspecies, and genera. Parsimony analysis of endemicity or PAE (Rosen, 1988; for applications see Cracraft, 1991, and Myers, 1991) was carried out with Hennig86 (Farris, 1988), applying the implicit enumeration option. The cladogram was rooted with an hypothetical area coded all zeros.

Taxa analyzed

*Froeschneriella* Coscarón (Coscarón, in press). The only species of this genus, *F. vittata* (Coscarón) has a disjunct distribution in the Pacific and Atlantic biogeographic provinces (figs. 1, 5).

*Phorastes* Kirkaldy (Lent & Jurberg, 1966; Doesburg, 1981). It has two species, distributed in the Neotropical subregion (fig. 3). *Phorastes femoratus* (De Geer) (fig. 5) is scattered in the Amazonian, Caatinga, and Chaco provinces. *Phorastes incognitus* (Doesburg) (fig. 5) is scattered in the Pacific, Paranaense, and Atlantic provinces.

*Rasahus* Amyot and Serville (Coscarón, 1983a, 1986a; Coscarón & Maldonado-Capriles, 1988). This genus, with 26 described species, is widely distributed from southern United States to central Argentina (fig. 1). Its range basically lies in the Neotropical subregion, but in its northern portion it extends partially to the Nearctic.
Figs. 5-6. Geographical distribution of species of Peiratinae. 5: Fasanmeria erulata (black circles); Fasanmeria angulata (open circles); F. paorsatus (black squares).

6: Rioscus submaculatus (black circles); R. annulatus (black squares); R. ornatus (black triangles).
Rasahus albomaculatus (Mayr) and R. arcticenens Stål (fig. 6) are widely distributed in the Pacific and Amazonian provinces, extending the latter also to the Cerrado province. Rasahus amapaensis Coscarón (fig. 6) and R. atratus Coscarón (fig. 7) are endemic to the Amazonian province. Rasahus arcuiger (Stål) (fig. 7) is widespread in the Pacific, Amazonian, Chaco, Paranaense, and Atlantic provinces, whereas R. bifurcatus Champion, R. angulatus Coscarón, and R. argentinensis Coscarón (fig. 7) are endemic, respectively, to the Pacific, Amazonian, and Chaco provinces. Rasahus brasiliensis Coscarón (fig. 8) is widespread in the Pacific, Amazonian, Paranaense, and Atlantic provinces. Rasahus flavovittatus (Stål) (fig. 8) is found in the Pacific province and the north of the Amazonian province, whereas the only known locality for R. castaneus Coscarón (fig. 8) is from the latter area. Rasahus guttatipennis (Stål) (fig. 9) is found in the Pacific and Amazonian provinces. Rasahus grandis Fallou (fig. 9) is endemic to the Atlantic province. Rasahus limai Pinto (fig. 10) is widespread in the Amazonian, Chaco, Paranaense, and Atlantic provinces. Rasahus maculipennis (Lepelletier & Serville) (fig. 10) is widespread in the Pacific, Paranaense, and Atlantic provinces; R. paraguayensis Coscarón and R. peruensis Coscarón (fig. 10) are endemic, respectively, to the Paranaense and Amazonian provinces. Rasahus hamatus (Fabricius) (fig. 9), R. rufiventris Walker, R. sulcicollis (Serville), and R. scutellaris (Fabricius) (fig. 11) are widespread in many of the studied areas. Rasahus surinamensis Coscarón (fig. 11) has been found in the Amazonian and Paranaense provinces. The geographical distribution of the four remaining species of the genus lies in Central and North America.

Sirthenea Spinola (Willemsen, 1985). It is the only genus of Peiratinae from the Americas also distributed in the Old World. In the New World 12 species are distributed from eastern United States to central Argentina (fig. 4). Sirthenea amazona (fig. 12) has two subspecies: S. amazona amazona Spinola is distributed in the Amazonian, Chaco, and Atlantic provinces, whereas S. amazona anduzei Drake & Harris is widespread in the Pacific, Amazonian, and Chaco province. Sirthenea atra Willemsen and S. ferdinandi Willemsen (fig. 12) are endemic, respectively, to the Atlantic and Chaco provinces. Sirthenea dubia Willemsen (fig. 12) is found in the Paranaense and Chaco provinces. Sirthenea peruviana Drake & Harris (fig. 13) has three subspecies: S. peruviana peruviana Drake & Harris is widespread in the Pacific and Amazonian provinces; and S. peruviana gracilis Willemse and S. peruviana orientalis Willemse are endemic, respectively, to the Cerrado and Amazonian provinces. Sirthenea pedestalis Horváth (fig. 13) is widespread in the Pacific, Amazonian, Paranaense, and Atlantic provinces, and S. ocularis Horváth (fig. 13) is endemic to the Atlantic province. Sirthenea stria carinata (Fabricius) (fig. 14) is widespread in many of the studied areas, whereas S. vittata Distant (fig. 14) is distributed in the Pacific and northwest Amazonian province, and S. plagiata Horváth (fig. 14) is found in the Amazonian, Paranaense, and Atlantic provinces. The remaining species and subspecies of Sirthenea are distributed outside South America.

Thymbreus Stål (Coscarón, 1994). This genus has three species, all Neotropical (fig. 4). Thymbreus crocinopterus Stål (fig. 15) is ranged from Mexico to the northern portion of the Amazonian province, whereas T. ocellatus (Signoret) (fig. 15) is endemic to the Amazonian province, and T. pyrrhopterus (Stål) (fig. 15) occurs in the Paranaense and Atlantic provinces.

Tydides Stål (Lent, 1955; Lent & Jurberg, 1967). This Neotropical genus (fig. 3) has four species. Tydides rufus (Serville) (fig. 16) is widespread in many of the studied areas. Tydides imitator Lent (fig. 16) is distributed in the Paranaense and Atlantic
Figs. 9-10. Geographical distribution of species of Peiratinae. 9: *Rasahus hamatus* (black circles); *R. grandis* (black squares); *R. guttapennis* (black triangles). 10: *R. limai* (black circles); *R. maculipennis* (black squares); *R. paraguayensis* (black triangles); *R. peruensis* (open circles).
Figs. 11-12. Geographical distribution of species of Peiratinae. 11: *R. rufiventris* (black circles); *R. scutellaris* (black squares); *R. sulcicollis* (black triangles); *R. surinamensis* (open circles). 12: *Sirthenea amazona amazona* (black circles); *S. amazona anduzei* (black squares); *S. atra* (black triangle); *S. dubia* (open circles); *S. ferrandinii* (open squares).
Figs. 13-14. Geographical distribution of species of Peiratinae. 13: *Sirthenea pedestris* (black circles); *S. peruviana gracilis* (black square); *S. peruviana orientalis* (black triangles); *S. peruviana peruviana* (open circles); *S. ocularis* (open square). 14: *S. plagiata* (black circles); *S. stria carinata* (black squares); *S. vittata* (black triangles).
Figs. 15-16. Geographical distribution of species of Peiratinae. 15: *Thymbreus pyrrohopterus* (black circles); *T. ocellatus* (black squares); *T. crocinopterus* (black triangle). 16: *Tylides imitator* (black circles); *T. obscurus* (black squares); *T. quator* (black triangles); *T. rufus* (open circles).
Figs. 17, 18. Geographical distribution of species of Peirinae. 17: Eidmannia attaphila (black circles); E. bahiensis (black square); E. beniensis (black triangle); E. guyanensis (open circle); E. matogrossensis (open squares); E. obscura (open triangle). 18: Melanolestes argentinus (black circles); M. goiasensis (black square); M. lugens (black triangles); M. minutus (open circles); M. morio (open squares); M. picinus (open triangles).
provinces; *T. quator* Lent & Jurberg (fig. 16) occurs in the Pacific and Amazonian provinces; and *T. obscurus* Lent (fig. 16) occurs in the Amazonian and Cerrado.

*Eidmannia* Taeuber (Coscarón, 1986b). It has six species, all distributed in South America (fig. 2). *Eidmannia matogrossensis* Coscarón, *E. guyanensis* Coscarón, and *E. beniensis* Coscarón (fig. 17) are endemic to the Amazonian province, whereas *E. bahiensis* Coscarón and *E. obscura* Coscarón (fig. 17) are endemic, respectively, to the Atlantic and Paranaense provinces. *Eidmannia attaphila* Taeuber (fig. 17) is scattered in the Amazonian, Paranaense, and Atlantic provinces.

*Melanolestes* Stål (Coscarón & Carpintero, 1993). This Nearctic and Neotropical genus (fig. 2) has nine species. *Melanolestes morio* (Erichson) and *M. argentinus* Berg (fig. 18) are widespread in many of the studied areas. *Melanolestes picinus* Stål, *M. lugens* Coscarón & Carpintero, *M. minutus* Coscarón & Carpintero, and *M. goiasensis* Coscarón & Carpintero (fig. 18) are endemic, respectively, to the Amazonian, Paranaense, Chaco, and Caatinga provinces. The remaining three species of *Melanolestes* are Nearctic.
Parsimony analysis of endemcity

From the species distributed in the Neotropical subregion in South America, we compiled a data matrix (Table I) with those 40 species present in at least two of the areas analyzed (fig. 19). Analysis of this data matrix produced one area cladogram of 167 steps, consistency index of 0.59, and retention index of 0.57 (fig. 23). The area cladogram shows the following cladistic sequence of area fragmentation: (Cerrado, (Caatinga, (Chaco, ((Pacific, Amazonian), (Paranaense, Atlantic)))). When this sequence is superimposed to the study areas (Figs. 20-22), it shows the gradual development of the open vegetated diagonal (Chaco-Cerrado-Caatinga), which separated the former Amazonian forest in a northwestern part (Pacific plus Amazonian provinces) and a southeastern part (Paranaense plus Atlantic provinces).

Discussion

A basic distributional pattern involving two disjunct parts in the Amazonian forest, separated by a diagonal of open formations, results from the parsimony analysis of endemicity of the South American Peiratinae. This pattern is exhibited by other Neotropical taxa, namely, some genera of Bromeliaceae (Smith & Downs, 1977; Forero & Gentry, 1978); the genera Lithacne, Cryptochloa, and Olyra (Poaceae; Soderstrom et al., 1988); Hillia (Rubiaceae; Taylor, 1994); the weevil genera Airosimus Howden (Howden, 1966) and Entimus Germar (Vaurie, 1952; Viana, 1958); and Pionopsitta (Aves: Psittacidae; Cracraft, 1988). On the other hand, Prado & Gibbs (1993) have recently emphasized the connections among the areas of the diagonal of open formations. The existence of two separate forest “blocks” have been also postulated by Fernandes & Bezerra (1990).

A number of hypotheses could be advanced to explain Neotropical patterns of distribution. From a historical perspective, an origin posterior to the break up of Gondwanaland into South America and Africa (Upper Jurassic-Lower Cretaceous)
has been hypothesized for the Amazonian forest. From Cretaceous to Eocene, this forest was widespread throughout most of northern South America, and then it began to be shrunked during Oligocene, originating the disjunction between its northwestern and southeastern parts (Vanin, 1976). A pre-Quaternary age for most Amazonian distributional patterns was postulated by Cracraft & Prum (1988) and Bush (1994), with speciation processes taking place over at least the last 25 million years. Basic disjunctions, e.g., the Amazonian-Atlantic, seem to be rather ancient and due to vicariance, mainly caused by the Andean orogeny and the formation of great rivers.

Acknowledgements

We thank the people and institutions who kindly sent us the material for the study; to J. Muona and D. E. Prado for helpful comments on the manuscript; and to N. Calegaris for some of the drawings. The study was supported by grants 4662-91 of the National Geographic Society (to the senior author) and from the University of Helsinki (to the junior author). Support from the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina, to which both authors belong, is gratefully acknowledged.

References


Received: 31.v.1995
Accepted: 17.vii.1995
Edited: R. de Jong


Received: 31.v.1995
Accepted: 17.vii.1995
Edited: R. de Jong


Received: 31.v.1995
Accepted: 17.vii.1995
Edited: R. de Jong