Orbicules do not significantly contribute to the allergenic micro-aerosol emitted from birch trees

S. Vinckier*, P. Cadot, M. Grote, J. L. Ceuppens, E. Smets

Key words: Betula verrucosa 1; Betula verrucosa 7; immunogold electron microscopy; pollen; Ubisch bodies.
electron microscopy (IEM) across birch anther and pollen tissue.

Catkins from birch were harvested at early flowering and maintained in a controlled environment chamber. Stubs were placed below the flowers to capture particles emitted from the anthers during wind disturbance. The stubs were sputter coated and observed with a JSM-6360 SEM (JEOL Inc., Tokyo, Japan). For IEM, anthers were fixed (2.5% glutaraldehyde), and dehydrated (graded ethanol series), prior to embedding in Lowicryl K4M Resin. Ultra-thin sections were placed on gold grids and incubated with either primary polyclonal rabbit antiserum recognizing Bet v 7 (2) (1 : 200), or with primary monoclonal mouse antiserum against Bet v 1 (1 : 20) (mAb 5H8) (3), gift of R. van Ree, CLB, the Netherlands). Sections were incubated with gold conjugated (10 nm) secondary goat anti-rabbit or anti-mouse IgG (1 : 20) (Sigma-Aldrich Inc., St Louis, MO, USA), counterstained with uranyl acetate and lead citrate and observed in a Zeiss EM 900 (Zeiss, Oberkochen, Germany).

We localized the cyclophilin Bet v 7 in the pollen cytoplasm, pollen wall and orbicule wall (Fig. 1B). A comparable pollen cytoplasmic localization was recently reported for a low-molecular weight cyclophilin in different higher plants (4). Bet v 7 was also located within the cytoplasm of the cell layer bordering the pollen grains inside the anther (tapetum cells) (Fig. 1C). In concordance with earlier reports, the major birch allergen Bet v 1 is shown to be predominantly located in the pollen cytoplasm (Fig. 1D). Only minor labeling was found in the pollen and orbicule walls of birch (Fig. 1D–E). Therefore, despite the homology between tapetum and sporogenous tissue, from which orbicules and pollen grains originate respectively, we show that not all pollen allergens are found in orbicules.

We also investigated whether many orbicules are released from birch anthers. Our results indicate that only a small amount of orbicules (1–3/pollen grain) occurs free in the anther and can be dispersed (Fig. 1F). Therefore, as only few orbicules seem to be released from anthers of birch trees, and only minor labeling is found for the major allergen Bet v 1, we may conclude that orbicules do not significantly contribute to the allergenic micro-aerosol emitted from birch trees. This does not mean that the same applies to other species. For example, the major allergen of Cryptomeria japonica Cry j 1 was shown to be localized in the orbicules of C. japonica, Cupressus arizonica and Cupressus sempervirens, which are known to emit high numbers of orbicules during flowering (5).

It would be interesting to quantify atmospheric variations and clarify the timing of dispersal of different biologic micro-aerosols [parts of effete anthers, orbicules, pollen cytoplasmic fragments (6)] for each allergenic pollen source, in an attempt to establish correlations with clinical symptoms, and to estimate the different risks for patients sensitive to pollen allergens.

Stefan Vinckier is a postdoctoral fellow of the Fund for Scientific Research–Flanders (Belgium) (FWO). This research is supported by grants OT/05/35, FWO-G.0268.04, FWO-G.0250.05, FWO-Levenslijn 7.0013.00, and SCAP (the Netherlands).

*Laboratory of Plant Systematics
Institute of Botany and Microbiology
Katholieke Universiteit Leuven
Kasteelpark Arenberg 31
B-3001 Leuven
Belgium
Tel: +32 16 328636
Fax: +32 16 321955
E-mail: stefan.vinckier@bio.kuleuven.be

References