A NEW HYPOGEAN CYATHURA FROM NEW CALEDONIA
(CRUSTACEA, ISOPODA, ANTHURIDEA)

Johann Wolfgang WAGÈLE

ABSTRACT

Cyathura numeae n.sp. from New Caledonia is the sixth blind species of the genus Cyathura Norman & Stebbing, 1886, found in hypogean habitats. The new species lives in the interstitia of coastal sand or gravel, like C. milloti Chappuis et al., 1956, from Réunion. A close relationship to the other species is not obvious; the specific shape of the appendix masculina can be derived from the carinata-type. In contrast to the slender species, C. curassavica Stork, 1940, and C. specus Bowman, 1965, in the new species the adaptations to hypogean life are limited to the small body size and reduction of the eyes.

INTRODUCTION

Faunal samples from coastal, interstitial waters collected by Prof. H.K. Schminke (Oldenburg) in New Caledonia, contained unexpectedly a new species of the genus Cyathura. Hypogean species of this genus were only known from the Caribbean and Central American area (C. curassavica Stork, 1940, C. specus Bowman, 1965, C. sbordonii Argano, 1971), from Réunion (C. milloti Chappuis et al., 1956), and from Borneo (C. chapmani Andreev, 1982).

DESCRIPTION

Cyathura numeae n.sp.

Material.-

1) 20 specimens; manca stages 1.3-1.6 mm; postmanca stages 2.0 mm; non-reproductive adults 2.1-3.0 mm; males 2.1-2.7 mm; females 2.5-2.7 mm. Locality: Nouméa, beach of Anse Vata; coarse coral sand with fragments of mollusc shells from wave-line; salinity not known; August 28, 1967, leg. H.K. Schminke. 5 paratypes (2 females, 2 non-reproductive adults, 1 manca) deposited in the Zoologisch Museum Amsterdam (ZMA Is. 105.186).
Fig. 1. *Cyathura numae* n.sp.; for symbols see list of abbreviations. Holotype male (M) in dorsal and lateral view, ovigerous female (F) in lateral view.
2) A damaged specimen from mouth of Fausse Yaté; beach with fine gravel, groundwater at a depth of 50 cm, 20.7°C; September 9, 1967, leg. H.K. Schminke.

Holotype: male specimen, 2.7 mm, from first locality; Zoologisches Museum, Kiel, ZMK Cr. 2315.

Abbreviations used in text and figure captions.-A1, 2: antenna 1, 2; Hy: hypopharynx (lower lip); Md: mandible; MdP: palp of mandible; Mx: first maxilla; Mxp: maxilliped; P1-7: pereopods 1-7; Plp: pleopods 1-5; Tel: telson; Urp: uropod; (F): ovigerous female; (M): male; (pre-M): premale.

Male (holotype).-
Blind species without chromatophores, about 8 times longer than wide. Cephalothorax wider than long. Relative dorsal length of pereonites: C1>2<3 = 4<5<6>7. Pleonites 1-5 fused, together shorter than pereonite 7. Sixth pleonite fused with Tel, with middorsal slit (Fig. 1: (M)).

Flagellum of Al, 4 segmented; first article with 1 feather-like bristle, second article with tuft of aesthetascs, last article with 3 aesthetascs and 5 setae. Flagellum of A2 short, of 2 articles, with distal tuft of simple setae; peduncle as in fig. 2. Mdp 3 segmented; second article longest, last article shorter than first, apex bearing 4 serrated setae. Pars incisiva of Md with 3 notches, lamina dentata with 5 serrations, pars molaris short, acutely pointed. Apex of lateral endite of Mx curved medially; besides the strong distal tooth depending on perspective 6 or 7 smaller teeth are visible. Medial endite of Mx short, with 1 apical seta. Hy as in fig. 2. Mxp with 2 segmented palp; basipodite without endite, but with 1 small dorsal protuberance; first palp article shorter than basipodite; second article shorter than wide, with 5 setae inserted on medial border. P1 stout, subchelate; propodus broad, palm convex, with 4 short setae and fringed with finely serrated scales; distally 2 further setae. P2 not subchelate, carpus triangular in lateral view, propodus long oval with straight palm; P3 similar to P2. P4 to 7 similar, P7 longest, carpi short trapezoid, propodi elongate cylindrical with slightly concave palm. Plp 1 with tiny, reduced endopodite; exopodite operculiform, with 14 swimming setae. Exopodite of Plp 2 with 7 swimming setae, endopodite more slender, without setae. Appendix masculina very strong, surpassing branches of pleopod, with widened bifurcate apex (Fig. 3). Urp as long as Tel, endopodite somewhat longer than wide, sympodite twice as long as endopod; exopodite elongate oval, somewhat longer than sympodite, margin with some plumose setae. Tel narrowing caudally, apically rounded with medial notch, 3 pairs of distal setae; 2 statorcysts present (Fig. 4).

Premale.-
This stage corresponds to the male, but the flagellum of the A1 has no tuft of aesthetascs (Fig. 2: A1 (pre-M)); the formation of the appendix masculina is visible inside the endopodite of Plp 2 (Fig. 4: Plp 2 (pre-M)).

Ovigerous female.-
Shape and size of the body as in the male, pereonites of the marsupial region dorsoventrally flattened. Oostegites on pereonites 2, 3 and 4 (Fig. 1). Flagellum of Al of 3 articles; first article with 1 feather-like bristle, last article very short, with 3 aesthetascs and 4 setae. A2, mouthparts, pereopods and tailfan as in the male. Exopodite of Plp 1 with 16 swimming setae, endopodite reduced. Exopodite of Plp 2 with 6 swimming setae, endopodite with 1 distal seta.

Etymology.-
The species was named after the locus typicus (Nouméa).

Remarks on the Antennal Polymorphism

The polymorphism of the flagellum of Al, discovered by Cléret (1959) in Cyathura carinata, is caused by 2 molts of the maturing male. This differentiation can be observed in most Anthuridea. Young and non-reproductive animals of either sex have fundamentally the same morphology. Mature females can be identified by the ovary, the oostegites and the genital papillae on the fifth pereonite. Mature males usually have longer flagella in Al, with tufts of aesthetascs, and an appendix masculina on Plp 2, genital papillae on pereonite 7 and
Fig. 2. Cyathura numeae n.sp.; for symbols see list of abbreviations; (pre-M): premale (non-reproductive male). Inset: flagellum of A1 of Cyathura carinata (Kröyer) (modified from Wägele, 1979). Most aesthetascs of A1 (M) are omitted.
often additional features, such as the dense setation of the pleuræ 1 and 2 and setae on the propodus of PI (in Cyathura carinata, see Jazdzewski, 1969).

Between the mature male and the non-reproductive adult an intermediate 'premale' stage is interposed, resembling the male, but having no tufts of aesthetascs and no differentiated appendix masculina on the endopodite of Plp 2.

The protogynic hermaphroditism of C. carinata was discovered in connection with the polymorphism of the Al (Fig. 2) (Legrand & Juchault, 1963; Jazdzewski, 1969; Wägele, 1979). In C. numeae n.sp. no indication of such hermaphroditism was found; a study of the population structure would be necessary. The size of the specimens in the samples studied seems to indicate a normal bisexual life cycle.

An unusual feature of Al of some species of Cyathura (C. sbordonii, C. rudloesi) is the occurrence of aesthetascs on the third peduncular article of the male. This, probably erroneous, observation is caused by the following phenomenon: aesthetascs always occur on some of the flagellae of Al in isopods as well as in other crustaceans (Ghiradella et al., 1968; Schultz, 1969; Schmalfuss, 1974); these chemosensoric organs are very numerous in male anthurids. Tufts of aesthetascs of male Anthuridea usually occur on the second and the following articles of the flagellum. Preserved animals often have a retracted flagellum, the first and second segments being telescoped into one another and into the third peduncular article (Fig. 2: Al (M)). Observation of live anthurids shows that during the retraction of the flagellum the tuft of aesthetascs is laid together, but otherwise can be opened like an umbrella. Studying preserved specimens one can have the impression that the aesthetascs rise from the peduncle. A flagellum of this type, which is not retracted, can be seen in the drawings of C. specus (Bowman, 1965).

DISCUSSION

The reduction of the eyes, a characteristic feature of C. numeae n.sp., also occurs in C. milloti, from fresh or brackish waters in the littoral zone, and the limnic species C. sbordonii, C. specus, C. curassavica and the recently discovered C. chapmani Andreev, 1982. C. specus and C. curassavica can easily be distinguished by the slender form of the body, pereopods and exopodites of the Urp. C. numeae n.sp. differs from C. milloti in the following features: appendix masculina without coiled lobe (Fig. 5), MdP with only 4 distal setae (instead of 7), propodus of PI not sexually dimorphic, endopodite of Plp shorter, lateral margins of Tel not parallel. The setation of the Tel also is clearly different. C. chapmani resembles in many features C. milloti. C. sbordonii differs from C. numeae n.sp. in the following features: appendix masculina with coiled lobe (Fig. 5), MdP with 13 distal setae, exopodite of Urp shorter and narrower.

The new species is adapted to life in interstitial spaces by the reduction of the body size and the absence of the eyes, but the general shape of body, pereopods and tailfan do not differ so much from the morphology of the larger species of Cyathura as it does in the limnic species C. specus and C. curassavica.

Comparing the descriptions of all known species of Cyathura some interesting features of the morphology of some species can be found (e.g. form of PI of C. eremophila and blind species; appendix masculina of C. burbancki, C. carinata, C. higensia, C. polita), which give an idea of possible relationships between groups of species. But the inaccuracy or incompleteness of many descriptions (e.g. C. crucis; C. indica) prevents an analysis. Often important features are not known (e.g. exact shape and setation of the tailfan of C. estuaria, C. kikuchii, C. pusilla, C. rudloesi, etc.). In this situation it is difficult to study the phylogeny of the species.

No cyathurans are known from the Southwest Pacific, where C. numeae n.sp. was found, though some species occur on the Indomalaisian, Chinese and Japanese coasts (C. indica, C. stenopoda; 3 species from Japan; 'C. carinata' from China: Tattersall, 1921; C. chapmani from Borneo). Probably more new species are to be discovered in the upper littoral and in estuaries of the Southwest Pacific. The origin of C. numeae n.sp. is an enigma.
Fig. 3. Cyathura mumeae n.sp.; P1 drawn less enlarged than P2-6.
To support Burbank's theory (1967) of the Tethys-origin of recent species of Cyathura more exact studies on morphology and distribution are necessary. It is imaginable that the marine as well as the few limnic species evolved from brackish water populations, which have a large distribution. Recent species living in estuaries, brackish waters and on the sea floor near the mouth of rivers have an appendix of the carinata-type (C. carinata, C. burbancki, C. higoensis, C. kikuchi, C. muro-miensis, C. polita); they probably occur world-wide (from Europe to Japan, including Africa; Atlantic coast of North America). The different types of appendices masculinae found in hypogean species (Fig. 5) could be derived from the bifurcate carinata-type. The question is, whether the limnic species evolved several times independently or if they have a common ancestor. In the latter case the long lateral lobes of the apex of the appendix masculina in C. milloti (Réunion) and C. sbordonii (Mexico) (species with coiled lobe), and of C. chapmani (Borneo) would be homologous structures. Another homology could be the reduction of the medial tooth on the palm of Pl. Among the blind species the tooth only occurs in the male of C. milloti. These features can be used to discuss a close relationship of these species. The reductions of the endopodite of Plpl and the exopodite of Urp could be analogies, which evolved of functional necessities. Not all of the blind species show these features: the endopodite of Plpl has nearly normal size in C. speciosa and C. chapmani, the endopod of the Urp is oval and not very slender in C. numeae n.sp. and C. sbordonii. Similar analogies can also be found in hypogean Paranthuri-

Fig. 4. Cyathura numeae n.sp.; swimming setae of pleopods shown as simple setae.
Fig. 5. Different types of apices of the appendix masculina (copulatory organ) in the genus Cyathura.
It would be premature to use these few features alone for far-reaching conclusions.

ACKNOWLEDGEMENT

My sincere thanks are due to Prof. Dr. H.K. Schminke of the University of Oldenburg, who collected the material described herein, for making the anthurids available to me for study.

REFERENCES

ANDREEV, S., 1982. Une nouvelle Cyathura cavernicole de Sarawak - Kalimantan du Nord (Iso-

ARGANO, R., 1971. Cyathura sbordonii, nuova spec-
cie cavernicola del Messico sudorientale. Diagnosi preliminare. - Fragm. ent., 7: 303-
305.


BURBANCK, W.D., 1967. Evolutionary and ecologi-
cal implications of the zoogeography, physio-
logy and morphology of Cyathura. - In: G.H.
LAUFF (ed.). Estuaries, Publs Am. Ass. Advnt
Sci., 83: 564-573.

CHAPPUIS, P.A., DELAMARE-DEBOUTTEVILLE, C. &
PAULIAN, R., 1956. Crustacés des eaux souter-
raines littorales d'une résurgence d'eau douce à la Réunion. - Mém. Inst. scient, Mad-
gascar, (A) 11: 51-78.

CLERET, J.J., 1959. Polytypisme antennulaire et rapport numérique des sexes chez Cyathura
carinata. - C.R. Acad. Sci. Paris, 248: 2508-
2510.

CHIRADELLA, H.T., CASE, J.F. & CRONSHAW, J.,
1968. Structure of aesthetascs in selected marine and terrestrial decapods: chemorecep-
tor morphology and environment. - Ann. Zool.,
8: 603-621.

JAJDZEWSKI, K., 1969. Biology of two hermaphro-
ditic crustaceans, Cyathura carinata (Kröyer) (Isopoda) and Heterotanais orsete-
di (Kröyer) (Tanaidacea) in waters of the Polish Baltic Sea. - Zoologica Pol., 19: 5-
25.

KENSLEY, B., 1980. Anthuridean Isopod Crusta-
ceans from the International Indian Ocean
Expedition, 1960-1965, in the Smithsonian
Collections. - Smithsonian Contr. Zool., 304:
1-37.

evidence d'un hermaphroditisme protogynique
fonctionnel chez l'isopode anthuride Cyathu-
ra carinata (Kröyer) et étude de mécanisme

SCHMALFUSS, T. 1974. Skelett und Extremitätenmusku-
latur des Isopoden - Cephalothorax. - Z.

SCHULTZ, G.A., 1969. How to know the marine
isopod crustacea: 1-359 (W.C. Brown Co.,
Dubuque).

STORK, H.A., 1940. A new Fresh-Water Isopod
from Curacao. - Stud. Fauna Curacao, 2: 147-
150.

TATTERSTALL, W.M., 1921. Zoological results of
a tour in the far East, pt. 7. Mysidacea,
Tanaidacea and Isopoda. - Mem. Asiat.

WAGELE, J.W., 1979. Der Fortpflanzungszyklus
von Cyathura carinata (Isopoda, Anthuridea)
im Nord-Ostsee-Kanal. - Helgoländer wiss.

----- (in press). The hypogean Paranthuridae
Cruregens Chilton and Curassanthura Kensley
(Crustacea, Isopoda), with remarks on their
morphology and adaptations. - Bijdr. Dierk.,
52 (1).

Dr. J.W. Wägele,
Fachbereich 7,
Universität Oldenburg,
Pb. 2503,
D-2900 Oldenburg,
B.R.D.

received : 7.1.1982.