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Abstract

Predation pressure, food availability, and activity may be af-
fected by level of moonlight and climatic conditions. While many 
nocturnal mammals reduce activity at high lunar illumination to 
avoid predators (lunarphobia), most visually-oriented nocturnal 
primates and birds increase activity in bright nights (lunarphilia) 
to improve foraging efficiency. Similarly, weather conditions may 
influence activity level and foraging ability. We examined the 
response of Javan slow lorises (Nycticebus javanicus Geoffroy, 
1812) to moonlight and temperature. We radio-tracked 12 animals 
in West Java, Indonesia, over 1.5 years, resulting in over 600 hours 
direct observations. We collected behavioural and environmen-
tal data including lunar illumination, number of human observ-
ers, and climatic factors, and 185 camera trap nights on potential 
predators. Nycticebus javanicus reduced active behaviours in 
bright nights. Although this might be interpreted as a predator 
avoidance strategy, animals remained active when more observ-
ers were present. We did not find the same effect of lunar illu-
mination on two potential predators. We detected an interactive 
effect of minimum temperature and moonlight, e.g. in bright 
nights slow lorises only reduce activity when it is cold. Slow 
lorises also were more active in higher humidity and when it was 
cloudy, whereas potential predators were equally active across 
conditions. As slow lorises are well-adapted to avoid/defend 
predators by crypsis, mimicry and the possession of venom, we 
argue that lunarphobia may be due to prey availability. In bright 
nights that are cold, the combined effects of high luminosity and 
low temperature favour reduced activity and even torpor. We 
conclude that Javan slow lorises are lunarphobic – just as the 
majority of mammals.
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Introduction

To secure maintenance, survival and reproduction, 
animals adapt their behaviour to various factors, such 
as climate, availability of resources, competition, preda-
tion, luminosity, habitat fragmentation, and anthropo-
genic disturbance (Kappeler and Erkert, 2003; Beier 
2006; Donati and Borgognini-Tarli, 2006). According 
to optimal foraging theory, animal behaviour can be seen 
as a trade-off between the risk of being preyed upon 
and the fitness gained from foraging (Charnov, 1976). 
Perceived predation risk assessed through indirect cues 
that correlate with the probability of encountering a 
predator may shape an animal’s behaviour (Vasquez, 
1994; Thorson et al., 1998; Orrock et al., 2004). 
	 One of the indirect cues that animals use to assess 
predation risk is moonlight (Beier et al., 2006; Upham 
and Haffner, 2013). Most mammals decrease activity 
or change habitat choice with increasing lunar illumi-
nation (lunarphobia) (Price et al., 1984; Hecker et al., 
1999; Horning and Trillmich, 1999; Nash, 2007; Pente
riani et al., 2011; Saldaña-Vásquez and Munguía-Rosas 
2013; Prugh and Golden, 2014) to be more concealed 
from predators. Some species increase their activity in 
brighter nights (lunarphilia) due to prey availability, 
higher foraging efficiency, or better visual detection of 
predators (Table 1; Horning and Trillmich, 1999; Packer 
et al., 2011; Prugh and Golden, 2014). Whether a species 
is lunarphobic or lunarphilic depends on the primary 
sensory system (e.g. visual acuity), phylogenetic relat-
edness, and habitat cover (Hecker et al., 1999; Michal-
ski and Norris, 2011; Saldaña-Vásquez and Munguía-
Rosas, 2013; Prugh and Golden, 2014). Primates, for 
instance, are highly visually oriented (Gursky, 2003; 
Bearder et al., 2006) and are mainly lunarphilic, as 
opposed to rodents, lagomorphs carnivores and bats, 
which are largely lunarphobic (Prugh and Golden, 
2014). Additionally to lunarphobia and lunarphilia, 
some species are lunarneutral, although the methods 
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chosen may have an influence whether a certain reac-
tion is found (Nash, 2007; Penteriani et al., 2011). The 
trade-offs regarding the reaction towards moonlight 
may vary between species, and even local populations 
(Lang et al., 2005; Saldaña-Vásquez and Munguía-
Rosas, 2013).
	 Weather condition is a second cue that may affect 
animal activity, causing variation in the detection of 
prey and predators, and influencing thermoregulation 
(Hanya, 2004). In general, low temperature causes 
animals – prey and predator species – to decrease activ-
ity to conserve energy. Low temperature especially 
affects the activity of poikilotherm species like amphib-
ians or arthropods (Fitzgerald and Bider, 1974; Fadamiro 
and Wyatt, 1995) but also homeotherm species that may 
decrease activity, employ social and postural ther-
moregulation (Donati et al., 2011), or go into torpor or 
hibernation (Schmid, 2000; Dausmann et al., 2005; 
Schuelke and Ostner, 2007; Smit et al., 2011). Humid-
ity and precipitation may affect animal activity. Strong 
rain or wind generally decrease insect availability and 
can impede the ability of predators to detect prey (Vick-
ery and Bider, 1981; Thies et al., 2006). Some animals 
are more active in high humidity and precipitation due 
to food availability or physiological needs (amphibians: 
Fitzgerald and Bider, 1974; rodents: Orrock et al., 2004; 
insects: Fadamiro and Wyatt, 1995; arthropods: Skutel-

sky, 1996), some decrease activity due to energetic 
constraints (primates: Donati and Borgognini-Tarli, 
2006; bats: Voigt et al., 2011). 
	 Asian lorises (Lorisinae) are characterized by a suite 
of morphological traits that makes them sensitive to 
predators, foraging and temperature. Both slow (the 
genus Nycticebus) and slender (the genus Loris) lorises 
are arboreal slow climbers (Crompton et al., 1993), and 
rely on crypsis to avoid predators. Nycticebus is venom-
ous, a trait that has been attributed to predator defence 
(Alterman, 1995; Nekaris et al., 2013), which might also 
affect its activity. High susceptibility to predators sug-
gests that lorises would more likely be lunarphobic. 
Data from the wild, however, do not follow a consistent 
pattern. Wild red slender loris Loris tardigradus (Lin-
naeus, 1758) tended to lower activity in bright nights, 
although this was not significantly different from dark 
night behaviour; they rested, groomed more and whis-
tled more frequently during bright nights, but not sig-
nificantly suggesting a certain reaction towards moon 
light (Bernede, 2009). Although in general grey slender 
lorises L. lydekkerianus Cabrera, 1908 were lunarneu-
tral, they were in some aspects lunarphilic (Bearder et 
al., 2001, 2006), whistling more in bright nights, and 
foraging more for energy-rich insects (Bearder et al., 
2001). Infants of L. lydekkerianus however, sought more 
habitat cover in bright nights, possibly as predator avoid-

Table 1. Reactions of some animal species towards moonlight, and adaptive explanations. PA = predator avoidance, FA = food avail-
ablility, FE = foraging efficiency, PD = predator detection.

Species	 Scientific name	 Response to	 Adaptive	 References
		  lunar illumination 	 explanation

Predator avoidance
Kangaroo rat	 Dipodomys sp. Gray, 1841	 Lunarphobic	 PA	 Upham and Haffner, 2013
Lesser bushbaby	 Galago moholi Smith, 1836	 Lunarphilic	 PA	 Bearder et al., 2001; Bearder et al., 2006

Food availability
Galapagos fur seal	 Arctocephalus galapagoensis	 Lunarphobic	 FA, PA	 Trillmich and Mohren, 1981;  
	 Heller, 1904 			   Horning and Trillmich, 1999
Spectral tarsier	 Tarsius spectrum Pallas, 1779	 Lunarphilic	 FA, FE, PA	 Gursky, 2007

Foraging efficiancy
Freckled nightjar	 Caprimulgus tristigma	 Lunarphilic	 FE	� Ashdown and McKechnie, 2008
	 Rueppell, 1840 
African lion	 Panthera leo (Linnaeus, 1758)	 Lunarphobic	 FE	 Packer et al., 2011

Predator detection
Common poorwill	 Phalaenoptilus nuttallii	 Lunarphilic	 PD	 Woods and Brigham, 2008
	 (Audubon, 1844) 
Male tree frogs	 Smilisca sila Duellman and	 Lunarphilic	 PD	 Tuttle and Ryan, 1982
	 Trueb, 1966
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ance strategy, indicating lunarphobia for this age class 
(Bearder et al., 2001). In Cambodia, the pygmy loris 
(Nycticebus pygmaeus Bonhote, 1907) was lunarphobic, 
especially in cold nights (Starr et al., 2012). Rogers and 
Nekaris (2011) report that Bengal slow lorises (Nyctice-
bus bengalensis Lacépède, 1800) in Cambodia become 
more active during the dark moon phase. During surveys 
of the Javan slow loris (N. javanicus Geoffroy, 1812) 
lunar neutrality was suggested in that moonlight had no 
impact on detectability of the species (Nekaris et al., 
2014). Captive greater slow lorises (N. coucang [Bod-
daert, 1785]) reduced activity with higher illumination 
(Trent, 1977).
	 It is notable that in the single wild study with clear 
evidence of lunarphobia, Starr et al. (2012) found that 
decrease in activity was heightened during low tem-
peratures. Lorisines have low metabolic rates, good fur 
insulation, and possess extensive vascular retia mira-
bilia that help them to stay inactive for prolonged peri-
ods (Whittow et al., 1977; Mueller, 1979). Most notably, 
Nycticebus spp. enter torpor for hours or days in cold 
temperatures (Nekaris and Bearder, 2011). Starr et al. 
(2012) proposed that the combined risk of both preda-
tion and heat loss outweigh the benefits of being active, 
and that temperature should be considered in further 
discussions of loris activity.
	 The Javan slow loris (Nycticebus javanicus), en-
demic to Java, Indonesia (Nekaris and Bearder, 2011), 
weighs around 1 kg, is known to go into torpor, and 
occurs at least up to 1800 m above sea level (asl) (Neka-
ris et al., 2014; Nekaris and Rode-Margono, unpub. 
data). Indeed, much of the forest left on Java where slow 
lorises are found is at altitudes above 1000 m (Nekaris 
et al., 2014; Voskamp et al., 2014). We thus examined 
the effect of lunar illumination and temperature on 
activity of the Javan slow loris at a high altitude site 
replete with numerous potential predators. We also 
examined microhabitat use in the light of understanding 
predator perception.

Material and methods

We conducted our study on the foothills of the active 
volcano Papandayan in West Java. The site was located 
at altitudes ranging from 800-1800 m asl, ranging into 
Zones that are in Java classified as sub-montane (1200-
1800 m asl) and Montane Zones (1600-2400 m asl); at 
altitudes above 1500 m asl, ground frost can occur 
(Nijman, 2013). The research site was located at S7°6’6-
7°7’0 and E107°46’0-107°46’5 and consisted of a mo-

saic-like landscape with forest and bamboo fragments 
(locally known as ‘talun’) and agricultural fields. Aver-
age temperature is relatively constant, but precipitation 
varies during the year, and daily minimum temperature 
ranges between 10.4°C and 20.7°C. 
	 We captured 12 animals by hand, took morphomet-
ric measurements, fitted a radio collar (ca. 17 g, Biotrack, 
UK) and released the animal at the capture site. From 
April 2012 to June 2013, we followed animals in two 
shifts from 18:00 h to 0:00 h and 00:00 h to 6:00 h 
(Wiens and Zitzmann, 2003) using antenna (6 and 8 
element flexible Yagi antenna, Biotrack, UK) and re-
ceiver (R1000, Communication Specialists, US). We 
used instantaneous focal animal sampling with 5-min-
ute intervals for behaviour and habitat data collection 
(Altmann, 1974). We followed the ethogram of Moore 
(2012) and grouped resting and sleeping into the cate-
gory “not active” and all other behaviours except 
“other” into “active”. We recorded the heights of the 
animal and used tree. Assuming that a higher position 
in the tree provides more concealment by the canopy, 
we used the relative height (height of the animal di-
vided by height of the tree) of the animal’s used tree as 
an indication of safety. We recorded any sighting of 
potential nocturnal predators, including common palm 
civets (Paradoxurus hermaphroditus [Pallas, 1777]) 
and leopard cats (Prionailurus bengalensis [Kerr, 
1792]). Additionally, we had one to four camera traps 
(Cuddeback Attack IR; Bushnell Trophy cam night vi-
sion) installed in 185 nights (304 individual camera trap 
nights). Cameras were installed about 50 cm above the 
ground in relatively dense forest or bamboo patches 
with undergrowth, located within home ranges of radio-
tracked slow lorises. With a TFA Nexus weather station 
(TFA Dostmann, Germany) located at our basecamp, 
we collected data on temperature, humidity, rain and 
wind, with one data point every hour. We calculated 
minimum temperature of the night and rain over the 
last 24 hours. We estimated cloud cover in the field to 
the nearest 10%. Luminosity was recorded using the 
exact percentage of the moon illuminated when above 
the horizon, using the programme MOONDV version 
1 (Thomas, 1998). When below the horizon an illumina-
tion of 0 was recorded.

Statistical analysis

To increase independence of the data we used only 
every 6th data point of our dataset, yielding single ob-
servations of the same individuals that were at least one 
hour apart. We excluded the first and last hour of the 
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night (18:00 to 19:00 and 05:00 to 06:00) to ensure that 
astronomical twilight is excluded from the data. As-
tronomical twilight is defined as the moon being 18° 
below the horizon (Erkert, 2003). Twilight effects on 
activity may result in peaks at dawn and dusk and an 
overrepresentation of certain behaviours usually per-
formed in these periods (Bearder et al., 2001; 2006; 
Erkert and Cramer, 2006). We applied a logistic regres-
sion model due to the non-normal distribution of our 
data (c.f. Starr et al., 2012). We used the binary depend-
ent variable “active” and “not active” (Field, 2009). 
The predictor variables were sex, number of observers, 
luminosity, minimum nightly temperature, average 
humidity per night, wind, cloud cover, rain per hour 
and relative height of slow loris. Humans can be seen 
as predators (Charles-Dominique, 1977), and although 
we did not witness hunting of slow lorises for the pet 
trade in our study area it was reported for neighbour-
ing villages and is generally common in West Java 
(Nekaris et al., 2009). We then applied a similar 
model to the presence of potential predators with one 
night where camera traps operated or direct observa-
tions were conducted as sample unit. For these data 
we used illumination of the night (number of hours the 
moon was visible multiplied by moon phase), and we 
excluded cloud cover. Days without observations or 
camera traps were excluded. We included an index of 
effort into the model, consisting of the number of teams 
observing per night weighted by two to account for a 
higher viewing angle, plus the number of camera traps 
working that night. For both models, none of the pre-
dictor variables correlated significantly above r2 = 0.6. 
We used the forced entry method as we had specific 
predictions about the model (Field, 2009). If the odds 
ratio of a factor is above 1 there is a positive relation 
between dependent and independent variable.

Results

We collected 7169 5-minute observation points of 12 
radio-collared adult individuals, resulting in approxi-
mately 600 hours of direct observation and 1036 used 
data points. The activity budget of all animals per hour 
can be seen in Table 2. There was a significant relation-
ship between activity and the different hours of the 
night (χ2 = 22.708, df = 9, p<0.007), with animals 
being less inactive than expected between 19:00 and 
20:00.
	 The logistic regression model with slow loris activ-
ity as the outcome variable was highly significant (χ2 
(1) = 116.158, df = 11, p<0.001; R2 = 0.148 (Cox and 
Snell), 0.213 (Nagelkerke)), with lunar luminosity (B = 
-3.926 ± 1.863, p = 0.035), humidity (B = 0.039 ± 0.018, 
p = 0.029), clouds (B = 0.727 ± 0.308, p = 0.018), relative 
height (B = -3.957 ± 0.492, p < 0.001) and the interaction 
of minimum temperature and moon (B = 0.234 ± 0.113, 
p = 0.038) having significant effects on whether slow 
lorises are active or inactive. While luminosity and 
relative height have negative effects on activity, humid-
ity and cloud cover have positive effects. The interaction 
of minimum temperature and moonlight showed that 
temperature affected activity during bright nights, but 
not dark nights. Slow lorises are more active when it is 
warmer. In dark nights they are equally active in warm 
and cold nights.
	 Camera trapping revealed six independent photos of 
the leopard cat, ten of the Javan ferret badger (Melogale 
orientalis [Horsfield, 1821]), and 14 of the common palm 
civet. The logistic regression model with predator pres-
ence as the outcome variable was not significant (χ2 (1) 
= 12.523, df = 7, p=0.085). 
	 Farmers reported to us that domestic dogs sometimes 
detected and cornered slow lorises. We have never 
observed any flight or freezing reaction of Javan slow 

Table 2. Activity budget per hour for 12 adult Javan slow lorises, n = 915. Numbers shown in percentage. Data points were at least one 
hour apart.

Hour of the night	 18	 19	 20	 21	 22	 23	 0	 1	 2	 3	 4	 5	 Total %	 Total N

Feed and forage	 51.6	 50.7	 37.1	 43.4	 39.5	 27.3	 38.5	 29.3	 33	 30.3	 31	 66.7	 37.3	 341
Rest and sleep	 12.9	 13.3	 21	 21.3	 31.1	 35.2	 28.2	 34.8	 22.7	 27.3	 10.3	 0	 25	 229
Travel	 19.4	 17.3	 12.9	 13.1	 10.9	 15.9	 11.5	 10.9	 12.5	 15.2	 41.4	 0	 14.2	 130
Alert and freeze	 6.5	 10.7	 15.3	 9.8	 7.6	 11.4	 15.4	 9.8	 18.2	 13.6	 3.4	 33.3	 11.8	 108
Groom	 3.2	 5.3	 9.7	 5.7	 7.6	 6.8	 5.1	 10.9	 5.7	 7.6	 6.9	 0	 7.1	 65
Social activities	 6.5	 1.3	 0.8	 2.5	 2.5	 1.1	 0	 3.3	 5.7	 1.5	 6.9	 0	 2.4	 22
Other	 0	 1.3	 3.2	 4.1	 0.8	 2.3	 1.3	 1.1	 2.3	 4.5	 0	 0	 2.2	 20
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lorises towards common palm civets or leopard cats. In 
contrast, we have witnessed a sub-adult feeding unper-
turbed by an adult male common palm civet within 5 m 
distance.

Discussion

Lunar illumination and predation risk 

Our model on slow loris activity revealed a negative 
effect of lunar illumination and relative height on activ-
ity, a positive effect of humidity and cloud cover, and an 
interaction effect of lunar illumination and temperature. 
Activity was not affected by the number of people ob-
serving the slow lorises, neither was an interaction effect 
with luminosity detected. The predator model was not 
significant, thus the detection of predators was not af-
fected by moonlight or any climatic factors.
	 Most primate species increase their activity with 
increasing lunar illumination (Gursky, 2003; Kappeler 
and Erkert, 2003; Bearder et al., 2006; Donati and 
Borgognini-Tarli, 2006; Fernandez-Duque and Erkert, 
2006). This can be explained by the high visual orien-
tation in primates and higher effectiveness of foraging 
and detection of potential predators in bright nights 
(Gursky, 2003). Instead of hiding in the dark, some 
lunarphilic primate species additionally use mobbing 
and warning calls to deter predators and warn conspe-
cifics (Gursky, 2006; Fichtel, 2007; Nash, 2007; Eberle 
and Kappeler, 2008). In contrast, Javan slow lorises in 
our study seemed to reduce their activity in brighter 
nights, as was found for pygmy lorises (Starr et al., 
2012), Bengal slow lorises (Rogers and Nekaris, 2011) 
and greater slow lorises (Trent, 1977). We can confirm 
lunarphobia for Javan slow lorises. Slow lorises thus 
resemble more the behaviour of other lunarphobic mam-
mals (Prugh and Golden, 2014). This was explained by 
Starr et al. (2012) with the animals’ anti-predator be-
haviour relying on crypsis and concealment, and may 
be enhanced by the relatively disturbed and open habi-
tat at our study site. 
	 Although lunarphobic, we did not find any evidence 
that activity of slow lorises could be negatively affected 
by human presence, neither was there any apparent 
relation with the behaviour of predators. Slow lorises 
did not engage in more active behaviour like foraging, 
feeding and travelling in higher and denser canopy, but 
in contrast are more active in lower heights. Confirmed 
predators of Nycticebus are orang-utans (Utami and 
van Hooff, 1997), snakes (Wiens and Zitzmann, 1999), 

hawk-eagles (Hagey et al., 2003), and monitor lizards 
(Kenyon et al., 2014). Although all of these taxa may 
not be sympatric with Javan slow lorises, adaptations 
to such predators may still be responsible for their be-
havioural responses (Goodman et al., 1993). The Afri-
can potto (Perodicticus potto [Mueller, 1766]) is com-
parable to Javan slow lorises in size and ecology and is 
predated upon by viverrids of relatively small size and 
by domestic dogs (Canis lupus Linnaeus, 1758) (Nash, 
2007; Nekaris et al., 2007); pottos showed reactions to 
viverrids in predation experiments (Charles-Dominique, 
1977). Despite presence of potential predators, slow 
lorises did not show any fear when encountering poten-
tial non-human predators. Similar oblivious reactions 
to potential predators occurred in red and grey slender 
lorises and in greater slow lorises (Wiens, 2002; Neka-
ris et al., 2007). Although hunting is the main threat to 
Javan slow lorises (Nekaris et al., 2009; 2013), the 
number of observers had no effect on slow loris activ-
ity. Lorises may not fear people because they do not 
perceive people as predators or they are habituated due 
to the presence of local farmers. 
	 One alternative explanation to predation pressure is 
a potential higher availability of prey during either 
moonlit or dark nights. Lang et al. (2005) attributed 
high activity during dark moon phases of the lunarpho-
bic Neotropical insectivorous bat Lophostoma silvi-
colum Tomes, 1863 to high prey availability of katydids. 
Foraging depth of Galapagos fur seals (Arctocephalus 
galapagoensis Heller, 1904) followed the moonlight-
dependent horizontal migration of fish and squid (Hor
ning and Trillmich 1999). The effect of insect abun-
dance depends on the food preferences of the insec-
tivorous predator. Although these data are not yet 
available for our field site, it is possible that the higher 
activity of slow lorises in dark nights follows the 
higher prey abundance; we are investigating this pos-
sibility with future studies. 
	 We suggest that not predator avoidance but alterna-
tive factors like higher prey availability cause the slow 
loris to be more active in darker nights, perhaps due to 
the extreme morphological adaptations of lorises to 
avoid predators in the first place. Lorisines rely heavily 
on crypsis, moving slowly and freezing when feeling 
threatened (Nekaris et al., 2007). Their fur colour blends 
in with tree bark and makes animals difficult to detect 
(Nekaris et al., 2010). Slow lorises are among the few 
mammal species that are venomous (Alterman, 1995; 
Hagey et al., 2006; Ligabue-Braun et al., 2012; Nekaris 
et al., 2013). We are not aware of studies on other ven-
omous mammals with a focus on the influence on 
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moonlight on behaviour. Although uncommon in ver-
tebrates (Pough, 1988), slow lorises may show Muel-
lerian mimicry (Moore, 2012; Nekaris et al., 2013) with 
Indian cobras (Naja naja [Linnaeus, 1758]). Morpho-
logical and behavioural defences against predators can 
effectively reduce a prey’s perception of risk (Stanko-
wich and Blumenstein, 2005), and the combinations of 
slow lorises’ adaptations might be effective enough to 
make them rather fearless animals when it comes to 
direct or indirect encounters with potential predators.

Climatic factors

Of the environmental factors, only humidity and 
cloudiness had a significant independent effect. Differ-
ent effects of humidity on the activity of animals have 
been found (positive: Fitzgerald and Bider, 1974; Orrock 
et al., 2004; Skutelsky, 1996; negative: Kappeler and 
Erkert, 2003; Donati and Borgognini-Tarli, 2006). Slow 
lorises become more active with increasing humidity, 
possibly because of a higher availability of arthropod 
prey, which also become more active in higher humid-
ity (Fadamiro and Wyatt, 1995). Swifts increase flight 
height in lower humidity, following flying insects that 
adapt their flying height to humidity (Shamoun-Baranes 
et al., 2006). Slow lorises include many flying insects 
like Coleoptera and Lepidoptera in their diet (Wiens et 
al., 2006; Starr and Nekaris, 2013). As slow lorises 
cannot leap or fly, they may be more actively foraging 
when humidity is high and insects fly low. Thus, we 
attributed the positive effect of higher humidity on 
activity to an adaptation to the activity of flying insect 
prey. Higher percentage of cloud cover contributes to 
the darkness that is favoured by Javan slow lorises. As 
the temperature at our study site can drop to about 10°C, 
it is likely that temperature would have affected the 
activity of Javan slow lorises. Although we could not 
find an independent effect of temperature, we detected 
an interaction effect of luminosity and temperature in 
Javan slow lorises, just like for pygmy lorises (Starr et 
al., 2012). Indeed, during these inactive bouts, Javan 
slow lorises, like pygmy lorises, might not move for 
hours at a time. Many small endotherm species show 
heterothermy (Heldmaier and Ruf, 1992; Heldmaier et 
al., 2004), including several nocturnal primates such as 
lemurs of the family Cheirogaleidae and lesser bushba-
bies (Galago moholi Smith, 1836) (Schmid, 2000; Smit 
et al., 2011; Dausmann et al., 2005; Schuelke and Ost-
ner, 2007; Nowak et al., 2010). Nycticebus spp. are able 
to enter torpor (Whittow et al., 1977; Xiao et al., 2010). 
We have already found evidence for torpor in one animal 

at our study site (Rode-Morgano and Nekaris, unpub. 
data) and we are further investigating through physio-
logical measurement if animals at our site regularly 
enter torpor during cold temperatures. Just as for reac-
tion towards moon light, the insignificant model for 
potential predators did not indicate an effect of climate 
factors on their activity.

Conclusion

Nash (2007) rightfully stressed that crypsis and preda-
tion are not unitary phenomena but interact in complex 
ways. Most primate species are lunarphilic, but slow 
lorises seem to be the exception from that rule and 
decrease activity in bright moonlight (lunarphobia) like 
most other mammals. A higher activity when cloud 
cover is higher may contribute to this behaviour. Javan 
slow lorises seem to be indifferent to potential predators 
and do not shift their activities into more covered 
habitat. We suggest that lunarphobia in slow lorises is 
not due to an increased perceived predator risk, but due 
to other factors like lower availability of prey species 
in moonlit nights. Additionally, slow lorises may be 
well-adapted to avoid or defend against predators by 
crypsis, venom and mimicry, and thus, do not need to 
be afraid in the dark. 
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