Short Communication

How complex is the *Bufo bufo* species group?∗

Jan W. Arntzen², Ernesto Recueroᵇ, Daniele Canestrelliᶜ, Iñigo Martínez-Solanoᵈ,∗

1. Introduction

Species delineation remains one of the most challenging tasks in the study of biodiversity, mostly owing to the application of different species concepts, which results in contrasting taxonomic arrangements. This has important practical consequences, since species are basic units in fields like ecology and conservation biology. We here review molecular genetic evidence relevant to the systematic of toads in the *Bufo bufo* species group (Anura, Bufonidae). Two studies recently published in this journal (Recuero et al., MPE 62: 71–86 and García-Porta et al., MPE 63: 113–130) addressed this issue but reached opposing conclusions on the taxonomy of the group (four versus two species). In particular, allozyme data in the latter paper were interpreted as evidence for hybridization across sympatry (between *B. bufo*–*B. spinosus* and *B. bufo*–*B. verrucosissimus*). We tested claims for hybridization through re-analysis of allozyme data for individuals instead of populations, to be able to distinguish between sympatry with and without admixture, and found no evidence of hybridization across taxa. We propose alternative explanations for the observed patterns that García-Porta et al. (2012) failed to consider. In the absence of unequivocal evidence for hybridization and introgression, we reject the proposal to downgrade *Bufo spinosus* and *Bufo verrucosissimus* to the subspecies level.

© 2013 The Authors. Published by Elsevier Inc. All rights reserved.

---

**ARTICLE INFO**

Article history:
Received 10 April 2013
Revised 9 July 2013
Accepted 10 July 2013
Available online 20 July 2013

**Keywords:**
Molecular systematics, *Bufo bufo*
*Bufo spinosus*
*Bufo verrucosissimus*
Phylogeny
Allozymes

**ABSTRACT**

Species delineation remains one of the most challenging tasks in the study of biodiversity. This is an old problem that has not been solved by our recent ability to integrate massive amounts of – especially molecular – data; the challenge seems only to get bigger. At the core of the problem is the coexistence of different species concepts, whose alternative application results in contrasting taxonomic arrangements. This has important consequences since species are the basic units in diverse fields like ecology, evolutionary biology, and conservation biology. For instance, species are the basic categories in global management policies like IUCN’s Red List, and both over- and underestimation of species numbers can be detrimental to conservation efforts. In this paper, we review available molecular evidence relevant to the systematics of toads in the *Bufo bufo* (*sensu lato*) species group (Anura, Bufonidae). Two studies published in this journal last year (Recuero et al., MPE 62: 71–86 and García-Porta et al., MPE 63: 113–130) addressed this issue but reached opposing conclusions on the taxonomy of the group (four versus two species), despite overall congruence across datasets. We address these discrepancies explicitly advocating a species concept in which species are lineages of ancestral-descendant populations that have evolved separately from other lineages long enough to acquire diagnostic differences and an inability to merge upon secondary contact, consistent with the phylogenetic species concept (*sensu* Cracraft, 1983). That is, if two different species lineages have diagnostically distinct evolutionary histories and hybridize only to a limited amount at their borders, they would constitute separate species. On the other hand, populations that never experienced a long history of evolution in isolation from each other, and whose geographic populations have been separated only by “isolation by distance” through their evolutionary histories would be considered a single species.

The Common toad species group of the western Palearctic consists of four species, namely *Bufo bufo* (Linnaeus, 1758), *Bufo eichwaldi* Litvinchuk, Borkin, Skorinov and Rosanov, 2008, *Bufo spinosus* Daudin, 1803 and *Bufo verrucosissimus* (Pallas, 1814). The species’ approximate ranges are described in the legend of Fig. 1. Molecular genetic data on two mitochondrial genes (1239 bp) and four nuclear genes (2251 bp) yielded a robust phylogeny in which the basal split separates *Bufo eichwaldi* from the other species, followed by *Bufo spinosus* splitting from a common

---

∗ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

⇑ Corresponding author. Fax: +34 926 295 451.

E-mail address: inigomsolano@gmail.com (I. Martínez-Solano).

1555-7903/$ - see front matter © 2013 The Authors. Published by Elsevier Inc. All rights reserved.
http://dx.doi.org/10.1016/j.ympev.2013.07.012
ancestor of the sister-species Bufo bufo and Bufo verrucosissimus (Recuero et al., 2012). A coalescent-based estimation of the time to most recent common ancestry allowed a historical reconstruction of the diversification of the group in the context of Mediterranean paleogeography. A congruent topology derived from three mitochondrial genes (1988 hp) was subsequently reported by García-Porta et al. (2012), although clades were allocated to regions rather than to species, with the following synonyms: European = Bufo bufo, Caspian = Bufo eichwaldii, Iberian and African = Bufo spinosus and Caucasian = Bufo verrucosissimus. The latter two clades these authors consider to be subspecies of Bufo bufo. The most recent common ancestor of these four species is estimated at ca. 13.1 Ma (millions of years) by Recuero et al. (2012) and at ca. 7.4 Ma by García-Porta et al. (2012). The difference is due to the calibration points sought to fix the tree in time, but both estimates indicate a long independent evolutionary history of the lineages in this group.

In spite of the deep genetic distinction based on mtDNA and nDNA sequence data, García-Porta et al. (2012) reported evidence for hybridization of B. bufo and B. spinosus in the southwest of Europe and for B. bufo and B. verrucosissimus in southeastern Europe. With no sympatry of mtDNA or nuclear haplotypes and with no data on morphological intergradation, the case rests solely with their allozyme data. We here scrutinize claims for hybridization through a data re-analysis for individuals instead of populations, e.g. to be able to distinguish between sympatry with and without admixture. We propose explanations other than hybridization that García-Porta et al. (2012) failed to consider. In the absence of unequivocal evidence for hybridization and introgression, we reject the proposal to downgrade Bufo spinosus or Bufo verrucosissimus to the subspecies level.

2. Materials and methods

Individual genotype data are available for 21 enzyme loci scored for 173 toads in 40 populations and five species (S. Litvinchuk, pers. comm.). Average sample size per population was 3.9 for the ingroup (36 populations, range 1–12) and 7.8 for the outgroup (Bufo gargarizans, four populations, range 4–18). 1.7% of data were missing. We used a Bayesian analysis of population structure with the program BAPS 6 (Corander et al., 2004). BAPS assigns individuals to distinct gene pools probabilistically, based upon multilocus genetic data, where each individual allele is coded at two alleles per locus. BAPS does not make a priori assumptions about the number of gene pools (k), and we let BAPS determine the most probable value of \( k \) over the 1–20 range, under default parameter settings. Populations were assessed for interspecific hybridization with Flock 3.0 (Duchesne and Turgeon, 2009) and NewHybrids software (Anderson and Thompson, 2002), also under default settings. \( F_{ST} \) calculations were done with FSTAT 2.9.3 (Goudet, 1995). We also re-analyzed the nuclear sequence data of Recuero et al. (2012). Two haplotypes per individual were phased for each of the genes BDNF, CXC4R4, POMC and RPL3 using SeqPHASE (Flot, 2010) and PHASE2.1.1 (Stephens et al., 2001). Haplotype networks were constructed with HaploViewer (available at http://www.cibiv.at/~greg/haplovieewer) using a neighbor-joining tree reconstructed with PAUP (Swofford, 2001).

3. Results and discussion

3.1. Current taxonomic status

The species status of B. bufo and B. eichwaldii is unchallenged, but what is the situation for B. spinosus and B. verrucosissimus? Bufo...
spinosus was elevated to the species level by Recuero et al. (2012) and kept as a B. bufo subspecies by García-Porta et al. (2012), whereas B. verrucosissimus was kept as a species by Recuero et al. (2012) and coined a subspecies by García-Porta et al. (2012). The search term "verrucosissimus" returned ca. 15,000 hits in Google (accession date January 5, 2012), for which, in the top one-hundred, 99 hits referred to ‘Bufo verrucosissimus’ and one to “Bufo bufo verrucosissimus” (this was Tosunog˘lu and Taskavak, 2001). Google Scholar and the Ovis digital version of the Zoological Record look deeper in time. The same search term yielded 58 literature references of which 41 (71%) concerned “Bufo verrucosissimus” and 17 (29%) were on “Bufo bufo verrucosissimus” (a recent citation is e.g., Sinsch et al., 2009). We observed a change from subspecies to species status over two decades ago and allocate this event to the paper by Orlova and Tuniyev (1989). We point out that “verrucosissimus” as a species is the status quo or not, the burden of proof is with those suggesting change.

3.2. Population genetic structure

The Bayesian analysis of enzyme profiles places the 173 individuals into nine genotype groups. These groups are organized in five geographically and hierarchically coherent units conforming to the five species as follows: B. spinosus with three groups (Iberia and France, Morocco, Tunisia), B. bufo with two groups (northern and southern), B. verrucosissimus and B. eichwaldi with one group each, and two for the outgroup species B. gargarizans (Fig. 1). The enzyme genetic distances between the species are substantial (Fig. 1, insert), in line with the high level of divergence at mtDNA and nDNA loci (García-Porta et al., 2012; Recuero et al., 2012). Observations on species (or their genetic markers as the case may be) in sympatry are as yet limited to Lake Abant for B. bufo and B. verrucosissimus and to B. bufo and B. spinosus in northwestern and southeastern France (Fig. 1).

Prior to evaluating claims for hybridization, we point to alternative interpretations for “population intermediacy” that were not yet considered. Firstly, ancestral polymorphisms with incomplete sorting of alleles through the divergence of populations can produce the same pattern. Whereas B. bufo and B. verrucosissimus share nuclear DNA haplotypes at some loci, there is no geographic pattern in allele sharing, suggesting that incomplete lineage sorting is a more plausible explanation than hybridization. Secondly, the “intermediate” populations (45, 69, 108 and 117 in García-Porta et al., 2012) are all from southern Europe and positioned within the area of glacial refugia proposed by these and other authors. A more or less intermediate position of southern populations in either a multivariate or a tree-based analysis (Garcia-Porta et al., 2012: Fig. 4) is, in our opinion, just what is expected under He Witt’s (2000) “southern richness – northern purity” paradigm. Accordingly we argue that it is not the southern populations that show surprisingly high genetic variation (e.g., from hybridization and introgression), but that the northern populations show uniform, low genetic variation, due to a loss of alleles during postglacial expansion. The southern genetic richness is therewith not due to secondary contact but to long term in situ evolution. The southern populations retained the ancestral geographic location and a larger portion of the ancestral variation than do other populations. We suggest that the highlighted populations are not “intermediate” and it is then peculiar that the one genuinely mixed Lake Abant population was not identified as such.

3.3. Diagnostic value of enzyme loci and evidence for hybridization

Among 21 enzyme loci studied 16 were polymorphic. For B. bufo and B. spinosus the global FST over 13 polymorphic loci was 0.79 (95% confidence interval 0.63–0.89). Six loci with an FST in excess of 0.8 were G6dp-1, G6dp-2, Ldh-1, Ldh-2, Sod-1 and Sod-2. However, we refrained from re-analyzing B. bufo and B. spinosus hybridization and introgression from allozyme data because the study populations are far apart (ca. 900 km over land) and sample sizes are small. For the combination of B. verrucosissimus and southern B. bufo (light blue in Fig. 1, the Lake Abant population excluded) the global FST over ten polymorphic loci was 0.54 (95% confidence interval 0.09–0.84). Two loci with an FST in excess of 0.8 were Xdh-1 (FST = 1.0, i.e., fully diagnostic) and G6pd-1 (FST = 0.86). Allele frequencies at the latter locus were 0.75 at G6pd-1a, 0.10 at G6pd-1b and 0.15 at G6pd-1c in B. bufo and 1.0 at G6pd-1c in B. verrucosissimus.

The enzyme data for B. bufo and B. verrucosissimus concern 45 individuals in 12 populations in a transect from Italy to the Caspian Sea, as shown in the boxed area of Fig. 1. Analyzed with a Bayesian approach (NewHybrids, PNH), all individuals fall outside the 0.1–0.9
range, with the exception of the toads 280 and 283 from Lake Abant (Fig. 2). Similarly, with a re-allocation method all individuals had normalized likelihood scores outside the 0.01–0.99 range (Flock, P), with the exception of individual 280 from Lake Abant. The signal for genetic admixture is weak and, in the Flock results, only apparent when data for the single fully diagnostic locus Xdh–1 are missing. So, as before, the sample of Lake Abant in northwestern Turkey is composed of one B. verrucosissimus and three B. bufo. Natural hybrids between these species have yet to be documented. The experimental crossing of B. bufo and B. verrucosissimus yielded fertile F$_1$ hybrids and their back-crossing with B. bufo yielded unfertilized eggs (one time) and developing embryos (two times; Pisanets, 2002; Kuzmin, 2012).

The combined data (allozymes, mtDNA, nDNA) point to a complicated, perhaps mosaic distribution in Turkey with, from west to east, B. bufo in European Turkey and south of the Sea of Marmara, B. bufo and B. verrucosissimus in sympathy at Lake Abant, B. bufo in central Turkey and B. verrucosissimus in the east (Fig. 3). A mosaic distribution of B. bufo and B. verrucosissimus would be compatible with parapatric range borders, in which the taxa are distributed according to characteristics of the environment (e.g., soil type), with limited hybridization at sharp contact zones. Interestingly, northwestern Turkey was also identified as a zone of complexity in several species of newts (Nadachowska and Babik, 2009; Arntzen and Wielstra, 2010; Wielstra et al., 2010, 2013). Another possibility is the presence of B. bufo mtDNA at the nuclear background of B. verrucosissimus. This phenomenon is not rare and may even make an entire species invisible from the mtDNA perspective (Zielinski et al., 2013).

3.4. Diagnostic value of nuclear sequences and evidence for hybridization

The networks for nuclear genes confirm a close association of B. bufo and B. verrucosissimus haplotypes (Fig. 4). Under the poor sampling of the latter species we can, however, not distinguish between incomplete lineage sorting and recent hybridization as the process underlying this result. Buto bufo and B. spinosus are fully separated at two loci (BDNF and RPL3), indicating the absence of evidence for hybridization under their sampling regime. In a third marker, POMC, a single allele was shared between the species in one toad in northern France (locality Erloy, BB141 in Recuero et al., 2012) and the possibility of introgression cannot be excluded (a more detailed study is in preparation). Finally, to explain the observed allele sharing at CXCR4 we consider incomplete lineage sorting a better explanation than recent hybridization because even outgroup alleles are found associated with the ingroup and because of the absence of a spatial signal in allele sharing (results not shown).

3.5. Contrasting interpretations

The individual-based analysis of enzyme data identified the Lake Abant population in northwestern Turkey as B. bufo and B. verrucosissimus in sympathy with no unequivocal evidence for hybridization or introgression. Conversely, in a population-based analysis, García-Porta et al. (2012: page 127 and Fig. 4) report on introgressive hybridization, but they position the area of inter-specific gene flow across Greece: “The results of the MCA analyses [Multiple Correspondence Analysis] … and a close inspection of the allozyme frequency table … clearly show that some of the populations present a mixed ancestry indicating extensive past or ongoing introgression. For instance, Greek populations 69 and 117 … have an intermediate position between the Caucasus populations and the European populations in the MCA allozyme analysis”. On B. bufo – B. spinosus they continue: “The same occurs with specimens [sic, n = 1] from locality 108 … with some Iberian alleles at some loci … or with [n = 2] specimens from locality 45, classified as belonging to the Iberian population … but with

---

**Fig. 3.** Distribution data of species in the Bufo bufo species group. Documented localities of Bufo species in Europe and north Africa, with Bufo spinosus in red, B. bufo in blue, B. verrucosissimus in brown and B. richwaldi in green. Data sources are: Kutrup et al. (2006) open round symbols in Italy and Turkey, Recuero et al. (2012) square symbols, García-Porta et al. (2012) solid round symbols, Litvinchuk et al. (2012) triangle symbols. The “S” stands for 28 B. bufo populations from in and around Switzerland that were studied by Lüscher et al. (2001) while five other of their populations are shown by the “*” symbol. For Far-eastern B. bufo localities see Recuero et al. (2012). Additionally shown are data from Arntzen et al. (submitted for publication) with diamond symbols for museum material and open round symbols in France for genetic data; two French localities with B. bufo and B. spinosus genetic markers in sympathy are indicated by a black cross. The locality Erloy in Northern France where B. bufo and B. spinosus specific alleles of the gene POMC are found in sympathy is shown by the “*” symbol. Partial 16S ribosomal RNA sequences by Kutrup et al. (2006) are allocated to B. bufo and B. verrucosissimus on the basis of a single, locally diagnostic nucleotide (“T” in B. bufo and “C” in B. verrucosissimus), homologous to position 4597 of the Bufo japonicus mitochondrial genome (Igawa et al., 2008). Note the discrepancy with the nuclear genetic species identifications in Fig. 1 in which the convex polygon of B. verrucosissimus encompasses populations in northern Turkey that are here, from various mitochondrial genes, identified as B. bufo. For the range border of the B. bufo – B. spinosus – B. verrucosissimus group across Eurasia see Smisch et al. (2009); for the distribution of B. spinosus in Northern Africa see Beukema et al. (2013) and Bogaerts et al. (2013). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
European alleles in some loci...”. Finally, on the basis of “observed introgression”, García-Porta et al. (2012) prefer to regard the Caucasian [B. verrucossimus], European [B. bufo], Iberian and African [B. spinosus] clades as subspecies of *Bufo bufo*. We do not share these preferences because the case for introgressive hybridization was nowhere justified and alternative explanations such as incomplete lineage sorting and “southern richness” were not considered.

3.6. Taxonomic consequences

We elevated *B. spinosus* to the species level (Recuero et al., 2012). This proposal is based upon, first, a deep genetic differentiation with no evidence for hybridization. In particular, the enzyme data of García-Porta et al. (2012) yield no information that would challenge this assessment. Second, in the molecular phylogenies (3490 bp of concatenated mt and nDNA data) and in the analyses of allozyme data (Fig. 1). *B. bufo* and *B. spinosus* are not sister-taxon. Third, once looked for at the right place, morphological differences between *B. bufo* and *B. spinosus* are small but consistent with no wide zone of intergradation, at least not at the center of one broad latitudinal transect from the UK to Morocco (Arntzen et al., submitted for publication). While *Bufo bufo* and *Bufo spinosus* are morphologically distinguishable, the differences in phenotype are small compared to the level of genetic differentiation. *Bufo bufo* and *Bufo spinosus* therewith classify as “cryptic species” (Arntzen et al., submitted for publication).

In the case of *B. verrucossimus*, individual-based analyses reject hybridization as the cause of allele-sharing across taxa. As yet the nature of the mutual species-range border is unclear. Along with Kuzmin (2012), we acknowledge that further work is required to elucidate the taxonomic status of *B. verrucossimus* and that, until proposals for change are well supported, *B. verrucossimus* is maintained as a species to preserve stability of nomenclature.

Acknowledgments

We thank Spartak Litvinchuk, St. Petersburg, Russia for providing the allozyme data in digital format, Sergius Kuzmin, Moscow, Russia for translation from Russian and the editor, two anonymous reviewers and Ben Wielstra, Leiden, the Netherlands for constructive remarks on an earlier version of the manuscript. IMS is a “Ramón y Cajal” postdoctoral fellow supported by the Spanish Ministry of Ciencia e Innovación and the Universidad de Castilla la Mancha. Partial funds for this work were provided by grants CGL2008-04271-C02-01/BOS and CGL2011-28300 (Ministerio de Ciencia e Innovación, Ministerio de Economía y Competitividad, FEDER) and PPII10-0097-4200 (Junta de Comunidades de Castilla la Mancha) to IMS.

References


