SPATIAL VARIATIONS IN DENSITY AND SIZE OF THE ECHINOID
DIADEMA ANTILLARUM PHILIPPI ON SOME VENEZUELAN CORAL REEF斯

by

ERNESTO WEIL
Fundación Científica Los Roques, Apartado 1, Carmelitas, Caracas 1010A, Venezuela

&

FREDDY LOSADA
Departamento de Biología de Organismos, U.S.B., Apartado 8065A, Caracas, Venezuela

&

DAVID BONE
Centro de Estudios Oceanológicos Intecmar, U.S.B., Apartado 290, Puerto Cabello, Venezuela

ABSTRACT

The distribution, population density and size structure of Diadema antillarum Philippi was found to vary with reef locality, food availability and the structural complexity of the reef. Structural complexity was classified according to the growth morphology and abundance of the coral species found in the different reef zones. Mean urchin density in the reef varied between 2.6 and 3.7 ind. m⁻². High densities (4.0-7.0 ind. m⁻²) were found in the upper reef zone, which was characterized by high structural complexity, and by a dominance of the coral species Acropora palmata, A. cervicornis, Montastrea annularis and the hydrozoans Millepora alcicornis and M. complanata. Low densities (1.5-4.0 ind. m⁻²) were found in the deep fore reef and flat reef platform, which were characterized by low structural complexity.

A significant and positive correlation was found between urchin density and the cover of dead substrate.

INTRODUCTION

The black sea urchin Diadema antillarum Philippi is one of the most common and conspicuous animals in Caribbean coral reefs. The geographic distribution of this species ranges from Bermuda to Surinam, but it is also found in the eastern Atlantic, particularly in the Azores, Canaries, Madeira and the Gulf of Guinea (Mortensen, 1940). It inhabits all kinds of marine communities: shallow coral reefs, rocky shores, sea grass beds, sandy bottoms, mangrove roots and even to depths of 400 m (Randall et al., 1964). However, because of its herbivorous habits (Lewis, 1964; Randall et al.,

* Scientific Contribution no. 09 of the Fundación Científica Los Roques.
1964; Sammarco et al., 1973, 1974; Sammarco, 1972, 1980) it apparently prefers shallow coastal areas with high algal growth.

Lewis (1964) worked on the feeding habits and digestion of D. antillarum and was the first to suggest its importance as a source of bioerosion in Caribbean coral reefs. Since then, much attention has been paid to the role of this sea urchin as a regulator of shallow algal and coral reef communities (Sammarco, 1972, 1980; Sammarco et al., 1973, 1974) and to the effect of the bioerosion pressure on Caribbean coral reefs (Hunter, 1977; Stearn et al., 1977; Scoffin et al., 1980; Ogden & Lobel, 1978).

In spite of the numerous investigations on the ecology of this sea urchin, little is known about the variables that control spatial variations in abundance and population size structure. Urich (1977) was the first to find a significant correlation between the mean test diameter of D. antillarum and the mean radius of the holes and crevices inhabited by it in a coral reef of La Orchila, Venezuela. He suggested that there is a relationship between the morphological complexity of the reef and the presence or absence of different size classes of sea urchins.

The present paper is part of a major research effort to investigate the ecology of this sea urchin on Venezuelan coral reefs. We report on the different densities of the various size classes of D. antillarum found in four main reef zones and on the relationships between these and the structural morphology of the reef, food availability and predation pressure.

STUDY AREA

This study was carried out at the National Park of Morrocoy on the west coast of Venezuela (fig. 1). The Park, with an area of 32,000 ha, is formed by a large number of coral keys, mangrove islands, shallow coral reefs and sand banks, and large sea grass beds dominated by the turtle grass, Thalassia testudinum.

Weather conditions vary little during the year. According to Köppen (1900), the area has a tropical savanna climate with a heavy rainy season. Average temperature is 26.5°C, average rainfall is 1,213 mm and wind direction is mostly from the north-east with an average annual speed of 4.5 km/h (Anonymous, 1978).

Three different reefs were selected for the study (fig. 1):

Pescadores: A fringing reef located at the west side of Pescadores, in the extreme northern section of the Park. The reef protects a mangrove area named Costa de los Muertos and it is separated from the key by a channel 70 m wide and 25 m deep. The reef reaches a maximum depth of 17 m.

Playuela: A small bay located at the northeastern coast of Animas key, in the eastern section of the Park. The reef is U-shaped with a narrow channel which divides it into two separate sampling zones, PL-1 and PL-2. The reef reaches a maximum depth of 17 m as well.

Cayman: A semi-protected fringing reef on the main coast bordering the interior lagoon of the Park. The reef protects a small, shallow bay and has a narrow channel that divides it into two sampling zones (Cy-1 and Cy-2). It reaches a maximum depth of 8 m.

METHODS

Population density and size structure

Population density was estimated during day and night by two similar methods. The first method involved counting every urchin (including the ones hidden in the reef crevices) in a 4 m wide transect extended perpendicularly to the shore along the entire reef.

The second method involved dividing the reef into four zones (fig. 2):

1) The inner reef flat (IRF), extending from the edge of the grass bed to the back limit of the surf zone and characterized by a flat platform of dead coral, covered by zoanthids (Zoanthus sociatus and Palythoa mamillosa), some algae, and dispersed coral colonies of Diploria strigosa, D. clivosa, Porites astreoides, and Agaricia agaricites.

2) The outer reef flat (ORF), the shallow surf zone, characterized by dispersed colonies of Acropora palmata, Diploria strigosa, D. clivosa, and Montastrea annularis.
Fig. 1. Study area indicating sampling sites in Cayo Pescadores, Playuela, and Cayman, at the National Park of Morrocoy, Venezuela.
(3) The reef front (RF), the upper slope of the deep surf zone with depths ranging from 1 to 5 m, dominated by *Acropora palmata*, *Montastrea annularis*, and the hydrocorals *Millepora alcicornis* and *M. complanata*.

(4) The deep fore reef (DFR), the deepest zone of the reef, characterized by a high coral diversity with dominance of *Montastrea annularis*, *Colpophyllia natans*, *Solenastrea bournoni*, and *Diploria strigosa*.

In each zone we arbitrarily selected sampling areas of 200 m² (4.0 x 50.0 m), parallel to the shore line, where all urchins were counted. In addition, 80 to 140 urchins were removed at random from each reef zone for size determination. Test diameter was measured with calipers.

Structural complexity

Structural complexity was determined by noting the growth morphology and abundance of the coral species at each zone. Thus we arbitrarily classified the reef's morphological complexity (MC) as (fig. 2):

MC = 0. Sandy substrate, grass beds and/or flat platforms of dead coral with few incrusting species such as *Agaricia agaricites*.

MC = 1. Zones of low structural complexity formed by a flat platform of dead coral, with few crevices and few dispersed colonies of *Agaricia agaricites*, *Diploria clivosa*, and *D. labyrinthiformis*, of the incrusting and dome growth types.

MC = 2. Intermediate structural complexity with more crevices and/or refuges. The upper reef zone with low cover of the columnar forms of *Montastrea annularis*, and the hydrocorals *Millepora complanata* and *M. alcicornis*, or the deep reef with high cover and abundance of the coral species with a dome form such as *Colpophyllia natans*, *Diploria strigosa*, *D. labyrinthiformis*, *Solenastrea bournoni*, and plate and incrusting forms such as *Agaricia tenuifolia*, *A. lamarcki*, *A. grahamae*, *Madracis decactis*, and other species.

MC = 3. Highest structural complexity,
Fig. 3. Densities of *D. antillarum* along the reef profiles of the five sampling sites. (PL = Playuela, Cy = Cayman, and Ps = Pescadores.)
characterized by high abundance of the columnar and branch forms of *Montastrea annularis*, *Acropora palmata*, *A. cervicornis* and the hydrocorals *Millepora complanata* and *M. alcicornis*.

Cover of live and dead coral

The percentage of live and dead coral substrate was estimated using the line transect method (Loya, 1972) in exactly the same area where population densities were estimated.

RESULTS

For the three reefs studied, results obtained by both sampling methods showed that density varied according to reef profile and reef zone (fig. 3, table I). High population densities were found in the outer reef flat (ORF) and in the front reef (RF), while lower densities were found in the inner reef flat (IRF) and deep fore reef (DFR). Mean urchin densities in the three reefs were always lower than 4.0 ind. m$^{-2}$; but densities up to 13.0 ind. m$^{-2}$ were observed in single samples in the front reef zone.

Day and night differences in population densities were not significant (analysis of variance); therefore these data were pooled for further analysis.

The size structures of the urchin populations in the three reefs were similar. Urchins of intermediate sizes (5.0 to 8.0 cm in test diameter) were the most abundant (fig. 4). Small urchins were found mainly in the crevices and narrow holes of the outer reef flat and front reef and were absent from the deep fore reef. Larger urchins were found in almost every zone.

When the mean size and density of *D. antillarum* were related to the morphological complexity of each zone of the reef, it was found that high mean urchin densities and small mean size classes were found in zones with intermediate and high morphological complexity (MC = 2, MC = 3) and vice versa in zones with low morphological complexity (MC = 1) (fig. 5). Zones with high structural complexity were inhabited by urchins of all sizes which were hidden in the numerous refuges during daytime and moved out to feed at night. In open areas (IRF) the larger urchins were observed in aggregations during daytime; at night they moved around to feed. The deep fore reef, characterized by intermediate to high morphological complexity, was inhabited by few of the larger urchins (fig. 5).
Fig. 5. Mean density and mean size of *D. antillarum* in each of the reef zones sampled for the five sampling sites. The morphological complexity (MC) of each zone is indicated by a value arbitrarily selected by the authors (see fig. 2), and ranges from 0 (lowest) to 3 (highest).
A positive significant correlation \((P \leq 0.05)\) was found between the percentage of dead substrate (coral platforms and rocks covered mainly by different algae species), and the mean densities of urchins (fig. 6).

DISCUSSION AND CONCLUSION

The densities of *D. antillarum* in the fringing reefs of Morrocoy are low when compared to those reported for other areas in the Caribbean (table II). In some cases, the great variation in densities reported could reflect the different sampling methods and reef conformations sampled, although even if the data gathered with similar methods and in similar reef conformations are compared, marked differences in population densities are still found. A good example is found in the comparison between the high densities of 23.0 ind. \(m^{-2}\) reported for Barbados (Stearn et al., 1977) with the intermediate densities of 11.5 ind. \(m^{-2}\) for Curacao (Bak & Van Eys, 1975), 7.0-13.0 ind. \(m^{-2}\) for La Orchila (Urich, 1977) and the relative low densities of 1.6-4.0 ind. \(m^{-2}\) found in this study.

In Morrocoy, as in most fringing reefs in the Caribbean, the upper reef zone, generally subjected to strong wave action, is typically formed by the branching structures of *Acropora palmata*, *A. cervicornis*, the columnar form of *Montastrea annularis* and the leaf and branch types of the hydrocorals *Millepora complanata* and *M. alcicornis*.

In reefs with less wave action, the upper reef is mainly formed by the columnar and massive forms of *Montastrea annularis*, the branch and fragile forms of *Acropora cervicornis* and the hydrocorals *Millepora alcicornis* and *M. complanata*. Nonetheless, both habitats are struc-

Table II

Densities of *Diadema antillarum* reported for different areas of the Caribbean.

<table>
<thead>
<tr>
<th>Locality</th>
<th>Density (ind. (m^{-2}))</th>
<th>Type of reef</th>
<th>Sampling method</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Virgin Islands</td>
<td>13.4</td>
<td>Rocky shore</td>
<td>Total removal of population</td>
<td>Randall et al. (1964)</td>
</tr>
<tr>
<td>St. Croix</td>
<td>6.0</td>
<td>Patch reef</td>
<td>Line transects</td>
<td>Ogden et al. (1973)</td>
</tr>
<tr>
<td>St. Croix</td>
<td>10.40</td>
<td>Patch reef</td>
<td>Total removal of population</td>
<td>Sammarco et al. (1974)</td>
</tr>
<tr>
<td>Curacao</td>
<td>11.5</td>
<td>Fringing reef</td>
<td>Line transects</td>
<td>Bak & Van Eys (1975)</td>
</tr>
<tr>
<td>St. Croix</td>
<td>9.00</td>
<td>Patch reef</td>
<td>Total removal of population</td>
<td>Ogden & Zieman (1977)</td>
</tr>
<tr>
<td>Barbados</td>
<td>23.0</td>
<td>Fringing reef</td>
<td>Line transects</td>
<td>Stearn et al. (1977)</td>
</tr>
<tr>
<td>La Orchila, Venezuela</td>
<td>7.0-13.0</td>
<td>Fringing reef</td>
<td>Transects-quadrats</td>
<td>Urich (1977)</td>
</tr>
<tr>
<td>Jamaica</td>
<td>71.0</td>
<td>Fringing reef</td>
<td>Quadrats</td>
<td>Sammarco (1980)</td>
</tr>
<tr>
<td>Morrocoy, Venezuela</td>
<td>3.03</td>
<td>Fringing reef</td>
<td>Transects and quadrats</td>
<td>This study</td>
</tr>
</tbody>
</table>

Fig. 6. Correlation \((r \text{ Pearson})\) between the mean densities of *D. antillarum* and the cover of dead substrate (%). Data were pooled for the three reefs studied.
urally highly complex and support high population densities of *D. antillarum*, with a wide population size structure.

According to Randall et al. (1964) the spatial complexity of the habitat and the predation pressure are among the main factors affecting the distribution and population parameters of these urchins. Ogden et al. (1973) reported that the high densities of *D. antillarum* found in some areas of the Caribbean reflect the low abundance or absence of its predators which are mainly fish. Friecke (1974) and Glynn et al. (1979) reported that the predator pressure affected the distribution and behaviour of the sea urchins *Diadema setosum* and *Eucidaris thouarsii*, respectively. In areas where the main predators were absent, the urchins did not aggregate and were active throughout the day.

In Morrocoy we have observed high abundances of 10 of the 15 predating fish species reported by Randall et al. (1964), and the lobster *Panulirus argus*, which is considered one of the most important predators of small urchins, was frequently observed. The urchins were aggregated in the open areas or hidden in the refuges provided by the more morphologically complex reef zones during the day; their feeding activity begins in the evening and they return back to the refuges (not necessarily the same ones) or aggregate by the early morning.

A high correlation between the size of *D. antillarum* and the diameter of the holes and crevices where they hide has also been demonstrated (Urich, 1977), which in conjunction with our results suggests that the type and quality of the refuges is an important factor in the distribution of the urchins.

It is also possible that the intraspecific competition in overpopulated reefs might force the urchins to adjacent reef areas or other communities such as *Thalassia* beds (Ogden et al., 1973) and that the numerous aggregations of *Diadema* observed in the wide open areas occur when the population densities exceed the availability of proper refuges in the more complex reef areas.

We found a positive correlation between urchin density and the percentage of dead coral substrate. The upper illuminated reef zones (RF, IRF) are characterized by large areas of dead substrate which support an abundant community of the fast growing green, red filamentous and calcareous algae which constitute the main food resource of these urchins (Randall et al., 1964; Lewis, 1964; Sammarco et al., 1974; Hawkins, 1981). The contrary is the case on the deep fore reef. According to Bak & Van Eys (1975), the migration of *D. antillarum* from the deep reef to the upper reef during their feeding activity at night may explain the significant differences found only at this period among the three reef zones studied by them.

At dawn, the sea urchins return to the deep reef apparently because there are no available refuges in the upper reef.

In Morrocoy, we did neither observe migrations from one zone to another, nor did we find significant diel differences in urchin density. The main significant differences in density and size structure were found between the different reef zones and even between areas of the same reef zone where the morphological complexity varied.

In conclusion, the density, distribution, and size structure of the *D. antillarum* populations along the reef is the result of the interaction of many variables. The morphological complexity of the reef inhabited, the food availability, and the predation pressure appear to be the main ones.

Acknowledgements

We thank Dr. Roger A. Laughlin, Dr. Luis Bulla and Dr. Frans Weibezaehn for reading and improving the manuscript, Margot Grillo for her assistance and enthusiasm in the fieldwork, Fudena for financing part of the project and Danilo and Elsa Cobo for their help and friendship throughout this work. This study was partially financed by Conicit (Grant No. 496-111 and Project No. S1-0679).

References

Final draft received: 13 December 1983