SEDENTARY CILIATES FROM TWO DUTCH FRESHWATER GAMMARUS SPECIES

by

M. J. BIERHOF & P. J. ROOS
Zoological Laboratory, University of Amsterdam, The Netherlands

ABSTRACT

The sedentary ciliate fauna living on the body surface of *Gammarus tigrinus* and *G. pulex* from Dutch freshwater habitats has been investigated. Forty-seven ciliate species are found, of which 43 belong to the order Peritrichida, suborder Sessilina, 3 belong to the order Suctorida and 1 belongs to the order Chonotrichida. Two new species in the genera *Intranstylum* and *Pseudocarchesium* are described.

It appears that there is a seasonal variation in the number of epizoic ciliates as well as in species composition. In general, the species with a contractile stalk are found on external, often fast-moving, body parts. Species with a non-contractile stalk seem to prefer more quiet and sheltered positions. After ecdysis there is a succession of the genera *Epistylis* and *Zoothamnium*, the latter becoming dominant on older exoskeletons.

INTRODUCTION

From September 1972 to December 1973 the epifauna of *Gammarus tigrinus* Sexton, 1939, and *G. pulex* (Linnaeus, 1758) was investigated. At first this study was intended as a contribution to the regional fauna, as no research with special reference to these sedentary ciliates existed there, but secondarily the authors became interested in relations between the morphology of the ciliates and the site of attachment to the host.

Comparable work had been done earlier in other countries as West Germany, Hungary and Denmark (e.g. Biegel, 1954; Matthes, 1950; Neniger, 1948; Sommer, 1951; Stiller, 1941; Fenchel, 1965). Especially the Germans, from the Erlangen school, stressed the symphoriont life habit and the host- and organ-specificity of the peritrichous ciliates.

Most of the ciliates we found, likewise belong to the Peritrichida, suborder Sessilina, some belong to the Suctorida and 1 species belongs to the Chonotrichida. The hosts belong to the Arthropoda, class Crustacea, order Amphipoda, family Gammaridae. These species were chosen because they are both easily captured in numbers throughout the year and they are also used in other ecological work in our faculty. As these animals offer a great number of possible attachment sites, careful dissection of the hosts took considerable time, with the result that only a relatively small number of hosts could be investigated. The list of sedentary ciliates from these *Gammarus* species is therefore susceptible of being extended in the future.

MATERIAL AND METHODS

The amphipod host material was collected in the provinces of North-Holland, Utrecht and Gelderland of The Netherlands. Two gammarid species were found: *Gammarus pulex* and *G. tigrinus*. The latter is dominant in the brackish water in the western part of the country, where this American immigrant replaced the indigenous *G. pulex* in the recent past. In each locality about 25 animals were caught, mainly from vegetation or stones alongside the bank, using a fine-mesh dip net.

The ciliates were studied alive using a differential interference contrast microscope, after decapitation and dissection of the host.

DESCRIPTION OF THE LOCALITIES

1. Hierden, the "Hierdense beek", a clear and shallow brook. The banks and in part also the bottom are covered with vegetation. The bottom is sandy with accumulations of coarse material like twigs and leaves.
2. Spaarnwoude. Shallow, muddy ditches in the pastures between Amsterdam and Haarlem.
4. Waterland. A number of ditches in the pastures, North of Amsterdam.
5. Naardermeer, lake with much vegetation and marsh-wood, Southeast of Amsterdam.
6. Several waters, South of Amsterdam, mostly broad, with stony banks and little vegetation (Diemen, Bullewijk, Kromme Mijdrecht) or with much water lilies and un-strengthened banks (Gein).

RESULTS
Systematic part

DESCRIPTION OF THE CILIATES, WITH REMARKS ON ATTACHMENT SITE

When the species or higher taxa are well described elsewhere, no description is given here.

Order PERITRICHIDA
Suborder SESSILINA

The species recorded in this paper are all stalked, aloricate animals, as is, with the exception of the stalkless, aloricate Lagenophrys, the rule in symphoriont peritrichs.

Family EPISTYLIDAE

Epistylis zschokkei (Keiser, 1921) (Fig. 1)
Material: Waterland, 30.XI.1972, on *G. tigrinus*; Diemen, 28.V.1972, on *G. tigrinus*.
Zooids 30 x 45 μm.
Colonies of 4—6 zooids.
Attachment: on the joints of the gnathopods.

Epistylis thienemanni Sommer, 1951 (Fig. 3)
Epistylis thienemanni Sommer, 1951: 372.
Material: Waterland, 30.XI.1972, on *G. tigrinus*; Diemen, 28.V.1972, on *G. tigrinus*.
Zooids 30 x 45 μm.
Colonies of 4—6 zooids.
Attachment: on the first antenna, between the setae.

Epistylis nitocrae Precht, 1935 (Fig. 5)
Zooids 35 x 65 μm.
Two colonies of 25 and 60 zooids.
Attachment: on the third pereiopod.

Epistylis ovalis Biegel, 1954 (Fig. 6)
Fig. 1. *Epistylis zschokkei* (Keiser, 1921).
Fig. 2. *Epistylis thienemanni* Sommer, 1951.
Fig. 3. *Epistylis gammari* Precht, 1935.
Fig. 4. *Epistylis* sp.
Fig. 5. Epistyliis nitocrae Precht, 1935.
Fig. 6. Epistyliis ovalis Biegel, 1954.
Fig. 7. Epistyliis cf. ovalis Biegel, 1954.
Fig. 8. Epistyliis cf. ovum (Kent, 1881).
Zooids 30 x 50 \(\mu\)m.
Colonies of two or three zooids.
Attachment: on the gnathopods.

Epistylis cf. ovalis Biegel, 1954
(Fig. 7)

Material: Gein, 14.VI.1973, on _G. pulex_.

The zooid resembles very much that of the above-mentioned _E. ovalis_. However, the macronucleus is situated in the upper part of the zooid and the stalk is striped lengthwise.

Zooids 25 x 45 \(\mu\)m.
Stalk 10 x 15 \(\mu\)m.
Attachment: on the third pereiopod.

Epistylis cf. ovum (Kent, 1881)
(Fig. 8)

Epistylis ovum; Stiller, 1941: 354.

Material: Naardermeer, 19.1.1973, on _G. tigrinus_.

The zooid is vase-like. The discus is convex. The peristome contracts snout-like. The contractile vacuole lies somewhat above the middle of the zooid. The narrow vestibulum continues to about half the length of the zooid. The nucleus is slightly bent, lying horizontally in the centre. There are some scattered food vacuoles. The stalk is thick, wrinkled, with a vague lengthwise striation.

Zooids 20 x 40 \(\mu\)m.
One colony of 8 zooids.
Attachment: between the spines of the tip of the third uropod.

Epistylis salina Stiller, 1941
(Fig. 9)

Epistylis salina Stiller, 1941: 385.

Material: Hierden, 6.VIII.1973, on _G. pulex_.

Zooids 25 x 55 \(\mu\)m.
Stalk 10 x 50 \(\mu\)m.
Many small colonies of 2—9 zooids.
Attachment: on first and second antennae, coxal plates and gills.

Rhabdostyla sp.
(Fig. 10)

Material: Gein, 23.VII.1973, on _G. tigrinus_.

The zooid is broad, nearly rectangular. The peristome is rather thick, not clearly separated. The discus is slightly wrinkled. The contractile vacuole is situated near the rim of the peristome. The rather narrow vestibulum continues into the lower half of the zooid. The ribbon-like macronucleus is slightly bent, situated in the underpart of the zooid. There are few food vacuoles. The pellicle has a very fine transverse striation.

Zooids 15 x 25 \(\mu\)m.
Stalk 10 x 40 \(\mu\)m.
Three animals.
Attachment: between the spines at the tip of the telson.

Family VORTELLIDAE

Carchesium gammari Precht, 1935
(Fig. 11)

Carchesium gammari Precht, 1935: 442.

Material: Hierden, 26.IV.1973, on _G. pulex_.

Zooids 40 x 70 \(\mu\)m.
Five colonies of 2, 3, 4 and 5 zooids.
Attachment: on the rims of the gills.

Carchesium duplicatum Precht, 1935
(Fig. 12)

Zooids 30 x 50 \(\mu\)m.
Length of the colony 150 \(\mu\)m.
Colonies up to about 50 zooids.
Attachment: on the rims of the gills of the pereiopods.

Carchesium jaerae Precht, 1935
(Fig. 13)

Material: Gein, 23.VII.1973, on _G. tigrinus_.

Zooids 35 x 55 \(\mu\)m.
Nine colonies of 2, 3 and 5 zooids.
Attachment: on the rims of the gills.
Fig. 9. *Epistyris salina* Stiller, 1941.
Fig. 10. *Rhabdostyla* sp.
Fig. 11. *Carchesium gammarui* Precht, 1935.
Fig. 12. *Carchesium duplicatum* Precht, 1935.
Fig. 13. *Carchesium jaerae* Precht, 1935.
Fig. 14. *Vorticella longifilum* Kent, 1881.
Fig. 15. *Vorticella microstoma* Ehrenberg, 1830.
Fig. 16. *Vorticella aequilata* Kahl, 1935.
Fig. 17. *Vorticella octava* Stokes, 1885.
Vorticella longifilum Kent, 1881
(Fig. 14)

Zooids 30 x 65 μm.
Length of the stalk 250 μm.
Attachment: between the spines on the telson.

Vorticella microstoma Ehrenberg, 1830
(Fig. 15)

Zooids 45 x 65 μm.
Length of the stalk 40—80 μm.
Four animals.
Attachment: between coxal plate and leg.

Vorticella aequilata Kahl, 1935
(Fig. 16)

Zooids 25 x 45 μm.
Length of the stalk 250 μm.
Eleven animals.
Attachment: between the spines on the telson.

Vorticella octava Stokes, 1885
(Fig. 17)

Vorticella octava; Stiller, 1971: 141.
Zooids 35 x 50 μm.
Length of the stalk 150 μm.
Six animals.
Attachment: between the spines on the telson.

Vorticella rotunda Nenniger, 1948
(Fig. 18)

Vorticella rotunda; Stiller, 1971: 147.
Zooids 30 x 50 μm.
Length of the stalk 80 μm.
Attachment: on a pereiopod.

Vorticella campanula Ehrenberg, 1831
(Fig. 19)

Vorticella campanula; Stiller, 1941: 414.
Zooids 40 x 55 μm.
Stalk 20 x 120 μm.
Many animals.
Attachment: on the pereiopods.

Vorticella convallaria (Linnaeus, 1758)
(Fig. 20)

Vorticella convallaria; Stiller, 1971: 133.
Material: Kromme Mijdrecht, 12.XII.1973, on G. tigrinus.
Zooids (30—60) x (50—80) μm.
Length of the stalk 300 μm.
In groups of 7 or 8 animals.
Attachment: on back and mouthparts.

Family Zoothamnidae

Haplocaulus distinguendis Sommer, 1951
(Fig. 21)

Haplocaulus distinguendis; Stiller, 1971: 162.
Zooids 35 x 70 μm.
In groups of 7 to 10 animals.
Attachment: on all pereiopods and gills.

Haplocaulus kahlii (Stiller, 1931)
(Fig. 22)

Haplocaulus kahlii; Sommer, 1951: 361.
Zooids 25 x 40 μm.
Stalk short and wrinkled.
Three animals.
Attachment: on the rim of a gill.

? Haplocaulus sp.
(Fig. 23)

The zooid is oblong, narrowed near the stalk. The peristome is rather thick. The discus is slightly wrinkled. The contractile vacuole is
Fig. 18. *Vorticella rotunda* Nenniger, 1948.
Fig. 19. *Vorticella campanula* Ehrenberg, 1831.
Fig. 20. *Vorticella convallaria* (Linnaeus, 1758).
Fig. 21. *Haplocaulus distinguendis* Sommer, 1951.
Fig. 22. *Haplocaulus kahlisi* (Stiller, 1931).
Fig. 23. *Haplocaulus sp.*
Fig. 24. *Intransylum variabilis* Stiller, 1935.
situated below the rim of the peristome. The vestibulum is widened in the middle and continues nearly horizontally to one third of the length of the zooid. Some large food vacuoles are present. The pellicle shows a fine transverse striation. At contraction the underpart of the zooid plies over the very short stalk. Therefore the way of contraction is undiscernible, and genus determination not possible.

Zooids 45 x 75 \(\mu \)m.
Stalk 8 x 10 \(\mu \)m.
One animal.
Attachment: on the first pereiopod.

Intranstylum variabilis Stiller, 1935
(Fig. 24)

Intranstylum variabilis; Stiller, 1971: 171.
Material: Spaarnwoude, 16.X.1973, on *G. tigrinus*.

Zooids 45 x 85 \(\mu \)m.
Some colonies of 2 and 3 zooids.
Attachment: on coxal plates.

Intranstylum elegans Nenniger, 1948
(Fig. 25)

Material: Waterland, 12.1.1973, on *G. tigrinus*.

Zooids 50 x 85 \(\mu \)m.
Length of the stalk 80 \(\mu \)m.
One solitary and one colony of 3 zooids.
Attachment: on the pereiopods.

Intranstylum barendrechtii n. sp.
(Fig. 26)

Material: Gein, 14.VI.1973, on *G. tigrinus*.

The zooid is bell-shaped. The sausage-shaped peristome is broad and somewhat overhanging. The contractile vacuole is situated slightly above the middle of the zooid. The vestibulum opens widely and continues to nearly the full length of the zooid. Some large food vacuoles are present. The pellicle has a coarse transverse striation. The stalk is relatively long, the myoneme very short.

This species is a typical representative of its genus, as described by Nenniger (1948), but differs greatly from the other species in the stalk, which is far longer than those of the other species, and in the strikingly short myoneme.

The present species is dedicated to our director and colleague Prof. Dr. G. Barendrecht.

Zooids 50 x 80 \(\mu \)m.
Length of the stalk 250 \(\mu \)m.
Length of the myoneme 40 \(\mu \)m.
Three solitaries and one colony of 4 zooids.
Attachment: on the back in front of the telson.

Pseudocarchesium amstelodamensis n. sp.
(Figs. 27, 28)

The zooid is vase-shaped and somewhat constricted near the peristome. The latter is thick and sausage-shaped. The umbilicate discus is wrinkled. The contractile vacuole is situated near the rim of the peristome. The vestibulum is widened in the middle. The macronucleus is C-shaped and situated in the centre of the zooid. Some scattered food vacuoles and refractive granules are present at the bottom of the zooid. The pellicle shows a coarse transverse striation. The stalk is thick and wrinkled, with a lengthwise striation. The stalk myoneme of the side branches is connected with the elastic fibres of the main stem.

This species resembles *P. ovatum* Sommer, 1951, but differs from the latter in the wrinkled discus and the very deep vestibulum.

The present species is dedicated to our University's city, at its 700th anniversary in 1975.

Zooids 35 x 50 \(\mu \)m.
Stalk 15 x 70 \(\mu \)m.
Colonies of 3—5 zooids.
Attachment: on the gills of the pereiopods.

Zoothamnium parasiticum Stein, 1859
(Fig. 29)

Material: Waterland, 14.XI.1972, on *G. tigrinus*.

Zooids 35 x 50 \(\mu \)m.
Three colonies of 2, 3 and 7 zooids.
Attachment: at the junction of gill and gnathopod.

Zoothamnium varians Stiller, 1933
(Fig. 30)

Zoothamnium varians; Stiller, 1971: 179.
Fig. 25. Intranstylum elegans Nenniger, 1948.
Fig. 26. Intranstylum barendrechtii n. sp.
Fig. 27. Pseudocarchesium amstelodamensis n. sp.
Fig. 28. Pseudocarchesium amstelodamensis n. sp.,
detail of branching.
Fig. 29. Zoothamnium parasiticum Stein, 1859.
Fig. 30. Zoothamnium varians Stiller, 1933.
Fig. 31. Zoothamnium sp. a.
Fig. 32. Zoothamnium oviforme Sommer, 1951.

Zooids 40 x 60 μm.
Stalk thin and short.
Many colonies of different numbers of zooids.
Attachment: between the spines on the telson.

Zoothamnium sp. a
(Fig. 31)

The zooid is vase-shaped. The peristome is more or less double. The discus is convex and slightly wrinkled. The contractile vacuole is situated at the level of the peristome, in the discus. The rather narrow vestibulum continues to about two-thirds of the length of the zooid. The C-shaped macronucleus is horizontally placed somewhat above the middle of the zooid. Many small food vacuoles are present in the lower part of the zooid. The pellicle shows a very fine transverse striation. The stalk is long and thin, the myoneme seems to be interrupted at several places.
Zooids 45 x 80 μm.
Four colonies of more than 100 zooids.
Attachment: on coxal plates.

Zoothamnium oviforme Sommer, 1951
(Fig. 32)

Zoothamnium oviforme; Biegel, 1954: 169.
Material: Waterland, 30.XI.1972, on G. tigrinus.

Zooids 30 x 45 μm.
One colony of many zooids.
Attachment: on the rim of the coxal plate of the first pereiopod.

Zoothamnium simplex Kent, 1881
(Fig. 33)

Zoothamnium simplex; Stiller, 1971: 188.

Zooids 40 x 85 μm.
Two colonies of 6 and 7 zooids.
Attachment: on the mouthparts.

Zoothamnium dudekemi Kahl, 1935
(Fig. 34)

Zooids 30 x 60 μm.
Many colonies of 8—30 zooids.
Attachment: on the pereiopods.

Zoothamnium rigidum Precht, 1935
(Fig. 35)

Zooids 40 x 75 μm.
Colonies up to 1.3 mm, with more than 100 zooids.
Attachment: on the pereiopods.

Zoothamnium sp. b
(Fig. 36)

Material: Hierden, 22.II.1973, on G. pulex.

The zooid is vase-shaped, slightly narrowed at the base. The sausage-shaped peristome is somewhat inclined. The umbilicate discus lies high in the discus. The rather wide vestibulum continues into the lower half of the zooid. The sausage-shaped, slightly bent macronucleus is situated nearly vertically near the middle of the zooid. Some large food vacuoles are present.
Zooids 40 x 65 μm.
Some small colonies of 2—4 zooids.
Attachment: on the pereiopods.

Zoothamnium kahlii Stiller, 1935, var. balatonicum
Stiller, 1935
(Fig. 37)

Zoothamnium kahlii var. balatonicum; Stiller, 1971: 190.

Zooids 50 x 100 μm.
Length of the colony up to 0.75 mm.
Nine colonies of about 25 zooids.
Attachment: on the back.
Fig. 33. Zoothamnium simplex Kent, 1881.
Fig. 34. Zoothamnium dudekemi Kahl, 1935.
Fig. 35. Zoothamnium rigidum Precht, 1935.
Fig. 36. Zoothamnium sp. b.
Fig. 37. Zoothamnium kahlii Stiller, 1935,
var. balatonicum Stiller, 1935.
Fig. 38. Zoothamnium carinogammari Stiller, 1971
Fig. 39. Zoothamnium duplicatum Kahl, 1933.
Fig. 40. Zoothamnium mucedo Entz sen., 1884.
Zoothamnium carinogammari Stiller, 1971 (Fig. 38)

Material: Waterland, 7.III.1973, on *G. tigrinus*.
Zooids 40 x 65 μm.
Length of the colony up to 150 μm.
Three colonies of 3, 12 and 35 zooids.
Attachment: on the coxal plates.

Zoothamnium duplicatum Kahl, 1933 (Fig. 39)

Zoothamnium duplicatum; Precht, 1935: 444.
Material: Hierden, 26.IV.1973, on *G. pulex*.
Zooids 45 x 85 μm.
Many great colonies of 100—400 zooids.
Attachment: on gnathopods, pereiopods, epimeres and back.

Zoothamnium mucedo Entz sen., 1884 (Fig. 40)

Zooids 35 x 85 μm.
Two colonies of 4 and 11 zooids.
Attachment: on the mouthparts.

Zoothamnium affine Stein, 1859 (Fig. 41)

Material: Gein, 23.VII.1973, on *G. tigrinus*.
Zooids 25 x 60 μm.
Three colonies of 8 and 9 zooids.
Attachment: on the first maxilla.

Zoothamnium ramosissimum Sommer, 1951 (Fig. 42)

Zoothamnium ramosissimum Sommer, 1951: 399.
Zooids 45 x 80 μm.
Length of the colony 250 μm.

Several colonies of 2—15 zooids.
Attachment: on back and coxal plates.

Zoothamnium minimum Stiller, 1935, var. major
Stiller, 1935 (Fig. 43)

Zoothamnium minimum var. major; Stiller, 1971: 182.
Material: Bullewijk, 19.VI.1973, on *G. tigrinus*.
Zooids 25 x 40 μm.
Stalk 15 x 50 μm.
Eight colonies of 2, 3, 4 and 5 zooids.
Attachment: on the rim of the gills.

Zoothamnium hyalinum Stiller, 1971 (Fig. 44)

Zoothamnium hyalinum Stiller, 1971: 183.
Material: Hierden, 6.VIII.1973, on *G. pulex*.
Zooids 35 x 60 μm.
Stalk 15 x 75 μm.
Three colonies of 3, 4 and 5 zooids.
Attachment: on the pleopods.

Order SUCTORIDA

Family ACINETIDAE

Acineta foetida Maupas, 1881 (Fig. 45)

Acineta foetida; Kahl, 1934: 209.
Material: Hierden, 26.IV.1973, on *G. pulex*.
Zooid 35 x 40 μm.
Length of the stalk 35 μm.
One specimen.
Attachment: between the spines on the telson.

Acineta sp.
(Fig. 46)

Material: Kromme Mijdrecht, 12.XII.1973, on *G. tigrinus*.
The zooid is oblong, tapering at the base. The contractile vacuole lies high in the zooid. The elliptical macronucleus is situated in the middle.
Fig. 41. *Zoanthamnium affine* Stein, 1859.
Fig. 42. *Zoanthamnium ramosissimum* Sommer, 1951.
Fig. 43. *Zoanthamnium minimum* Stiller, 1935,
 var. *major* Stiller, 1935.
Fig. 44. *Zoanthamnium hyalinum* Stiller, 1971.
of the zooid. Many refractive granula are present. The stalk is rather long.
Zooid 25 x 45 μm.
Length of the stalk 120 μm.
One specimen.
Attachment: on the back in front of the telson.

Family DENDROCOMETIDAE

Dendrocometes paradoxus Stein, 1851
(Fig. 47)
Dendrocometes paradoxus; Doflein & Reichenow, 1953: 1159.

Body 60 x 80 μm.
Animal with tentacles 130 x 180 μm.
Per gill 1—10 animals.
Attachment: on and near the rims of the gills.

Order CHONOTRICHIDA

Family SPIROCHONIIDAE

Spirochona gemmipara Stein, 1851
(Fig. 48)

Animals 30 x 130 μm.
Per gill groups of 3—25 animals.
Attachment: on the rims of the gills.

Biological part

1. **SEASONAL VARIATION**

During autumn there is an increase in number of epizoic ciliates. This is most probably related to dying and rotting of plant material. The subsequent rise of mineralizing bacteria increases the available food for the ciliates (see also Hamman, 1952). In winter the number of epibionts strongly declines, although they never disappear completely. On each *Gammarus* some small colonies or solitary ciliates were always to be found.

Spring shows a new increase in numbers. The colonies present grow in length as well as in number of zooids. During summer there is another decrease in the settlement of sedentary ciliates. In this respect our epizoic ciliates follow the general pattern as described for peritrichous ciliates.

The genus most commonly found on *Gammarus* is *Zothonnium*. Nearly all *Gammarus* proved to bear at least some colonies of that genus. Especially in autumn those colonies reached considerable dimensions, visible to the naked eye.

Epistylis was likewise to be found during all seasons, although in smaller numbers, and mostly in smaller colonies.

Vorticella occurred in great numbers during spring and summer only. The other genera appear scattered and in small numbers during the whole year.

2. **DISTRIBUTION OF THE CILIATES OVER THE BODY OF THE HOST**

a. *Zothonnium* settles everywhere on the body, including quickly moving parts like pereiopods and gnathopods. Only large colonies of more than 200 zooids are bound to the less moving parts on the outside body surface, as coxal plates, epimeres and the back.

b. *Epistylis* grows predominantly on these outside surfaces or on moving parts with a limited movement, like gills and mouthparts. On pereiopods *Epistylis* occurs only in small colonies, sheltered between spines or setae.

c. *Vorticella* is found on the “outer” parts of the body, like telson, pereiopods and antennae.

d. *Carchesium, Haplocaulus, Intransystylum* and *Pseudocardescrichium* are found on more proximal parts like gills, base of legs, gnathopods, coxal plates and epimeres. They also occur on the telson.

e. *Spirochona* and *Dendrocometes* occur exclusively on the gills.

f. The very few Acinetidae were found near the telson.

There is slight evidence that the acontractile genus *Epistylis* prefers more quiet and sheltered localities on the host. The genera like *Zothonnium* and *Vorticella*, with a contractile stalk, on the contrary, settle on more exposed and moving parts. This may be related to the possibility of the contractile genera of pulling aside, thus reacting to changes in their surroundings and avoiding collisions with sweeping body parts. The relative long stalk of *Vorticella* renders this genus unfit for small spaces. This genus occurs predominantly on the outside of the host. Most genera occur also on the telson.

The fact that all ciliate species, with the only exception of *Haplocaulus distinguendus*, occur on one of the *Gammarus* species, does not necessarily lead to the conclusion that all these ciliates are host-specific. Therefore the eco-
logical properties of the waters from which the samples are taken, differ too much.

Under unfavorable circumstances zooids detach themselves from their stalks and escape. In *Vorticella*, *Carchesium* and *Intranstylum* mostly an aboral band of locomotory cilia was formed, giving rise to a true telotroch. In *Epistylis* and *Zoothamnium* the unchanged zooids detach themselves and swim about. This process leads to dismantling of colonies and change in species composition. This may occur especially during transport and storage in the laboratory. However, one sample of *Gammarus*, after having been investigated partially, was kept at 8°C, without food supply or aeration for one month and a half. There appeared to be no significant change in species composition. Nevertheless, samples were always investigated as soon as possible after collection, within a few days.

3. SUCCESSION OF CILIATE GENERA AFTER ECDYSIS

Exact data on the age of the exoskeleton of the host are wanting. We found clean, light coloured gammarids as well as darker ones, covered with detritus and often small filamentous algae. Supposedly the first ones moulted shortly before. On these, often small *Epistylis* colonies are found, while *Zoothamnium* is quite absent. On “older” animals, *Zoothamnium* starts growing in small colonies too, gradually supplanting *Epistylis*. On the apparently oldest exoskeletons only large *Zoothamnium* colonies are present, while *Epistylis* is lacking. Probably this is due to food- and/or space competition. As the other genera were found in very small numbers, no succession could be demonstrated for them.

LITERATURE

Received: 1 June 1976