STUDIES ON THE FAUNA OF CURAÇAO AND OTHER CARIBBEAN ISLANDS: No. 180.

THE DEEP-WATER SCLERAGTINIA OF THE GARIBBEAN SEA AND ADJACENT WATERS

by
STEPHEN D. GAIRNS
(University of Miami, Rosenstiel School of Marine and Atmospheric Science, Miami)
Pages Plates
Introduction 5
Historical resume of the tropical Western
Atlantic ahermatypic Scleractinia 6
Acknowledgments 8
Material and Methods 9
Station List 12
Species account
Pocilloporidae
Madracis 26
1 - myriaster (Milne Edwards \& Haime) 26
I 1-2, 4-5
Fungiidae30
2 - pusillus (Pourtalès), new comb. 30
3 - symmetricus (Pourtalès) 31
4 - crispus (Pourtalès) 34
5 - marenzelleri (Vaughan) 35
II 2-3, 5I 7-8; II 1; III 1
I 3, 6; II 4, 7II 8-9; III 3, 8
Micrabaciidae
Leptopenus. 37
6 - discus Moseley 37III 4-7Oculinidae
Madrepora 39
7 - oculata Linnaeus 39
8 - carolina (Pourtalès) 42 IV 1-4III 2; IV 5; V 1-3
Anthemiphylliidae
Anthemiphyllia 44
9 - patera Pourtalès 44
V 5-7
Caryophylliidae
Caryophyllia 45
10 - berteriana Duchassaing 47
11 - cornuformis Pourtalès 49
12 - antillarum Pourtalès 52
13 - polygona Pourtalès 53
14 - paucipalata Moseley. 55
15 - ambrosia caribbeana, n. subsp. 56
16 - barbadensis, n. sp. 60
17 - corrugata, n. sp. 61
18 - parvula, n. sp. 62
19 - zopyros, n. sp. 63
Concentrotheca, n. g 64
20 - laevigata (Pourtalès), n. comb 65
Cyathoceras Moseley. 66
21 - cf. cornu Moseley 67
22 - squiresi, n. sp. 68
Labyrinthocyathus, n. g. 70
23 - langae, n. sp. 71
24 - facetus, n. sp 72
Oxysmilia Duchassaing 73
25 - rotundifolia (Milne Edwards \& Haime) 73
Trochocyathus Milne Edwards \& Haime 76
26 - rawsonii Pourtalès 77
27 - fossulus, n. sp. 80
28 - fasciatus, n. sp. 81
Tethocyathus Kühn 83
29 - cylindraceus (Pourtalès) 83
30 - vecurvatus (Pourtalès) 84
31 - variabilis, n. sp. 86
Paracyathus Milne Edwards \& Haime 88
32 - pulchellus (Philippi) 88
Deltocyathus Milne Edwards \& Haime 90
33 - agassizii Pourtalès 92
34 - calcar Pourtalès 93
35 - cf. italicus Michelotti 95
36 - eccentricus, n. sp. 98
37 - moseleyi, n. sp. 100
33 - pourtalesi, n. sp 101
Stephanocyathus Seguenza 103
39 - diadema (Moseley) 103
40 - paliferus Cairns. 105
41 - laevifundus Cairns 107
42 - coronatus (Pourtalès) 109
Trematotrochus T.-Woods 111
43 - corbicula (Pourtalès), n. comb. 112
Peponocyathus Gravier. 113
44 - folliculus (Pourtalès) 113
45 - stimpsonii (Pourtalès) 115
Desmophyllum Ehrenberg 117
46 - cristagalli Milne Edwards \& Haime 117
47 - striatum, n. sp 120
Thalamophyllia Duchassaing 121
48 - riisei (Duchassaing \& Michelotti) 121
49 - gombergi, n. sp. 123
Lophelia Milne Edwards \& Haime 124
50 - prolifera (Pallas) 125
Anomocora Studer 127
51 - fecunda (Pourtalès) 127
Coenosmilia Pourtalès 130
52 - arbuscula Pourtalès 130
Dasmosmilia Pourtales 132
53 - lymani (Pourtalès) 132
54 - variegata (Pourtalès) 134
Solenosmilia Duncan 136
55 - variabilis Duncan. 136
Asterosmilia Duncan 138
56 - prolifera (Pourtalès). 138
57 - marchadi (Chevalier) 140
Rhizosmilia Cairns 142
58 - gerdae Cairns 142
Phacelocyathus, n. g. 144
59 - flos (Pourtalès), n. comb. 144

XX 5-6, 8-9
XXI 1, 3-4, 6; XL 10
XXII 1-4
XX 11; XXII 5-7
XXI 7-8; XXII 8
XXII 9; XXIII 2-3
XXIII 1, 4-6, 9-10
XXIII 7-8, 11
XXIV 1-5
XXIV 6-8
XXIV 9-11
XXV 1-3, 8-9
XXV 4-7, 10; XXVI 1
XXVI 2-4
XXVI 5-6, 8
XXVI 7, 9-10
XXVII 5-8
XXVII 1-4

Flabellidae

Flabellum Lesson 146
60 - moseleyi Pourtalès 146
61 - tragile Cairns. 148
62 - pavoninum atlanticum, n. subsp. . . 149
Placotrochides Alcock 151
63 - frusta, n. sp. 152
Javania Duncan 153
64 - cailleti (Duchassaing \& Michelotti) . 153
65 - pseudoalabastra Zibrowius 156
Polymyces, n. g. 157
66 - fragilis (Pourtalès), n. comb. 158
Gardineria Vaughan. 160
67 - paradoxa (Pourtalès) 160
68 - minor Wells 162

XXVIII 1-3
XXIX 1-3, 7
XXVIII 4-7
XXIX 4-6, 8-9
XXVIII 8-12; XXX 1, 4
XXX 9-10
XXX 2-3, 5-8
XXXI 4-6, 10
XXXI 7-9
Guyniidae
Guynia Duncan. 163
69 - annulata Duncan 164
Schizocyathus Pourtalès 165
70 - fissilis Pourtalès 166
Stenocyathus Pourtalès. 168
71 - vermiformis (Pourtalès) 168
Pourtalocyathus, n. g 170
72 - hispidus (Pourtalès), n. comb. 171
Dendrophylliidae
Balanophyllia Wood. 172
73 - cyathoides (Pourtalès) 172
74 - palifera Pourtalès. 174
75 - wellsi Cairns 175
76 - hadros, n. sp. 176
77 - bayeri, n. sp. 178
Dendrophyllia Blainville 179
78 - cornucopia Pourtales 179
79 - gaditana (Duncan) 181
80 - alternata Pourtalès 183
Enallopsammia Michelotti 184
81 - profunda (Pourtalès) 184
82 - rostrata (Pourtales) 186
Thecopsammia Pourtalès 188
83 - socialis Pourtales 188
Bathypsammia Marenzeller. 190
84 - tintinnabulum (Pourtalès) 190
85 - fallosocialis Squires 191
"Rhizopsammia" Verrill 193
86 - manuelensis Chevalier 193
Trochopsammia Pourtalès 194
87 - infundibulum Pourtalès 195
88 "Cylicia" inflata Pourtalès. 196
Zoogeography. 197
Patterns of distribution 197
Faunistic relationships in the Western Atlantic 198
Worldwide faunistic relationships 205
Bathymetry of tropical Western Atlan- tic Caribbean ahermatypes 208
Distributional Maps 1-60 209
References. 241
Plates I-XL 251-331
Taxonomic Index 333

XXXII 1-3

XXXII 4-7
XXXII 8-10; XXXIII 1-2
XXXIII 3-8

XXXIII 9-10; XXXIV 1-2
XXXIV 3-7
XXXIV 8-9; XXXV 1-3
XXXV 4-6
XXXV 7-9
XXXVI 1-4
XXXVI 5-10
XXXVII 1, 4, 8
XXXVII 5, 7
XXXVII 2, 3, 6
XXXVIII 7-9
XXXVIII 1-3; XXXIX 1
XXXVIII 4-6
XXXIX 2-6
XL 1-3
XL 6-7

INTRODUCTION

Ahermatypic Soleractinia are very common throughout the tropical western Atlantic, both in number of species and individuals. Of the Scleractinia known from the western Atlantic, there are over twice as many species of ahermatypes (species that do not have symbiotic zooxanthellae) as hermatypes (the shallow-water "reef corals," all of which have zooxanthellae). This paper is a review of all known species of deep-water Scleractinia that occur in the Caribbean Sea and adjacent waters, all of which are ahermatypic. The term "deep-water" is used here to designate depths equal to or greater than 200 meters; the 88 species treated all have bathymetric ranges that exceed 200 meters at their deepest points. Another 27 ahermatypic species are confined to the shallow water ($0-200 \mathrm{~m}$) of the Caribbean, and two species are known from off tropical Brazil but not the Caribbean, resulting in 117 species of tropical western Atlantic ahermatypes.

The only person to have comprehensively studied the deep-water western Atlantic corals was Pourtalès, whose last publication was in 1880. In the ensuing century, large collections have accumulated and Scleractinian classification has been greatly modified. This review is based primarily on the large collections at the University of Miami (RSMAS), USNM, and MCZ.

Historical Resume of the Tropical Western Atlantic Ahermatypic Scleractinia

The first ahermatypic coral to be described from the tropical western Atlantic was the shallow-water species Astrangia solitaria (Lesueur, 1817) from Guadeloupe. Later, in a series of six publications between 1848 and 1850, Milne Edwards \& Haime described nine new shallow-water ahermatypes found in the West Indies; however, eight of these are cosmopolitan or amphi-Atlantic in distribution. Only Oxysmilia rotundifolia, endemic to the western Atlantic, was indicated as questionably having been collected in the western Atlantic: "habite les mers d'Amérique?" (Milne Edwards \& Haime, 1848b: 247). Duchassaing (1850) reported on the first collection of deep-water corals from the Antilles and described one new species, Caryophyllia berteriana. Duchassaing \& Michelotti (1860, 1864) reported 14 ahermatypic species from the Antilles, including three valid new species, as well as several poorly described, still undetermined species (original specimens lost). Later, Duchassaing (1870) reported six species of ahermatypes from the Antilles, including new species, but his descriptions are poor and his type-material is lost, making that paper of little value.

Pourtalès was partially responsible for, and participated in, the earliest systematic deep-water dredging beginning in May, 1867. His primary biological interest in the dredged material was the ahermatypic corals. Between 1867 and 1880 he published six papers, in which he described 59 new species and 10 new genera. Of these, 47 species and eight genera are still considered valid. Pourtalès created a firm foundation for the study of western Atlantic ahermatypic corals upon which all subsequent revisions must be based. His material is deposited primarily at the MCZ and partially at the USNM, BM, and YPM. Only three out of 59 types have been lost. Arango y Molina (1877) listed 15 ahermatypes from off the coasts of Cuba, all based on Pourtalès's earlier papers.

Verrill published ten short papers (1870 to 1908) listing or describing ahermatypic corals collected by the Fish Hawk, Blake, Albatross, and other vessels mainly in the temperate northwest Atlantic. Three new species were described but all are junior syn-
onyms. In a short note, Packard (1873) reported a Deltocyathus (unknown species) from off Cape Cod at 263 meters. In 1877, the Swedish naturalist Lindström reported 17 ahermatypic species from the Virgin Islands and St.-Barthélemy, including two valid new species. Although Lindström made a number of errors in his paper, he did not deserve Duncan's (1883) overzealous criticism (e.g., see Discussion of P. stimpsonii).

Moseley published the preliminary study of the Challenger deepwater corals in 1876 but his final report did not appear until 1881. The Challenger made 14 successful dredge hauls in the western Atlantic, from which Moseley reported 15 deep-water species, five of these new. In the same year, Ridley (1881) described Madracis brueggemanni from off Brazil ($20^{\circ} 42^{\prime} \mathrm{S}, 37^{\circ} 27^{\prime} \mathrm{W}$) and the West Indies (60 m).

Vaughan (1901) reported on the corals collected by the Fish Hawk (1898 to 1899) around Puerto Rico. He treated nine ahermatypic corals including one new species, Cyathoceras portoricensis, a junior synonym of Oxysmilia rotundifolia. Vaughan (1906) later described two new species of Astrangia from off Brazil.

The next half-century produced only two short notes regarding western Atlantic ahermatypic corals. Boone (1928) reported two species collected by the Pawnee I off British Honduras, and Wells (1947a) described Coenocyathus bartschi (= Rhizosmilia maculata (Pourtalès, 1874)) from the West Indies. Interest was renewed in western Atlantic ahermatypic corals when SQuires (1959) reported on the deep-sea corals collected by the Lamont Geological Observatory R/V Vema. He reported 10 species, one of them new, from five western Atlantic stations off Bermuda, the Straits of Florida, and off Rio de Janeiro. Unfortunately, the identifications in this paper are unreliable.

In the last 15 years a number of papers have included lists or reports of single species from various western Atlantic localities: 15 ahermatypic corals were reported from off Barbados (LewIs, 1965); 14 from off Jamaica (Goreau \& Wells, 1967); four from off Cabo Frio, Brazil (Tommasi, 1970); 14 from off Brazil (Laborel, 1970); one from off Surinam (Best, 1970); three from Onslow Bay, North Carolina (Macintyre, 1970); four, including two new species, from
off Bermuda (Wells, 1972); 16 from off the Caribbean coast of Panama (Porter, 1972) ; and 15 from off Jamaica (Wells \& Lang, 1973). Wells (1973) described another two shallow-water ahermatypic species from off Jamaica and wrote a short paper on Guynia annulata (1973a). Keller (1975) reported 22 species of ahermatypic corals from 18 stations off the Cuban coasts and off the northern coast of the Yucatán Peninsula. Unfortunately, her identifications are not reliable and her specimens are poorly documented. Erhardt (1976) reported Stephanocyathus nobilis ($=$ S. paliferus) off Venezuela. Finally, in a series of five papers, Cairns (1977 to 1978) reviewed the western Atlantic species of several genera and listed the ahermatypic fauna of the Gulf of Mexico, resulting in the description of 10 new species.

Acknowledgments

I am very grateful to Dr. Frederick M. Bayer (USNM), who originally motivated me to study Scleractinia, provided help and encouragement throughout the study, and made it possible for me to study the collections at the USNM. Dr. Gilbert L. Voss (RSMAS) kindly made available to me the University of Miami collection, which forms the nucleus of this review. The collection of these specimens was supported by a grant from the National Geographic Society to the RSMAS, University of Miami, for investigation of the biology of the deep sea. I am especially indebted to Dr. H. Zibrowius (SME) for allowing me to examine his large collection of northeastern Atlantic ahermatypes, and for his advice and suggestions, which have made this a better paper. It is a pleasure to acknowledge Dr. John W. Wells (Cornell), who has answered my countless questions on coral systematics and provided me with encouragement throughout the study.

I would like to thank the following people who have generously extended to me the use of their collections and facilities or loaned me specimens used in this study: Drs. H. W. Levi and D. M. Opresko (MCZ), Dr. L. H. Pequegnat (TAMU), Dr. J. Lang (University of Texas at Austin), Dr. P. F. S. Cornelius (BM), Mr. W. C. Janp (FDNR), Drs. J. P. Chevalier and F. Debrenne (MNHNP), Dt. D. N. Gomberg (University of Hawaii), Dr. R. M. O'Clair (NMC), Dr. E. Kirsteuer (AMNH), Dr. W. D. Hartman (YPM), Dr. O. Elter (MIZS), Mr. G. Testa (MOM), Dr. R. Oleröd (NRM), Dr. R. C. Brusca (AhF), Dr. L. R. Tommasi (University of São Paulo), Dr. D. R. Moore (rSmas), Dr. P. Wagenaar Hummelinck (Rijksuniversiteit, Utrecht), Dr. A. Richie (The Australian Museum, Sydney), Dr. J. Hodge (The Macleay Museum, University of Sydney), Ms. D. Grimm (Dauphin Island Sea Lab, Alabama), Ms. E. Wilkens (Virginia Institute of Marine Science), and Mr. J. H. Thompson, Jr. (TAMU).

I am particularly grateful to my wife for her valuable editing, proofreading, and
typing of the manuscript and to my father, Edward J. Cairns, for his careful editing of the manuscript. The scanning electron photomicrographs were taken by the staff of the Scanning Electron Microscope Lab at the USNM. The distribution base map was drawn by Charles G. Messing.

Abstract

The greater part of this paper was presented to the Faculty of the University of Miami as a dissertation in partial fulfillment of the requirements for the degree of Doctor of Philosophy. I am grateful to my committee members: Drs. F. M. Bayer, G. L. Voss, D. R. Moore, J. W. Wells, and D. L. Taylor, for their critical review. This is a scientific contribution from the Rosenstiel School of Marine and Atmospheric Science, University of Miami.

Material and Methods

This study is based on the examination of 15,430 specimens divided into 2591 lots that were collected from 1160 stations throughout the Caribbean and adjacent waters. The largest single collection is a result of the trawling of the research vessels associated with the RSMAS, University of Miami, which, except for a reference collection, was transferred to the USNM. The USNM housed the second largest collection of western Atlantic ahermatypes, derived primarily from the collections of U.S. government research vessels and secondarily by gifts from other institutions. With the addition of the RSMAS collection, it is by far the largest depository of western Atlantic ahermatypes in the world.

Other major collections examined include the historically important Pourtalès collection and Cuban Atlantis material at the MCZ, and a large collection of Gulf of Mexico specimens from TAMU. Other sources of specimens, in decreasing order of size, are from: the University of Texas at Austin, through J. Lang (Eastward, Nekton); SME, through H. Zibrowius (Calypso, Akaroa, WH); NMC (Hudson, Pocock); BLM material of Texas, Alabama, Florida, and Virginia; FDNR, through W. JaAP (Hourglass); University of São Paulo, through L. Tommasi (Wladimir Besnard); miscellaneous lots at the YPM and BM (Rosaura, Blake); and several Hummelinck stations. A very large collection of eastern Atlantic ahermatypes was also examined at the SME.

The classification used is that of Wells (1956), with some modi-
fications introduced by Chevalier (1961) and Zibrowius (1974c). The terminology used in the species accounts is from Wells (1956), Chevalier (1971: 15-22), and Squires (1964). The term "principal septa" refers to the two S_{1} aligned on the greater axis of the calice (Chevalier, 1961: 305).
Synonymies are complete unless otherwise indicated.
In the material examined sections, the numbers in parentheses indicate the number of specimens in that lot. Enumeration of specimens is not indicated for colonial species. Following the number, or station number for colonial species, is an indication of where the specimen is deposited. If no indication is given, it is at the USNM.
Holotypes are deposited at the USNM and MCZ. Most of the paratypes are at the USNM; others are at the MCZ and UMML.

In order to avoid possibly erroneous depth ranges resulting from bathymetrically wide-ranging trawls, a confirmed, or restricted, depth range is used. The stated bathymetric range extends from the deepest shallow to the shallowest deep component. Thus, if one specimen was collected from a station that was trawled from $18-500 \mathrm{~m}$ and a second from $450-600 \mathrm{~m}$, the possible range is $18-$ 600 m . The first station indicates that it does occur shallower than 501 m , the second that it does occur deeper than 449 m . The confirmed range is then $450-500 \mathrm{~m}$.

Solitary corals are ideal subjects for stereophotography and many stereo pairs are provided in the plates. The stereo view allows a much more accurate interpretation of the spatial relationships among the septa, pali, and columella as well as the depth of the fossa. If a stereo viewer is not available, one can, with patience and practice, "fuse" the stereo pair by focusing beyond the plane of the paper. Some thin or glossy specimens have been coated with an opaque dye and recoated with a fine layer of $\mathrm{NH}_{4} \mathrm{Cl}$ in order to improve their contrast for photography. These specimens are indicated in the plate captions.

The following abbreviations are used:

Vessels

P-R/V Pillsbury.
G - R/V Gerda.
CI - R/V Columbus Iselin.
GS - R/V Gilliss.
GS (G) - R/V Gilliss (Geology).
O-M/V, R/V Oregon and R/V Oregon II.
SB-M/V, R/V Silver Bay.
BL - U.S. Coast Survey Steamer Blake.
Alb - U.S. Fish Commission Steamer Albatross.
FH - U.S. Fish Commission Steamer Fish Hawk.
Gos - R/V Grosnold.
E - R/V Eastward.
WH - Walther Herwig.
Atl - Atlantis and R/V Atlantis II.
WB - N/Oc Wladimir Besnard.
TAMU - Texas A \& M University (R/V Aliminos).
SME - Station Marine d'Endoume (Calypso).
Chall-H. M. S. Challenger.

Museums

AHF - Allan Hancock Foundation, University of Southern California.
AMNH - American Museum of Natural History, New York.
BM - British Museum (Natural History), London.
FDNR - Florida Department of Natural Resources, St. Petersburg, Florida.
MCZ - Museum of Comparative Zoology, Harvard.
MIZS - Museo ed Istituto di Zoologia Sistematica, Torino.
MNHNP - Muséum National d'Histoire Naturelle, Paris.
MOM - Musée Océanographique, Monaco.
NMC - National Museum of Canada, Ottawa.
NRM - Naturhistoriska Riksmuseet, Stockholm.
RSMAS - Rosenstiel School of Marine and Atmospheric Science, University of
Miami (Invertebrate Museum abbreviated UMML).
SME - Station Marine d'Endoume, Marseille.
UMML - University of Miami Marine Laboratory (now RSMAS), Miami, Florida.
USNM - United States National Museum, Washington, D.C.
YPM - Yale Peabody Museum, New Haven.
ZMA - Zoölogisch Museum, Amsterdam.
Other
BLM - Bureau of Land Management.
SEM - Scanning Electron Microscope.
cd - Calicular diameter.

長式烒烒

coin tion	$\xrightarrow{\text { Ont－}}$		Deprt	
ber			（m）	pate
1181	${ }^{188^{\circ} 51}$	$74^{4} 30^{\prime}$	248	1 Juy 1970
1286	1830	7439	183	2 July 1970
${ }^{2} 87$	1827	7507	1036	2 Jul 1970
1197	1734	7609	1482－15	3 Julf 1
1224	17． 31	774	878－906	6 Juy 1970
1225	1743	77	5T－5	6 Juy 1970
1232	1756	7800	200－265	T Juyy 1970
1238	1816	78 an	1244－1830	${ }^{1}$ Juy 1970
1255	1718	7832	622－	14 Juy 1970
1256	1727	7810	521－658	14 Juy 1970
1262	1713	77 so	595－824	15 Juy 1970
1262	1721	773	2089	15 July 1970
1303	1821	91	170－176	${ }^{2} 1$ July 1970
1304	1745	64	347	23 July 1970
	913	$8_{12} \mathrm{b7}$	46	6 Ja
	1421	${ }^{\text {al }}$	192	${ }_{31} \mathrm{Jnn}$.
	1435	8132	450－576	31 Jan .1971
1356	145	8123.	296－	31 Jan． 197
	1514	8126.	249－2	31 Jan． 1972
	1945	6700	7919－	6 Jouy 1977
	182	69	${ }^{248}$	9 July 1971
1387	182	6909	165	9 Jus
1393	1822	6918	250	10 Julf 1971
	182	6913	1267	

$\stackrel{9}{8}$

\qquad

育 ． | 曷 |
| :--- |
| 番 |

 운
号
号

				＊
E			웅	
$\begin{aligned} & 5 \\ & 5 \\ & \hline \end{aligned}$			$\frac{8}{8}$	
$\begin{aligned} & \text { 㟧 } \\ & \text { 買 } \\ & \frac{8}{8} \\ & \text { 学 } \end{aligned}$				茹
	谷司			

$\begin{aligned} & \text { sta- } \\ & \text { Ston } \\ & \text { Sume } \\ & \text { buer } \end{aligned}$	(ent	$\stackrel{{ }^{\circ} \mathrm{M}}{\text { Lon- }}$ gitude	$\xrightarrow{\text { Depth }}$	-	$\begin{aligned} & \text { sean } \\ & \text { sion } \\ & \text { Hen } \\ & \text { fer- } \end{aligned}$	$\begin{aligned} & \substack{\text { not- } \\ \text { netude } \\ \text { dute }} \end{aligned}$		$\begin{gathered} \text { Depth } \\ (m) \\ \hline(m) \end{gathered}$	Date
1986	$9^{\circ} 39{ }^{\prime}$.59447	183.	4 Nor. 1957	2820	${ }^{28} 8^{\circ} 3^{\prime}$	$8^{88^{\circ} 22^{\prime}}$	1829	15^{15} Ju1y 1960
1989	945	5945		bov. 1957	3203	2914	8820	${ }^{88}$	2 Peb. 1961
1991	917	5919	457	$4 \mathrm{mov}$.	3252	2907	8805	732	1961
1993	903	5900	137	4 mov . 195	3550	17.4	17	430	16 May 1962
2068	235	4748	220	15 sor . 1957	3553	1718	7818	439-4	7 may
2080	204	4700	229	27 Mov. 1957	3554	1717	7829	246-18	May 19
2202	2858	8811	1143	26 June	3559	1637	8025	146	18 May 2962
2286	726	544	192-220	8 sept. 1958	3560	1635	8010	576	18 May 2962
	1733	6335	229-241	25 sapt. 1958	3562	1638	7953	gid	18 May 1962
2575	2706	8913	2012-2	29 Juy 199	3568	14.14	8159	83	21 ley 1962
2603	1830	6559	421	25 sept. 1959	3573	1428	8144	750-7	22 May 1962
2637	${ }^{27} 37$	6336	512	30 sept. 1959	3584	913	8130	366	25 Hav
2655	1826	6711	229	$6 \mathrm{oct}$.	3601	9 or	8110	732	31 May 1962
	1140	627	402	15 April 2960	3603	1216	8254	27-37	962
		6229	329	960	362	1600	${ }_{81} 09$	220-238	6 June 1962
	1132	6240	-38	19 Apr	3627	1650	812	366	June 196
	1135	6237	402-42	9 Apri1 1960	3651	2912	8803	457-549	25 July 1962
2776		6242	430	19 April 1960	3659		875	1336	${ }^{27}$ July 1962
	1136	6246		19 April 1960	${ }^{3663}$	2856	8808	2463-1600	1962
2780		6252	-42	20 April 1960	3664	2849	8803	1554-1829	28 Juy 1962
13	2848	875	1829	13 July 1960	3666	2849	8825	1051-1189	29 July 1962
20.4	285	8747	1737-1920	13 July 1960				402	Nus.

若司

觓落

		U.8. PISH	matssion ster	(ess ack	mross	1b)		
Sta- tion yum- ber		$\begin{gathered} \text { Depth } \\ (m) \end{gathered}$	Date	$\begin{aligned} & \text { sta- } \\ & \text { tion } \\ & \text { Sham } \\ & \text { her } \end{aligned}$	${ }_{\text {IM }}^{\mathrm{O}_{\mathrm{M}}}$ 'tude	OM Lon-倳保	$\underset{(\text { mepth }}{\text { Den }}$	Pate
217	${ }^{15}{ }^{\circ} 25^{\prime} \quad 63^{\circ} 32^{\prime}$	1230	27 Jma .1884	2334	$23^{\circ} 11{ }^{1}$	$2^{6} 18^{\prime}$	123	19 Jan. 1885
21	$2956 \quad 7547$	457	${ }_{27} \mathbf{Y e b}$. 1884	2336	2311	82	287	19 Jan. 1885
2243	$931 \quad 7626$	284	23 yarch 1884	2338	2311	32	346	19 Jan. 1885
2150	13358818	699	9 April 1884	2342	2311	8220	368	19 Jen. 1885
2152	$4 \mathrm{~kg}=\mathrm{MN}$ of Havana	708	30 April 1884	2343	2312	8219	510	19 Jen .1885
2153	11823	518	30 April 1884	2345	2311	82	33	20 Jan. 1885
21	1082	53	30 April 1884	2346	23	8220	366	20 Jan. 1885
	82	179	30 April 1884	2347	2311	8220	395	20 Jnh. 1885
				2351	2242	8417	772	${ }^{21}$ Jnn. 1885
2266	23118821	358	3 may 1884	2353	2059	8623	305	22 Jan. 2885
${ }^{2167}$	11822	368	1 May 1884	2354	2100	8624	238	22 Jan. 1885
2316	$\begin{array}{lll}26 & 81 & 48\end{array}$	91	15 Jan .1885	2384	${ }^{28} 45$		1719	
2318	8146	82	15 Jan .1885					March 1885
231	23118221	262	17 Jan. 1885	2385	2851	8818	1335	3 March 1885
			17 Jen 1885	2392	2848	8727	1324	13 March 1885
			17 Jan. 1805	2393	2843	8715	960	23 March 1885
	111828	421	17 Jan .1885	2394	2839	8702	768	13 March 1885
232	18	210	17 Jan. 1885	2399	2844	8618	358	14 March 1885
2323	11820	298	17 Jan. 1885				4	15 Merch 1885
2324	10820	60	17 Jan. 1885					S
2326	8219	. 355	17 Jan, 1885	${ }^{2415}$	3044	7926	805	2 April 1885
				2416	3126	79 of	$50{ }^{\circ}$	1 April 1885
			17 Jan. 1808	2529	4104	6614	1211	14. Juy 1885
			19 Jan. 1005	2530	4054	6624	1748	14 July 1885

新

macht caroline, johnson-shithsoncan deep-sen expedition

혐

.

 . 8

id ©

mapla									
$\begin{aligned} & \text { sta- } \\ & \text { tion } \end{aligned}$	${ }^{\circ}$	${ }^{\circ} \mathrm{H}$			$\left.\right\|_{\text {Sta- }} ^{\text {stion }}$	${ }^{\circ} \mathrm{m}$	${ }^{\circ} \mathrm{W}$		
Nume.	Lat-	Lon-	Depth		Humm	Lat-	Lon-	Depth	
Der	itude	gitude	(m)	Date	ber	1tude	gitude	(m)	Date
1974	29035	${ }_{87}{ }^{\circ} 25^{\prime}$?	1974	212	$27^{\circ} 57^{\prime}$	$84{ }^{848}$	189	1 July 1976
					2645	2935	8720	207	?
${ }_{33}^{1974}$	3010	8612	?	1974	2746	2704	8424	221	28 June 1976
2106	2626	8415	168	28 June 1976	2957	2530	8414	155	20 Aug. 1977
atiamtis and r/v attartis if (At1)									
${ }_{\text {sta- }}^{\text {stan }}$	${ }^{\circ}$	${ }^{\circ}$			${ }_{\text {Sta- }}^{\text {Stion }}$	${ }^{\circ}$	${ }^{\circ}$		
\xum-	Lat-	Lon-	Depth		Mum-	Lat-	Ion-	Deptb	
ber	itude	gltude	(m)	Date	ber	itude	gitude	(m)	Date
2950	$26^{\circ} 14$	$78^{\circ}{ }^{4} 3^{\prime}$	521	3 Pob. 1938	2999	$23^{\circ} 101$	$812^{\circ} 29 \cdot$	265-512	17 March 1938
2980]	2244	7848	402-412	10 March 1938	3313	2203	8506	1006	25 March 1939
2985	2323	7917	. 457	12 March 1938	3332	2210	81	320-412	5 April 1939
2987A	22	7956	521-549	13 March 1938	3336	2212	8212	366-439	6 April 1939
2987D	2321	7958	576	13 March 1938	3341	2159	1	567-777	¢. April 1939
2989	. 2310	04	658	14 March 1938	3344	21.32	8c 12	2633	8 Apri1 1939
2990B	2317	8022	759	14 March 1938	3345	2108	7957	1262-1280	8 April 1939
2991	21	8023	869	14 March 1938	3355	1950	7500	1957	25 April 1939
29914	2323	21	869	14 March 1938	3363	2049	7456	1518	19 April 1939
2992A	2326	8035	1025.	15 March 1938	3366	2046	7459	1143	19 April 1939
2994	2324	8050	1033-1070.	15 March 1938	3367	2046	7502	1170	19 Apr11 1939
2995	2324	8101	677-1206	26 March 1938	3369	2049	7508	1097	20 April 1939

$$
\begin{aligned}
& \text { ร品茙皆 }
\end{aligned}
$$

$$
\begin{aligned}
& \text { 部 } \\
& \underset{\sim}{\text { m }} \text { 范 }
\end{aligned}
$$

镸国 年
总国

$\frac{\substack{\text { Depth } \\(\mathrm{m})}}{\substack{000}}$
営夏

4 Dec． 1965

옹 연
总目 훙 욱

aKAROA

含名息
莒贰
営司
ㅇ． 8
育莫

今芽㓭

흉
3
8
4
8

SPECIES ACCOUNT

Order SCLERACTINIA

Suborder Astrocoeniina Vaughan \& Wells, 1943

Family POCILLOPORIDAE Gray, 1840

Genus Madracis Milne Edwards \& Haime, 1849
Diagnosis. - Colonial, extratentacular budding producing massive or ramose corallum. Coenosteum solid. Septa arranged in groups of six, eight, or ten, but rarely in more than two cycles. Columella styliform, prominent. No pali. Type-species: Madracis asperula Milne Edwards \& Haime, 1849, by monotypy.

1. Madracis myriaster (Milne Edwards \& Haime, 1849)

Plate I, figures 1-2, 4-5

Axhelia myriaster Milne Edwards \& Haime, 1849: 69; 1850: xxi; 1850a: 92, pl. 4, figs. 6, 6a; 1857: 126-127. - Roos, 1971: 52, pls. 6-7.
Stylophora mirabilis Duchassaing \& Michelotti, 1860: 62, pl. 9, fig. 6.
Madvacis myriaster: Pourtales, 1871: 27-28. - Wells, 1973: 19. - Lang, 1974: 277-278. - Bright, et al., 1974: 33-34. - Cairns, 1977b: 5; 1978: 10.
Axohelia myriaster: Pourtalès, 1874: 41, pl. 8, fig. 3.
Axohelia (Stylophora) dumetosa: Pourtalès, 1874: 40, pl. 8, fig. 1.
Axohelia schrammii Pourtales, 1874: 41, pl. 8, fig. 2. - Verrill, 1901: 110, pl. 18, figs. 3-4.
Not Axohelia schrammi: Lindström, 1877: 14 (= M. asperula).
Axohelia dumetosa: Pourtales, 1878: 204. -? Moseley, 1881: 182 (specimen missing).
Axohelia mirabilis: Pourtalès, 1880: 107-108.
Axhelia mirabilis: Vaughan, 1901: 295, pl. 1, figs. 3, 3a.
P Madracis mirabilis: Keller, 1975: 181.

Description. - Colonies are rarely dredged intact. Judging from the numerous broken branches and basal fragments, this species seems to produce a broad, bushy colony measuring $30-40 \mathrm{~cm}$ in height, with irregular branching. Planar colonies with anastomosing branches also occur. The basal main branch measures up to 25 mm in diameter and is firmly attached by an encrusting base, which bears calices. The diameters of terminal branches are $3-4 \mathrm{~mm}$. The calices near the base are round, about 1.5 mm in diameter, and widely separated from one another by one-three calicular diameters. At the branch tips the calices are elongated in the axis of the branch, about $2.0 \times 1.5 \mathrm{~mm}$ in diameter, and close-set (separated by only one-fourth to one-half their calicular diameter). The corallites are usually flush with the surface of the branch or sometimes raised on mounds; however, the exsert septa project well above the coenosteum. The coenosteum, especially on the encrusting base and thick basal branches, is prominently striate with anastomosing ridges. In some cases, the striae form very high, thin ridges, which bear a single row of pointed spines, but usually the ridges are much less conspicuous. On medium diameter branches ($5-6 \mathrm{~mm}$) and especially toward the branch tips the striae are often lacking, replaced by close-set, large, rounded granules.
Each corallite has 10 highly exsert primary septa, which extend about one-third of the distance to the center of the calice. Occasionally larger corallites up to 3 mm in calicular diameter occur with $16-20$ septa. The inner edges of the septa are vertical, straight, and entire. Their faces are smooth or covered with slender, pointed granules, producing a "hirsute" appearance. Ten rudimentary secondary septa are also present, each of which is composed of a row of low spines. The inner edges of the primary septa are united by a large, low, solid columella, which fills in most of the fossa. A tall, compressed style, aligned with the two septa in the plane of the branch, projects from the center of the columella. Sometimes the style is absent.

Discussion. - Both Axhelia and Madracis were originally described in the same paper (Milne Edwards \& Haime, 1849); myriaster was designated the type of Axhelia on page 69 and asperula was designated the type of Madracis on page 70. In both cases the
authors provided a combined description of genus and species (see International Code of Zoological Nomenclature, Article 16 a vi). Pourtalès (1871: 27), as first reviser, clearly designated Madracis as the senior synonym.

The history of the synonymy of M. myriaster is complicated. Shortly after Milne Edwards \& Haime's (1849) description of M. myriaster, Duchassaing \& Michelotti (1860) described Stylophora mirabilis and later Duchassaing (1870) described Stylophora dumetosa, both from the Lesser Antilles. The former is a junior synonym of M. myriaster and I consider the latter a species dubia, since: (1) no illustration was provided, (2) the short description does not differentiate it from other western Atlantic Madracis, and (3) the holotype is lost. Four years later, Pourtalès (1874) provisionally identified specimens as A. myriaster and A. dumetosa and described a new species, A. schrammii. All are M. myriaster. He carefully noted, however, that comparisons to type-material, which he did not perform, were essential for correct identification. By 1880 Pourtales admitted that what he identified as A. myriaster and A. dumetosa were identical, but he provisionally chose the name A. mirabilis, instead of A. myriaster, since he considered A. myriaster an East Indian species; otherwise he stated, "I cannot tell in what way they differ" (Pourtalès, 1880: 107). (A type-locality for A. myriaster was not given in the onginal description. Unly in 1850 did Milne Edwards \& Haime (1850 a) mention the imprecise location of "mers des Indes.") Pourtalès was correct in his synonymy of A. myriaster and A. mirabilis; however, A. myriaster is not known from the East Indies. Only recently was Pourtalès proven correct when I examined the holotype of M. mirabilis at the MIZS and confirmed that it is the striate M. myriaster. Therefore, the common, shallow-water, nonstriate species, known today as M. mirabilis sensu Wells, 1973, requires a new name. Oddly enough. Pourtales never realized that his own A. schrammii was also M. myriaster. It was not until 1901 that two authors simultaneously published remarks concerning A. schrammii: Verrill (1901) implied that A. schrammii and A. myriaster were the same, and Vaughan (1901) correctly synonymized A. schrammi with M. mirabilis. Moseley's (1881) specimen from Bermuda, identified as A. dumetosa, is lost.
M. myriaster could be confused with both M. asperula and M. mirabilis sensu Wells, 1973, two shallow-water western Atlantic species. Sometimes M. asperula also bears faint intercalicular striae but can be distinguished from M. myriaster by its thinner branch tips ($2-3 \mathrm{~mm}$ in diameter) and even more elongate calices at the branch tip. M. mirabilis sensu Wells, a hermatypic coral, has thicker branches (up to 10 mm in diameter) and blunt branch tips (not attenuated as in M. myriaster and M. asperula).

Remarks. - Calcareous worm tubes secondarily covered by coenosteum often thread between the calices, indicating that the worm and coral were at one time symbiotic.

Material. - P-705 (USNM 45779) ; P-854 (USNM 45788) ; P-875 (UMML 8: 223); P-907 (USNM 45789) ; P-910 (USNM 45786) ; P-991 (USNM 45780, UMML 8: 330); P-1140 (USNM 45776); P-1186 (USNM 45787); P-1303 (USNM 45784); P-1387 (USNM 45778); P-1393 (USNM 45781); P-1395 (USNM 45782); P-1410 (USNM 45785) ; G-134 (USNM 45793); G-251 (USNM 45791); G-270 (USNM 45792); G-493 (USNM 45790) ; G-691 (USNM 45777, UMML 8: 329) ; CI-1 (USNM 45794); O-1494; O-2603; O-3554; O-3559; O-3603; O-3955; O-4297; O-4398; O-4832; O-4928; O-4932; O-4938; O-5016; O-5419; O-5432; O-5933; O-6715; SB-3467; SB-3494; SB-3495; SB-3496; BL-45 (MCZ) ; BL-62 (MCZ); BL-269 (MCZ); BL-293 (USNM); undetermined Hassler station off Barbados, 183 m (MCZ) ; Alb-2152 (USNM 16153); Alb-2157 (USNM 36509); Alb-2159 (USNM 16151); Alb-2166; Alb-2319 (USNM 16146); Alb-2321 (USNM 36507); Alb-2323 (USNM 10121); Alb-2324 (USNM 10866); Alb-2334; Alb-2336 (USNM 10210); Alb-2338 (USNM 10223); Alb-2353 (USNM 10279); Caroline-49; E-30175; E-30178; Chain-36; Hummelinck-1443; south shore of Bermuda, 160 m . - Holotype of S. mirabilis; syntype of A. schrammii ; Lindström's (1877) A. schrammi (NRM); Vaughan's (1901) A. mirabilis (USNM 36534).

Types. - The type of Axhelia myriaster could not be found at the MNHNP in 1975; it is presumed lost. The holotype of Stylophora mirabilis, collected at St. Thomas, Virgin Islands, is deposited at the MIZS (Coel. 358). The figured branch of Pourtales's Axohelia schrammii from Guadeloupe, Lesser Antilles, is deposited at the MCZ (2765). It has been broken into five pieces.
Type-Locality. - "Mers des Indes" (Milne Edwards \& Haime, 1850a).
Distribution. - Common throughout the Caribbean and Gulf of Mexico, ranging from off Florida to off Surinam; however, present off northern coast of South America only off Leeward Group; Bermuda (Map 1). $37-708 \mathrm{~m} .9-26^{\circ} \mathrm{C}$, based on eight records.

Suborder Fungilna Verrill, 1865

Family FUNGIIDAE Dana, 1846
Genus Fungiacyathus Sars, 1872
Diagnosis. - Solitary, cupolate, free. Septotheca thin; costae thin and spinose. Septa irregularly dentate, laterally braced by thin ribbons extending from the septotheca and by thin septal striae. Columella feeble. Paliform lobes sometimes present. Type-species: Fungiacyathus fragilis, Sars, 1872, by monotypy.
2. Fungiacyathus pusillus (Pourtales, 1868), new comb.

Plate II, figures 2-3, 5
Diaseris pusilla Pourtalès, 1868: 139; 1871: 47, pl. 2, figs. 6-8; 1880: 97.
Description. - The corallum rests on a flat to slightly concave, round base, which measures 16.8 mm in diameter in the largest specimen examined. The entire corallum is very fragile and is often collected in fragments or with incipient fracture lines. Narrow, ridged costae alternate in size, with the C_{5} smaller than the others. The costae have dentate margins and are most highly ridged toward the outer edge. All costae reach the center of the base except the C_{5}, which extend only three-fourths as far.

Septa are arranged in six systems and five complete cycles. S_{1} are independent and each bears a high, rounded lobe on its outer edge. The lobe bears eight-ten distinct carinae on each side, which degenerate into rows of granules toward the base. Toward the center of the calice the S_{1} bear three-five long, slender spines, which also bear lateral carinae. S_{2} are smaller but also have outer lobes with six-eight vertical carinae. Their inner edges have four-seven large spines, also ridged. S_{3} and S_{4} are progressively smaller with smaller, ridged outer lobes. The S_{3} join the S_{2} about halfway to the center
and the S_{5} join the S_{4} about one-third of the distance to the center. S_{5} are always very small (each septum composed of only several spines), but are present even in a specimen measuring 6.5 mm in diameter. The edges of all septa are straight. Synapticulae bridging adjacent septa and every other septum (crossing over the rudimentary S_{5}) are frequent.

A rudimentary columella is formed by the intermingling of the innermost septal spines of the S_{1} and S_{2}.

Discussion. - There are six Recent nominal species of Fungiacyathus with five cycles of septa: F. fragilis Sars, F. stephanus (Alcock), F. paliferus (Alcock), F. sibogae (Alcock), F. hawaiiensis (Vaughan), and F. pusillus. The latter is easily distinguished from F. fragilis, the only other Atlantic representative, by its smaller size and straight septal margins. However, F. pusillus is extremely similar to F. stephanus (Indian Ocean) in morphology, differing only in size (one-half as large) and its shallower bathymetric range.

> Material. - P-587 (16) USNM 45833; P-600 (1) USNM 45834 ; P-861 (1) USNM 45835; G-1102 (1) USNM 45832 . - Syntypes of D. pusilla.

Types. - Two lots of syntypes are present at the MCZ. One contains 10 fragments (5596) and the second contains one whole specimen (5619). It is impossible to determine at which Bibb station(s) they were collected.
Type-Locality. - Off Sand Key, Florida; 218-262 m.

Distribution. - Florida Keys; Arrowsmith Bank, Yucatan; off the Grenadines, Lesser Antilles (Map 2). 285-439 m.
3. Fungiacyathus symmetricus (Pourtalès, 1871)

Plate I, figures 7-8; Plate II, figure 1; Plate III, figure 1
Fungia symmetrica Pourtalès, 1871: 46, pl. 7, figs. 5-6; 1874: 43. - Moseley, 1876: 548, 562-563 (in part: Chall-24, 36, 56, 181). - Pourtalès, 1878: 208. Agassiz, 1888: 153, fig. 476.
Not Fungia symmetrica: Duncan, 1873: 334, pl. 49, figs. 16-19 ($=$ F. marenzelleri). - ?Studer, 1878: 651. - Thomson, 1878: 132, fig. 33.

Diaseris crispa Pourtales, 1871: 47-48 (in part: see Types of F. crispus).
Bathyactis symmetrica: Pourtalès, 1880: 97, 112. - Moseley, 1881: 186-190 (in

```
part: Chall-24, 36, 56, 181), pl. 11, figs. 8, 8a, 9, 9a. - Vaughan, 1901: 311, pl. 1, figs. 7a-b. - Lewis, 1965: 1063.
Not Bathyactis symmetrica: Verrill, 1882: 313 (=F. fragilis); 1883: 65 (=F.fragilis). - ? Jourdan, 1895: 28. - ?Alcock, 1898: 28; ?1902: 37. - MarenzelLer, 1904: 312-313, pl. 18, fig. 25; 1904a: 76 ( = F. mavenzelleri). - Gravier, 1915: 3, 1920: 97-98 ( \(=F\). fragilis and \(F\). marenzelleri), pl. 10, figs. 165-166. - Thompson, 1931: 9 ( = F. fragilis). - Gardiner \& Waugh, 1939: 230-231 (? F. marenzelleri). - ?Yabe \& Eguchi, 1942: 137. - Tizard, et al., 1885: fig. 287.
Not Fungiacyathus symmetrica: Durham \& Barnard, 1952: 11. - ?Kikuchi, 1968: 11.
?Fungiacyathus symmetricus: Wells, 1958: 262, 267, pl. 2, figs. 1-2. - Squires, 1961: 18. - Utinomi, 1965: 248-249. - SQuires, 1969: 17, map 2.
Fungiacyathus symmetricus: Laborel, 1970: 153, 155. - Keller, 1975: 174-175.
```

Description. - The corallum rests on a flat or slightly concave, horizontal base. The average diameter of the round base is about 10 mm , although the largest specimen examined measures 14.1 mm . The height of the highest septal spines from the base is between $4-5 \mathrm{~mm}$. Ridged costae corresponding to all septa are present on the base. C_{1} are most highly ridged and, like the C_{2}, reach the center of the base. C_{3} and C_{4} are progressively less prominent and do not reach the center. The costae bear serrate teeth, which gradually decrease in size to small granules toward the center of the base. Granules are also present in the intercostal spaces. In well-preserved specimens, lines of fine perforations occur in the intercostal spaces (Pl. II 1).
The septa are arranged in six systems and four complete cycles. S_{1}, the only independent septa, are the largest, highest septa and meet in the center. On their upper margins, extending from the external edge to the columella, each septum bears 12-15 extremely high spines, which are compressed in the plane of the septum. Each spine bears a prominent vertical carina on either side, which gradually degenerates to a row of granules about halfway to the base. These granules are usually small and pointed but may be large (twothree times the width of a septum) and blunt. The slightly smaller S_{2} also meet in the center but are joined by the S_{3} near the columella. The S_{4} are joined to the S_{3} about halfway to the center. All septa bear high, delicately ridged spines as described for the S_{1}. Each septum is united to its adjacent septa by six-seven broad
synapticulae, which are also in contact with the base. Toward the center of the calice, often a columella is formed as a small, circular platform pierced by the innermost spines of the S_{1} and S_{2}. Sometimes there is no distinct columella but simply an intermingling of the long, innermost spines, which are round in cross-section near the center of the calice.

Discussion. $-F$. symmetricus has been reported in all three oceans and generally has been considered a cosmopolitan species with a great depth range ($59-5872 \mathrm{~m}$). This misconception originated with Moseley (1881), who reported this species, originally described by Pourtalès from the western Atlantic, to be cosmopolitan at shallow and great depths. A re-examination of Moseley's Challenger records showed that specimens from only four stations $(24,36,56$, and 181$)$ out of 19 are F. symmetricus; the other are large specimens belonging to other species. Three of these four stations are western Atlantic, whereas the fourth (Chall-181) is from off northeast New Guinea at 4462 m . This latter record greatly exceeds the typical depth and geographic range of this species and is probably a labelling error. Many authors after Moseley uncritically accepted his redescription and therefore frequently reported it. I have not verified all of the Indo-Pacific records of F. symmetricus, but I strongly question its existence outside the western Atlantic. F. marenzelleri Vaughan, on the other hand, does have a cosmopolitan distribution and may be the species so often referred to as F. symmetricus. Among the four new subspecies of F. symmetricus treated by Keller (1976), there is little doubt that the nominal subspecies is the species described here. A worldwide revision of all Fungiacyathus is needed.

[^0]Combat-447 (4) ; Caroline-25 (4); Caroline-32 (5); Caroline-38 (1); Caroline-93 (2); Atl-2999 (3) MCZ; Atl-3375 (1) MCZ; Atl-3379 (1) MCZ; Atl-3392 (2) MCZ; Atl-3396 (3) MCZ; WB-1 (1) USNM 45831 ; SME-1763 (1) SME; SME-1764 (1) SME; Akaroa5 (1) SME. - Syntype of F. symmetrica (Bibb-157); Moseley's (1881) specimens (Chall-24, 36, 56, 181); Vaughan's (1901) specimens (USNM 22094, 22088); Marenzeller's (1904) specimens (USNM); Verrill's (1882, 1883) specimens (YPM).

Types - The original description was based on two specimens (syntypes) : one was collected off Carysfort Reef, Florida (Bibb-157) and is deposited at the MCZ (2767); the other specimen, from off Cojima, Cuba (Bibb-139), is presumed lost. Type-Locality. - Straits of Florida; 640-823 m.

Distribution. - Antillean distribution and western Caribbean (not off northern coast of South America); Bermuda; off Brazil from Recife to $27^{\circ} 33^{\prime} \mathrm{S}$ (Map 2). 183-1664 m; Moseley's (1881) record of 59 m (Chall-36) is discounted as a labelling error. $6-12^{\circ} \mathrm{C}$, based on three records.

4. Fungiacyathus crispus (Pourtalès, 1871)

Plate I, figures 3, 6; Plate II, figures 4, 7

Diaseris crispa Pourtalès, 1871: 47-48, pl. 5, figs. 1-2; 1874: 44. - Lindström, 1877: 23, pl. 3, fig. 39. - Pourtalès, 1878: 209; 1880: 97. - Agassiz, 1888: 153, fig. 477.
Fungiacyathus crispus: Zibrowius, 1976: 85-86, pl. 42, figs. A-L. - Cairns, 1977b: 5; 1978: 10.

Description. - The corallum is very irregular in shape, most often collected as wedge-shaped pieces that have fractured from a larger corallum. One of the few whole specimens known (Pl. II 4) has regenerated an entire calice from an original segment consisting of seven septa. Its calicular diameter is 5.4 mm but the extrapolated diameter of the parent sector is 9.0 mm . The base is flat and bears an irregular granulation. Costae are difficult to distinguish. If a fragment has more than five or six septa, usually incipient fracture lines are present, originating at the outer edge and usually occurring between every three-four septa. Specimens probably fracture along these lines when being collected.

Discrete systems and cycles of septa are not apparent because of the incomplete nature of most specimens or irregularities due to
regeneration from a smaller fragment. Four cycles of septa (48) appear to be arranged in the same manner as in F. symmetricus. The larger septa bear $16-18$ tall, slender, pointed spines, shaped and laterally carinate as in F. symmetricus. The septal granules, a continuation of the lateral carinae, are extremely high (two-three times the thickness of a septum) and are often clavate or bifurcate. The presence of a columella is impossible to determine since this area of the corallum is invariably missing.

Discussion. - This species is distinctive because of its high degree of schizoparity. It is very similar to F. symmetricus but differs with regard to its smaller size, greater number of spines per septum, and its tendency to fracture.

Material. - P-1401 (1) USNM 45836; O-1251 (5) ; O-1867 (4); O-4226 (9) ; Hassler, off Barbados, 183 m (26) MCZ; Caroline-93 (3); Hudson-4B (4) NMC; off Anna Maria Key, Florida, $366-487 \mathrm{~m}$ (1) USNM 45837. - Syntypes of D. crispa; Lindstrom's (1877) specimens from Anguilla (10) NRM.

Types. - Eight lots of syntypes are deposited at the MCZ. The three lots labelled "Boschma" 1, 2, and 3 are F. symmetricus. The other five lots are labelled: "Boschma" 4, MCZ 5593 (two fragments); "Boschma" $5, \mathrm{MCZ} 5593$ (one regenerated corallum) ; "Boschma" 4 and 5, MCZ 5593 (ten fragments) ; "Florida, 120-150 fms.", MCZ 5593 (one fragment) ; and "Florida, 120-180 fms.", MCZ 5618 (nine fragments). My illustrated fragment (P1. I 3, 6) from lot MCZ 5618 is designated lectotype; the other 22 pieces are designated paralectotypes.
Type-Locality. - Pourtales did not give a definite location for his typematerial in his text or with the specimens; however, he did imply that they were taken from Alligator and Tennessee Reefs and off Sand Key, Florida; 220-329 m.

Distribution. - Western Atlantic: Antillean distribution; eastern Gulf of Mexico; off Honduras; off the Amazon, Brazil (Map 3). 183-640 m. - Eastern Atlantic: area bounded by Portugal, Madeira, and the Azores. $340-1010 \mathrm{~m}$.

5. Fungiacyathus marenzelleri (Vaughan, 1906)

Plate II, figures 8-9; Plate III, figures 3, 8

Bathyactis symmetrica: Marenzeller, 1904a: 76. - Gravier, 1920: 97 (in part: Sta. 698, 738, 1150, 1331, 1334), pl. 10, figs. 165-166.

Bathyactis marenzelleri Vaughan, 1906a: 66, pl. 4, figs. 1, 1a-b.
Fungia symmetrica: Duncan, 1873: 334, pl. 49, figs. 16-19.
Fungiacyathus marenzelleri: Zibrowius, 1976: 83-85, pl. 40, figs. A-M, pl. 41, figs. A-K.

Description. - The corallum rests on a flat to very slightly concave base, which is very thin and fragile, sometimes porous. Its edges are sometimes regularly scalloped in groups of one-three septa. The diameters of the round bases of the western Atlantic specimens never exceed 22 mm . A thin, ridged costa, more prominent toward the calicular edge, corresponds to each septum. C_{1-3} may extend to the center of the base; C_{4} are usually smaller, often consisting of a row of several spines, reaching only one-half to three-fourths of the distance to the center. All costae are dentate and slightly sinuous.

Septa are arranged in six systems and four complete cycles. The S_{1} are the largest and only independent septa. Each S_{1} bears nineten laterally ridged spines. The two innermost spines are small, thin, and rod-like, and are part of the columella. The intermediate three-four spines are larger, higher, and also stand alone; however, the outer four-five spines are much larger and fused together, forming a serrate lobe, projecting considerably beyond the basal diameter. The carinae on the lobe are directed obliquely toward the columella, becoming horizontal at the outer edge of the septum near the base. They become rows of granules toward the base. S_{2} and S_{3} are similar in shape and ornamentation, but the S_{4} are quite small, consisting of only three-four fused spines. The higher cycle septa are joined to one another in a manner typical for the genus. At the junction there is a thin calcareous deposit uniting the septa. Adjacent septa are united by thin synapticulae. The synapticulae begin as small bridges originating from the side of a septum and grow toward the base. The adjacent septa produce similar, narrow bridges in the same area, which fuse with one another, forming the connection.

A thin, round columella is present in the center and is usually pierced by the inner spines of the S_{1} and S_{2}.

Discussion. -F. marenzelleri is distinguished from the other two Atlantic species of Fungiacyathus that have only four cycles of
septa, F. symmetricus and F. crispus, by its larger size and greater depth range. Zibrowius (1976) hypothesized that F. marenzelleri, not F. symmetricus, is the cosmopolitan species implied by Moseley (1881) and Vaughan \& Wells (1943).

Material. - P-1138 (34) USNM 45838; P-1429 (32) USNM 45839, (1) UMML 8: 230; P-1444 (1) USNM 45840; CI-401 (1) USNM 45841. - Holotype of B. marenzelleri (USNM), paratypes (MCZ) ; Marenzeller's (1904a) specimens; Moseley's (1881) specimens.

```
Types. - Holotype: Albatross-4721 (USNM). - Paratypes: Albatross-4670 (MCZ,
three specimens).
Type-Locality. - 8'07.5'S, 104}10.10.5'W (off Peru); 3820 m.
```

Distribution. - Western Atlantic: Bahamas (first record in western Atlantic) (Map 3). 2450-2745 m. - Off Greenland (Labrador Sea). - Elsewhere: eastern Atlantic from off England to Morocco; off Cape Verde Islands; off Azores; off Angola; ?Indian Ocean; off Peru and California. 1805-5870 m.

Family MICRABACIIDAE Vaughan, 1905

Genus Leptopenus Moseley, 1881

Diagnosis. - Solitary, cupolate, free. No wall, costae alternating in position with septa. Costae and septa united by simple synapticulae producing a very porous, delicate corallum. Columella trabecular. Type-species: Leptopenus discus Moseley, 1881, by subsequent designation (Wells, 1936).
6. Leptopenus discus Moseley, 1881

Plate III, figures 4-7

Leptopenus discus Moseley, 1881: 205-208, pl. 14, figs. 1-4, pl. 16, figs. 1-7. Wells, 1958: 262; 1964: 109. - SQuires, 1965: 878-879, fig. 1; 1967: 505.
Not Leptopenus discus: Dennant, 1906: 162 (? Letepsammia).
Leptonemus discus: Agassiz, 1888: 154, fig. 479 (taken from Moseley, 1881, pl. 14, fig. 1).

Discussion. - A description of this species is not given for the following reasons: (1) I have examined no new material, (2) Moseley's original description and figures are excellent, and (3) Agassiz's specimen, which was never described, is in very poor condition and cannot add to Moseley's description.
Leptopenus discus is known from only six specimens: four syntypes from the Challenger, one central fragment collected by the Galathea (Souires, 1965), and one fragmented, central piece collected by the Blake (Agassiz, 1888). It is odd that Pourtalès did not report the Blake specimen in 1878 with his account of the Scleractinia of that cruise. Agassiz's delayed record is confusing because he reported an incorrect locality and depth, and used a slightly restored and rotated copy of Moseley's figured syntype to illustrate his own specimen. The Blake specimen (BL-109) that formed the basis of Agassiz's record was rediscovered at the USNM with the MCZ catalog number of 5631 . The corallum, which is only a central piece measuring about 12 mm in diameter, is highly fragmented and held together by the dry tissue mentioned by Agassiz (1888) and Squires (1967).

[^1]Types. - The original description was based on four syntypes collected from Challenger stations 147, 157, and 323, all at the BM.
Type-Locality. - South Indian Ocean, southwest Atlantic; 2926-3566 m.
Distribution. - Western Atlantic: off northeastern Cuba; off Rio de la Plata, Argentina (Map 4). 2842-3475 m. - Elsewhere: southern Indian Ocean; Makassar Strait, Indonesia. 2000-3566 m.

Suborder Favirna Vaughan \& Wells, 1943
 Superfamily Faviicae Gregory, 1900
 Family OCULINIDAE Gray, 1847

Genus Madrepora Linnaeus, 1758

Diagnosis. - Colonial, extratentacular budding forming dendroid colonies. Coenosteum dense, no costae, corallites filled internally by stereome. No pali; columella spongy or absent. Type-species: Madrepora oculata Linnaeus, 1758, by subsequent designation (Verrill, 1901).

7. Madrepora oculata Linnaeus, 1758
 Plate III, figure 2; Plate IV, figure 5; Plate V, figures 1-3

Synonymy complete for western Atlantic only:
Madrepora oculata Linnarus, 1758: 798. - Pallas, 1776: 308. - Esper, 1789: 108, pl. 12, figs. 1-3. - Marenzeller, 1904a: 79. - Durham \& Barnard, 1952: 11. - Squires, 1959: 5-8 (in part: not station A 180-112). - Eguchi, 1968: C-29, pl. C-8, figs., 1-9. - Best, 1970: 298, fig. 2. - Bourcier \& Zibrowius, 1973: 826, figs. 6-7. - Zibrowius, 1974a: 762, pl. 2, figs. 2-5; 1976: 104-108, pl. 20, figs. A-P. - Cairns, 1978: 10.
Amphelia oculata: Milne Edwards \& Haime, 1850a: 85.
Amphihelia oculata: Milne Edwards \& Haime, 1857: 119. - Pourtalès, 1871: 24. Duncan, 1873: 326, pl. 45, figs. 1-3. - Pourtalès, 1880: 96, 107. - Jourdan, 1895: 26. - Alcock, 1902: 35. - Marenzeller, 1904: 308, pl. 14, figs. 1, 1 a-b. - Gravier, 1920: 89, pl. 10, figs. 158-164. - Chevalier, 1966: 938 (in part: not specimen off Cape Naze), pl. 5, figs. 8-9.
Amphihelia ramea: Duncan, 1873: 326, pl. 44, figs. 1-3, pl. 45, figs. 4-6, pl. 46, figs. 1-19. - ?LindStröm, 1877: 14. - Jourdan, 1895: 26.
Lophohelia carolina: Moseley, 1876: 547.
Amphihelia sculpta: Pourtalies, 1878: 204.
Lophohelia candida Moseley, 1881: 179-180, pl. 9, figs. 6-13.
Lophohelia prolifera: Gravier, 1920: 87 (in part).

Description. - M. oculata is extremely variable, forming large bushy or flabellate colonies by extratentacular budding. End branches are usually sympodial in growth form with calices occurring in opposite and alternating rows. New branches can occur at
the level of any calice. A large colony is anchored by a massive base measuring up to several centimeters in diameter. A base often encrusts the spicules of a deep-water sponge (Hyalonema). End branches measure as little as 2.3 mm in diameter, whereas basal branches often exceed 2 cm . Branches are usually round but may be very compressed, with greater to lesser branch diameters differing by ratios of over $2: 1$; the calices occur on the broad sides. Calices on the distal branches are well individualized and exsert, whereas calices occurring on thick, basal branches are often recessed in the coenosteum or completely covered by it. Rarely the basal calices are raised on small mounds. The coenosteum is white and extremely finely granulated, producing a smooth texture. Sometimes finely incised, longitudinal striae are present, most conspicuously on the sides of the branches that do not bear the calices. Calices vary in diameter from 2.5 to 3.8 mm .

Septa are arranged in six systems and three cycles. S_{1} are usually larger than the S_{2} but can be equal in size, especially in older corallites on basal branches. S_{1} are slightly exsert and sometimes extend as a short costal ridge outside the calice. S_{3} are much smaller and can be well developed or rudimentary, composed of a line of dissociated simple or bifid spines. The inner edges of all septa are straight and usually finely dentate. The septal faces bear granules, which are usually low in profile but sometimes very prominent (two times the thickness of the septum), giving a very hirsute appearance to the septa. The granules are often arranged in well-defined rows or even short carinae oriented parallel to the trabeculae.

The calicular fossae on terminal branches are usually very deep and slightly curved, with only rudimentary columellas. On older, thicker branches, calicular fossae are short and straight, sometimes sealed off by endothecal dissepiments and columellas are usually better developed, consisting of several crispate, spongy trabeculae, which are often connected to the S_{1}. In general, the columella is quite variable and may not occur at all.

This species commonly occurs in another form (see Duncan, 1873: pl. 45, fig. 1) invariably associated with a commensal worm (Eunice sp.), around which the coral grows or encrusts. In this form the branching pattern is much closer, forming bushy colonies with
frequently anastomosing branches. The color of the coenosteum is yellowish-gray, and the fossae are filled in with stereome, almost obscuring the septa altogether. Often only low, crispate spines remain in the calice as evidence of the septa.

Discussion. - Zibrowius (1974a: 762-766) should be consulted for a lengthy discussion of the synonymy of this variable species. He discusses 15 nominal species that might be considered as junior synonyms. Of these, I have examined the types of three: M. galapagensis Vaughan, 1906; M. kauaiensis Vaughan, 1907, and L. candida Moseley, 1881, and have concluded that the first two are valid species and the latter is a junior synonym of M. oculata. M. galapagensis has larger, flared corallites and exsert S_{1}, more like M. carolina than M. oculata. M. kauaiensis has smaller corallites and very poorly developed S_{3}, if they occur at all.

Remarks. - M. oculata and L.prolifera are the primary deep-bank builders in the eastern Atlantic. Although widespread in the western Atlantic, M. oculata is not a primary constituent of the coral banks in the Straits of Florida (see E. profunda).

[^2][^3]Distribution. - Western Atlantic: common throughout the tropical western Atlantic from Georgia to Rio de Janeiro, Brazil; Gulf of Mexico (Map 4). 144-1391 m. $4^{\circ}-12^{\circ} \mathrm{C}$, based on 12 records. - Elsewhere:eastern Atlantic, Indian, and PacificOceans.80-1500m.
8. Madrepora carolina (Pourtalès, 1871)

Plate IV, figures 1-4

Not Madrepora exigua DanA, 1848: 469, pl. 38, figs. 2 a-b ($=$ Acropora exigua).Rathbun, 1888: 15.
Lophohelia exigua Pourtalès, 1871: 24, 26, pl. 1, figs. 6-7; 1878: 204; 1880: 96. Lophohelia carolina Pourtales, 1871: 24, 26.
Not Lophohelia carolina: Moseley, 1876: 547 (= Madrepora oculata).
Not Lophohelia exigua: Lindström, 1877: 14 (= Thalamophyllia riisei).
Lophohelia prolifera: Moseley, 1881: 179 (in part: Chall-109).
Madrepora carolina: Cairns, 1977b: 5; 1978: 10.
Description. - The corallum is attached by a thick base (up to 28 mm in diameter) expanding at the substrate into a thin encrusting layer, which supports randomly placed, upright corallites. Corallites generally occur in a sympodial growth form, in opposite, alternating fashion. However, in the largest colony examined (36 cm tall), all of the corallites are directed toward one side, the other side being covered by an encrusting zooanthid. Branching can occur at each calice and is usually in one plane, producing a flabellate colony. However, three-dimensional branching does occur, producing bushy colonies. The corallites are flared at their distal ends, even those on basal branches, and measure $3.5-5.5 \mathrm{~mm}$ in diameter. The coenosteum is white and finely granulated. Thin, ridged costae correspond to the first two cycles of septa but are only prominent near the calice. Very fine coenosteal striae are sometimes present, particularly at the base of the colony.

Septa are arranged in six systems and three cycles. Each higher cycle of septa is progressively smaller and less exsert. Four of the six S_{1} on opposite sides of each calice are slightly larger than the other two; their lower, inner edges almost meet in the center of the fossa. Sometimes the S_{3} are quite rudimentary, expressed only as thin ridges or rows of spines. The inner edges of all septa are entire
and slightly sinuous. Septal granules are small and inconspicuous, sometimes arranged in poorly-defined lines parallel to the trabeculae.

The fossa is deep and often curved on distal branches. There is never a columella.

Discussion. - Pourtalès (1871) described two species of Lophohelia, L. exigua and L. carolina, on the same page. He based L. exigua on thin, bushy end branches and L. carolina on more massive basal branches with less exsert calices. It is now clear that both specimens belong to the same species. Since L. exigua is a secondary junior homonym of Dana's Madrepora exigua, L. carolina is chosen as the senior synonym.
M. carolina is easily differentiated from M. oculata, the only other Madrepora known from the Atlantic, by its larger, flared corallites, less prominent septal granulation, and dimorphic S_{1}.

Material. - G-134 (USNM 45905, UMML 8: 232); G-135 (USNM 45911); G-251 (USNM 45906) ; G-503 (USNM 45907) ; G-636 (USNM 45912); G-691 (USNM 45908, UMML 8: 304) ; G-692 (USNM 45909); CI-6 (USNM 45913); GS (G)-44 (USNM 45914); O-1025; O-1890; O-3955; O-4833; O-4932; O-4938; O-4939; SB-206; SB-332; SB-2449; SB-3339; SB-3467; BL-45 (MCZ); Bibb-216 (MCZ); Alb-2153 (USNM 7189); Alb-2157 (USNM 10833); Alb-2324 (USNM 10215); Alb-2327 (USNM 36355); Alb-2345 (USNM 36348); Alb-2346 (USNM 10254); Alb-2353 (USNM 10252); Alb-2354; Alb-2661 (USNM 16156); Caroline-37; E-26538; E26542; E-26549; E-30150; E-30176; BLM-22-VI-B (Alabama BLM); $27^{\circ} 54^{\prime} 53^{\prime \prime} \mathrm{N}$, $93^{\circ} 26^{\prime} 50^{\prime \prime} \mathrm{W}, 100 \mathrm{~m}$ (Texas BLM) ; TAMU 65A9-20 (TAMU); Chall-109 (BM); Ex-plorer-4. - Holotype of L. cavolina; syntypes of L. exigua; Lindström's (1877) specimens (NRM); Moseley's (1881) specimens (BM).

Types. - The holotype of L. carolina (two labels are present: 2764 and 2754) is deposited at the MCZ. Two lots of syntypes of L. exigua are deposited at the MCZ: one lot (2778) contains three branches, the other (two labels are present: 2789 and 2781) contains four branches. Both are labelled "Florida Straits, 36-79 fathoms." The worn fragments from off Pacific Reef, Florida (Bibb-216) are not at the MCZ and are presumed lost.
Type-Locality. - Unknown, but probably from off Havana, Cuba.

Distribution. - Greater Antilles; western Caribbean; Gulf of Mexico; off eastern coast of U.S. from North Carolina to Florida; St. Peter and Paul Rocks (Map 5). 53-801 m, most common between 200-300 m.

Family ANTHEMIPHYLLIIDAE Vaughan, 1907
Genus Anthemiphyliia Pourtalès, 1878

Diagnosis. - Solitary, patellate, free. Septotheca thick and smooth (porcelaneous) or costate. Septa strongly dentate. No pali; columella trabecular, papillose on surface. Type-species: Anthemiphyllia patera Pourtalès, 1878, by monotypy.
9. Anthemiphyllia patera Pourtalès, 1878

Plate V, figures 5-7

Anthemiphyllia patera Pourtalès, 1878: 205, pl. 1, figs, 14-15; 1880: 97, 112, pl. 2, figs. 5-6. - Vaughan, 1907: 80. - Gardiner \& Waugh, 1938: 172. - ZiBrowius, 1976: 108.

Description. - The corallum is bowl-shaped and free; the rounded base usually has a scar of attachment at its apex or shows regeneration from a parent fragment. The largest specimen examined measures 13.1 mm in calicular diameter and 7.3 mm in height. The calice is round. The wall is thick, porcelaneous, and smooth. Finely granulated, equal costae can be distinguished only at the calicular edge.

Septa are arranged in six systems and four cycles. S_{1} reach the columella and bear seven-nine prominent spines. The one-three spines closest to the columella are slender and tall, compressed in the plane of the septum. The next several spines are larger and strongly compressed perpendicular to the plane of the septum. The outermost spines are much smaller, grading into a costal dentition near the base. S_{2} and S_{3} are equal in size and slightly smaller than the S_{1}, but bear similar septal spination. S_{4} are much smaller and bear seven-eight small spines. S_{5} are sometimes present in the largest coralla. When this occurs, the S_{4} that are flanked by the S_{5} are enlarged to the same size as the S_{2} and S_{3}, and the S_{5} are the same size as typical $S_{4} . S_{1-3}$ are equally exsert; S_{4} are slightly less exsert. All septa bear low, rounded granules, often occurring in pairs.

Plate-like granules on the lower, inner edges of the S_{1-3} often
unite with those of adjacent septa, forming a solid platform surrounding the columella. The columella is massive, round, and flat, composed of numerous crispate, spongy trabeculae. The fossa is relatively shallow.

Discussion. - There are three nominal species of Anthemiphyllia: A. patera Pourtalès; A. dentata (Alcock, 1902) (Celebes Sea, Japan); and A. pacifica Vaughan, 1907 (Hawaii). Yabe \& Eguchi (1942) implied that the two Pacific species were synonymous. A. patera is easily distinguished from A. pacifica by its shape, porcelaneous base, and distinctive columella.

Material. - P-861 (6) USNM 45916; G-688 (4) USNM 45915; BL-100 (15) MCZ, (2) USNM; Gos-1656 (1); Hudson-4B (10) NMC.

Types. - The holotype, collected at BL-16, is not at the MCZ, USNM, or BM; it is presumed lost.
Type-Locality. $-23^{\circ} 11^{\prime} \mathrm{N}, 82^{\circ} 23^{\prime} \mathrm{W}$ (off Havana, Cuba); 534 m .
Distribution. - Off Fernandina, Florida; Northwest Providence Channel, Bahamas; off Havana, Cuba; Grenadines, Lesser Antilles (Map 6). 500-700 m.

Suborder Caryophyllifna Vaughan \& Wells, 1943
Superfamily Caryophyllicae Gray, 1847
Family CARYOPHYLLIIDAE Gray, 1847
Subfamily Caryophylliinae Gray, 1847
Genus Caryophylia Lamarck, 1801
Diagnosis. - Solitary; ceratoid, turbinate, or subcylindrical; fixed or free. Septotheca usually strongly costate. Pali opposite S_{3} in one crown (or before second group of septa when hexameral symmetry obscured). Columella fascicular, formed of twisted ribbons. Type-species: Madrepora cyathus Ellis \& Solander, 1786, by subsequent designation (Broderip, 1828).
Key to the eleven western Atlantic species of Caryophyllia
1 Corallum free. 2
1^{\prime} Corallum attached. 4
2 Calicular diameter of adult over 30 mm ; usually more than 48 septa C. ambrosia caribbeana n. subsp.
2^{\prime} Calicular diameter of adult rarely exceeds 10 mm ; 48 septa or less 3
3 Basal tip invariably broken off; pali irregular and poorly de-veloped; 36 or less septa . . . C. cornuformis Pourtalès, 1868
3 Basal tıp otten pointed; pall well developed; usually 48 septaC. horologium Cairns, 1977
4 Septa arranged hexamerally 5
4^{\prime} Septa not arranged hexamerally (pentamerally, heptamerally, octamerally, or decamerally) 10
5 Pali before antipenultimate cycle of septa (S_{2})
C. paucipalata Moseley, 1881
5^{\prime} Pali before penultimate cycle of septa (usually S_{3}). 66 Last cycle of septa (S_{4}) extends as far or farther toward thecolumella as penultimate cycle $\left(\mathrm{S}_{3}\right)$
C. polygona Pourtalès, 1878
6^{\prime} Last cycle of septa does not extend as far toward the columellaas the penultimate cycle77 Fine thecal striae ou ur perpendicular to the costae
C. corrugata, n. sp.
7^{\prime} No thecal striae 88 Corallum small (average $\mathrm{cd}=6 \mathrm{~mm}, 6-8 \mathrm{~mm}$ tall); short,oblique carinae on faces of S_{4}. C. parvula, n. sp.
8^{\prime} Corallum large (over 10 mm in cd); no carinae on septal faces 9
9 Costae prominent, ridged; columellar elements usually fused to one another laterally; $55-91 \mathrm{~m}$ depth range.

$$
\text { C. horologium Cairns, } 1977
$$

9^{\prime} Costae usually flat; columellar elements distinct; $100-1033 \mathrm{~m}$ depth range C. berteriana Duchassaing, 1850
10 Septa always arranged octamerally; septal granules fused into short, oblique ridges near the inner septal margin
C. barbadensis, $\mathrm{n} . \mathrm{sp}$.
10^{\prime} Septa arranged heptamerally, octamerally, or decamerally; septa never ridged. 11
11 Septa arranged decamerally. 12
11' Septa arranged heptamerally or octamerallyC. berteriana Duchassaing, 1850
12 Theca costate (not porcelaneous); fossa moderately deep; pali very narrow; upper corallum brownish . . . C. zopyros, in. sp.
12' Theca porcelaneous; fossa very shallow; pall narrow; corallum entirely white C. antillarum Pourtalès, 1874
10. Caryophyllia berteriana Duchassing, 1850

Plate VI, figures 4-8; Plate VII, figure 1

Caryophyllia berteriana Duchassaing, 1850: 15. - Milne Edwards \& Haime, 1857: 19, pl. D1, fig. 1. - Duchassaing \& Michelotti, 1860: 59; 1864: 64. Duchassaing, 1870: 24. - Pourtalès, 1871: 8. - Duncan, 1873: 317. Pourtales, 1874: 33-34, pl. 1, figs. 1-2; 1880: 96, 99. - ?Vaughan, 1901: 292 (specimen lost). - Lewis, 1965: 1063. - Zibrowius, 1976: 117. - Cairns, 1977b: 5; 1978: 10.
Caryophyllia formosa Pourtalès, 1867: 113; 1871:7-8, pl. 1, fig. 16. - Duncan, 1873: 317. - Pourtalès, 1878: 199.
Not Caryophyllia berteriana: Lindström, 1877: 8 ($=$ C. antillarum and Trochocyathus rawsonii) - Moseley, 1881: 134. - Gardiner, 1904: 112-113 (see Discussion). - Wells, 1958: 261. - Souires, 1961: 17.

Description. - The corallum is ceratoid and laterally compressed, producing a round to elliptical calice. The pedicel is usually reinforced by concentric layers of stereome but may be be quite slender.

The corallum is firmly attached to the substrate by a thin, encrusting base. An average corallum measures $17.5 \times 16.5 \mathrm{~mm}$ in calicular diameter and about 22 mm tall. The expression of costae is variable. Usually they are broad, flat, and subequal (C_{4} broader than C_{1-3}), separated by narrow furrows, and prominent only near the calice. Sometimes, however, C_{1-3} form low ridges extending halfway to the base. Costal granules are small and arranged such that three-five low, rounded granules can be counted across the width of each costa near the calice.

Septa are arranged in four cycles and usually six systems, although seven and eight systems are common, resulting in 48,56 , or 64 septa. S_{1} and S_{2} are moderately exsert and equal in size, extending threefourths of the distance to the columella. S_{3} and S_{4} are progressively smaller and less exsert. The inner margins of the S_{1}, S_{2}, and S_{4} are slightly sinuous, whereas those of the S_{3} are very sinuous with broad septal undulations. Septal granules are high and blunt, sometimes fusing into short, oblique carinae, which are arranged in widely spaced rows on slight undulations.

Depending on the number of systems present, there may be 12, 14 , or 16 pali arranged in a ring before the S_{3}. They are tall, thin, rounded on their upper edges, and have sinuous inner margins. The palar granules are larger than those of the septa. The columella is composed of 2-17 small, tightly twisted, pointed ribbons, which are rarely fused together. They are arranged linearly or randomly in an elliptical field.

Discussion. - Pourtalès (1867) described C. formosa to apply to those forms with only twelve pali, a light, thin corallum (before secondary stereome thickening), and less exsert septa than C. berteriana. With more material at hand, Pourtalès (1880) synonymized C. formosa. Moseley's C. berteriana is very similar to this species but has much thicker septa at the calicular edge and a narrower corallum. Additionally, this specimen is from the eastern Atlantic from 2779 m , well outside the known bathymetric and geographic ranges for C. berteriana.

Gardiner's (1904) specimens from South Africa are distinctly different from C. berteriana in that they possess file-sculptured
thecae and the S_{4} are much longer than the S_{3}. They probably represent an undescribed species. This erroneous African record formed the basis of Wells's (1958) and Squires's (1961) distributional records.

Material. - P-208 (1) USNM 45997; P-209 (1) USNM 45998; P-848 (1) USNM 46000, (1) UMML 8: 237; P-849 (2) USNM 46001; P-904 (1) USNM 46002; P-944 (2) USNM 46003; P-1140 (8) USNM 45999; G-23 (1) USNM 45986; G-261 (1); G-304 (2) USNM 45987; G-311 (1) USNM 45988; G-509 (2) UMML 8: 354; G-661 (1) USNM 45989; G-663 (2) USNM 45990; G-667 (1); G-707 (6) USNM 45991; G-708 (2) USNM 45992; G-711 (1) USNM 45993; G-725 (1) UMML 8: 352; G-889 (2) USNM 45994; G-1312 (1) USNM 45996; G-1329 (3) USNM 45995; CI-7 (1) USNM 46004; O-1993 (1) ; O-2356 (4); O-2655 (1); O-4297 (1); O-4398 (36); O-5015 (12); O-5432 (2) ; O-5645 (1); O-5648 (42) ; O-5934 (1); O-10833 (1); SB-3467 (1); SB-3472 (2); BL-20 (1) MCZ; BL-32 (1) MCZ; BL-45 (1) MCZ; BL-132 (2) MCZ; BL-154 (4) MCZ; BL-156 (1) MCZ; BL-157 (4) MCZ; BL-158 (1) MCZ; BL-189 (1) MCZ; BL-231 (1) MCZ; BL-240 (2) MCZ; BL-253 (1) MCZ; BL-254 (2) MCZ; BL-273 (6) MCZ; BL-293 (2) MCZ; BL-290 (39) MCZ; BL-292 (2) MCZ; BL-296 (9) MCZ; Hassler, off Barbados, 183 m (21) MCZ; Alb-2152 (2); Alb-2153 (3) USNM 7190 ; Alb-2342 (1) USNM 10232; Combat-238 (1) USNM 46005; Combat-447 (1); Combat-450 (1) USNM 45660; Combat-452 (1); Gos-112/78 (1); E-26017 (1); E-26549 (1); E-30179 (2) ; BLM 33-I-C (1) Alabama BLM; Atl-2980 B (1) MCZ; Atl-3341 (1) MCZ; Atl-3482 (2) MCZ; TAMU 65A9-15A (15) TAMU; east edge of DeSoto Canyon, west of Cape San Blas, Florida, 183-549 m (2) AMNH; Hummelinck-1443 (27). - Syntypes of C. formosa; Linđström's (1877) C. berteriana; Moseley's (1881) C. berteriana; Gardiner's (1904) C. berteriana.

Types. - The types of C. berteriana are probably lost; none are labelled as such at the MIZS or the MNHNP. Two syntypes of C. formosa are deposited at the MCZ (2756), collected at Corwin-2 or 4 off Havana in 494 m . Another syntype is at the YPM (4762).
Type-Locality. - Guadeloupe (Lesser Antilles); 100 m .
Distribution. - Common throughout Caribbean and eastern Gulf of Mexico, ranging from off Florida to off Surinam; however, present off northern coast of South America only off Leeward Group (Map 7). $100-1033 \mathrm{~m} .7-23^{\circ} \mathrm{C}$, based on six records.
11. Caryophyllia cornuformis Pourtales, 1868

Plate VII, figures 2-5

Caryophyllia cornuformis Pourtalès, 1868: 133; 1871: 9, pl. 1, figs. 14-15. - DunCan, 1873: 317. - Pourtalès, 1878: 198-199; 1880: 96, 99-100. - Lewis,

1965: 1063. - Zibrowius, 1976: 137-139, pl. 73, figs. A-L. - Cairns, 1978: 10.

Caryophyllia pourtalesi Duncan, 1873: 317, pl. 42, figs. 3-10. - ?Lindström, 1877: 8 (in part: northwest Atlantic specimen only), pl. 1, fig. 4. - Duncan, 1878: 238, pl. 43, figs. 1-7, 11-14; 1883: 362. - Lindström, 1884: 102.
Caryophyllia communis: Jourdan, 1895: 12 (in part: Sta. 161).
Caryophyllia clavus: Gravier, 1920: 16 (in part).
Not Caryophyllia cornuformis: Gardiner \& Waugh, 1938: 179-180, text-fig. 2.
Description. - The corallum is small, free, and regularly curved, tapering only slightly toward the base. The base is always broken, revealing one or two cycles of septa. The largest corallum examined, containing 40 septa, measures 10.2 mm in calicular diameter and 25.0 mm tall, but an average-size specimen measures $5.5-6.5 \mathrm{~mm}$ in calicular diameter and contains $24-28$ septa. The theca is usually porcelaneous and smooth, interrupted only by fine intercostal striae. The costae are broad, flat and extend to the base. C_{3} are slightly broader than the other costae. Low, rounded granules are sometimes distinguishable on the costae, arranged such that four-five can be counted across the width of each costa near the calice. The calicular edge is regularly serrate, a low apex corresponding to every septum.

Septa are arranged in three cycles but in a variable number of systems, ranging from five to eleven. Typical septal arrangements are: $6 / 6 / 12,7 / 7 / 14$, and $8 / 8 / 16$; the largest has $11 / 11 / 18$. The total number of septa is roughly a function of calicular size, with new systems developing with growth. First an S_{2} forms between two S_{1}, then two S_{3} develop, flanking the S_{2}. Simultaneously, a palus forms before the S_{2}. Often the incipient palus seems to be an adjacent columellar rod that enlarges, changing from a twisted ribbon to a lamellar plate. S_{1} are slightly exsert and extend almost to the columella. S_{2} and S_{3} are progressively less exsert and smaller. The inner edges of all septa descend vertically into a moderately deep fossa; those of the S_{1} and S_{3} are sinuous, whereas those of the S_{2} are very sinuous, corresponding to septal undulations directed parallel to the trabeculae. Pointed septal granules are arranged in lines on the crests of the septal undulations. The granules become less prominent toward the septal edge, which may be smooth or porcelaneous.

Palar development is very irregular. When present, the pali stand
before the S_{2}; however, they may be completely absent or correspond to any number of S_{2}. They are typical in shape for the genus, with sinuous inner edges. Sometimes, however, they are large, spirally twisted rods, like the columella, especially when the system is newly formed. The palar granules are about twice the size of the septal granules and are often arranged in short carinae oriented horizontally or slightly obliquely. The columella is composed of onenine tightly twisted ribbons, which lie in an elliptical palar fossa.

Discussion. - Lindström's specimen of C. pourtalesi is atypical in that its pali are very poorly developed for its size. The distributional gap between Georgia and Newfoundland, as well as the difference in bathymetry is similar to the disjunct distribution of C. ambrosia caribbeana. More specimens from the northeast Atlantic may show a subspecific difference.

> Material. - P-600 (1) USNM 46042; P-606 (2) USNM 46043; P-877 (2) USNM 46045; P-889 (2) USNM 46044; P-891 (2) UMML 8: 357; G-132 (1) USNM 46028; G-134 (1) USNM 46040; G-289 (38) USNM 46029, (4) UMML 8: 234; G-299 (10) USNM 46030; G-300 (18) USNM 46031; G-301 (1) USNM 46032; G-663 (29) USNM 46033, (9) UMML 8: 358; G-664 (200) USNM 46034; G-676 (1) USNM 46035; G-715 (3) USNM 46041; G-861 (2) USNM 46036; G-1015 (1) USNM 46039; G-1322 (5) USNM 46037; G-1323 (5) USNM 46038; O-2068 (5); O-2776 (6); O-4226 (100); SB2425 (1); SB-2445 (3) ; BL-19 (10) MCZ; BL-100 (2) MCZ; BL-274 (2) MCZ; Alb-2659 (1) USNM 16114; Alb-2750 (33) USNM 36420; Alb-2756 (11) USNM 36363; Gos1590 (3); Gos-1748 (1); E-43 (1); E-26019 (1); Akaroa-5c (1) SME. - Syntypes of C. cornuformis and C. pourtalesi; Lindström's (1877) specimens (NRM).

Types. - Two lots of syntypes are deposited at the MCZ: one lot, labelled "Fl. Straits, 237-250 fms" (5493a), contains two poor specimens; the other lot, labelled "Florida, 250 fms " (2771), contains three specimens, one of which is in good condition. Duncan's C. pourtalesi is based on two syntypes deposited at the BM (1883.12.10.143, 1880.12.10.22).

Type-Locality. - Off Sand Key and the Samboes, Florida; 433, 454 m .
Distribution. - Western Atlantic: Antillean distribution and off eastern Yucatan Peninsula to Belize (not off northern coast of South America); off Brazilian coast to Recife (Map 8). 37-931 m. - Elsewhere: northwest Atlantic from $46^{\circ}-63^{\circ} \mathrm{N}$. $1065-1970 \mathrm{~m}$; eastern Atlantic in area bounded by the Celtic Sea, the Azores, and Morocco. $1300-2200 \mathrm{~m}$.

12. Caryophyllia antillarum Pourtalès, 1874

Plate V, figures 8-10

Caryophyllia antillarum Pourtalès, 1874: 34 (in part: see Types), pl. 6, figs. 3-4; 1880: 96, 100 (in part: BL-157, 166, 273, 288, 300).
Caryophyllia berteriana: LindStröm, 1877: 8 (in part: the larger of the two specimens).
Not Caryophyllia antillarum: Pourtalès, 1878: 199 (indeterminate).
Not Caryophyllia sp. cf. antillarum: Goreau \& Wells, 1967: 449. - Wells, 1973: 58 (= Caryophyllia C, Cairns, 1976).

Description. - The corallum is ceratoid, narrowing to a pedicel measuring about one-half the calicular diameter, which expands basally to form an encrusting attachment. The calice is round to slightly elliptical. The lectotype measures $9.0 \times 8.6 \mathrm{~mm}$ in calicular diameter. The theca is smooth and porcelaneous, covered by very low, rounded granules. Costae are not usually distinguishable, but when present they are broad, flat, unequal (those corresponding to the tertiaries are twice as broad as all others), and separated by narrow, very shallow striae.

Septa are usually arranged decamerally in three cycles: 10/10/20. The 10 primaries are moderately exsert and extend about threefourths of the distance to the columella. Secondaries and tertiaries are progressively less exsert and extend about halfway to the columella, the tertiaries being only slightly smaller than the secondaries. The inner edges of the primaries and tertiaries are only slightly sinuous, whereas those of the secondaries are extremely sinuous. The sinuosity reflects the septal undulations, running perpendicular to the trabeculae. The septal faces are smooth except for small pointed granules arranged in widely spaced rows on the crests of the septal undulations.

A very tall, narrow palus stands before each secondary septum, separated from it by a deep, narrow notch. Palar granulation is more prominent than that of the septa, consisting of numerous taller, blunt spines, which sometime form short horizontal carinae. The pali form an elliptical ring enclosing an elongate columella, which is composed of three-ten slender, twisted ribbons usually arranged in two parallel rows. The ribbons are basally interconnected as well as
connected to the inner edges of the pali. The fossa is very shallow; the tops of both the pali and columellar elements usually rise above the calicular edge.

Discussion. - C. antillarum is easily distinguished from all other western Atlantic Caryophyllia but easily could be confused with C. abyssorum Duncan, 1873, known only from the eastern Atlantic between $1000-1500 \mathrm{~m}$. C. abyssorum, also decameral, differs in that it has a curved, slightly larger, more massive corallum, with thicker septa and a deeper fossa.

Material. - P-876 (2) USNM 45919; G-694 (1) USNM 45917; G-706 (1) UMML 8: 235; G-707 (1) USNM 45918; CI-93 (1) USNM 45920; BL-76 (1) MCZ; BL-157 (1) MCZ; BL-166 (1) MCZ; BL-273 (9) MCZ; BL-288 (2) MCZ; BL-300 (2) MCZ; Atl3332 (1) MCZ; Pocock-IV (1) NMC; ?SME-1776 (1) SME. - Syntypes of C. antillarum; Lindström's (1877) specimen.

Types. - Three lots containing six syntypes of C. antillarum are deposited at the MCZ. The single specimen in lot 2786, the only one that is figured and described in the original description, is designated lectotype. Only one of the four specimens in lot 5432 is the same species (designated paralectotype); the other three are Caryophyllia barbadensis, n. sp. (1) and perhaps Caryophyllia zopyros, n. sp. (2). The third lot (5477) contains one specimen of Caryophyllia barbadensis. All six specimens were collected at an undetermined Hassler station off Barbados.
Type-Locality. - Barbados; 183 m .
Distribution. - Antillean distribution (Map 9). 150-1000 m.
13. Caryophyllia polygona Pourtalès, 1878

Plate VII, figures 6-9
Caryophyllia polygona Pourtalès, 1878: 198-199; 1880: 96; Cairns, 1978: 10.
Caryophyllia antillarum: Pourtalès, 1880: 100 (in part: BL-108).
Description. - The corallum is usually ceratoid and is firmly attached by a long, slender pedicel one-fourth to one-third the calicular diameter, which expands into a thin, encrusting sheet basally. Some specimens are more stout, with a shorter and thicker pedicel and thickened upper theca. The calice is round to slightly elliptical in shape. The largest specimen examined measures $18.2 \times 15.2 \mathrm{~mm}$ in
calicular diameter and 32.1 mm tall, but normally individuals are much smaller. C_{1} and C_{2} are usually highly ridged, even cristiform, from the calice to the base. Sometimes, however, the ridges are prominent only near the calice, or for a short distance in the middle of the corallum, or, in rare cases, not ridged at all. C_{3} and C_{4} are usually not prominent. Specimens in good condition usually have smooth, porcelaneous thecae with no evidence of costal granulation. A small specimen of 24 septa measuring 5 mm in calicular diameter has a smooth, translucent, milky-white theca. Worn specimens, however, reveal a fine granulation of low, rounded tubercles. The calicular edge is serrate, forming a large apex corresponding to every septum of the first two cycles and a much smaller apex for every septum of the third and fourth cycles.

Septa are arranged in six systems and four cycles; the fourth cycle is usually complete at a calicular diameter of $10 \mathrm{~mm} . \mathrm{S}_{1}$ are slightly larger than S_{2}. Both are highly exsert and extend about two-thirds of the distance to the columella. S_{4} are smaller and less exsert than the S_{2} but more exsert than the S_{3} and also usually extend farther toward the columella than the S_{3}. The inner edges of all septa are usually straight but may be slightly sinuous, especially the inner edges of the S_{3}. Moderately tall, pointed, blunt granules occur randomly on the septal faces.

A tall, large palus stands before each S_{3} and is separated from the septum by a moderately deep and narrow notch. The palar granulation is more prominent and the palar margins much more sinuous than those of the septa. The pali form an elliptical crown inside which the columella rests. The columella is composed of 4-15 slender, twisted ribbons, often linearly arranged in one-three parallel rows. The fossa is moderately deep.

Discussion. - In five of the 19 valid species of Atlantic Caryophyllia the last cycle of septa (usually S_{4}) extends farther toward the columella than the septa of the penultimate cycle (usually S_{3}): C. ambrosia Alcock, 1898; C. polygona Pourtalès, 1878; C. barbadensis, n. sp.; C. atlantica Duncan, 1873; and C. calveri Duncan, 1873. The last two are known only from the eastern Atlantic. C. polygona can be distinguished from all of these species by its prominently
ridged C_{1} and C_{2}. Other characters, such as porcelaneous theca, hexameral symmetry, and lack of septal carinae additionally serve to differentiate it from these species.

Material. - P-586 (6) USNM 46049, (1) UMML 8: 238; P-634 (8) USNM 46050, (4) UMML 8: 356; P-1262 (1) UMML 8: 355; G-296 (1) USNM 46046; G-372 (1) USNM 46047; G-1111 (1) USNM 46048; O-11722 (1); BL-108 (1) MCZ; Gos-112/78 (1) Cornell; E-26017 (1); TAMU 69A13-16 (4) TAMU; Rosaura-34 (1) BM. - Syntypes of C. polygona.

Types. - The two syntypes, collected from BL-41, are deposited at the MCZ (5476). Type-Locality. $-23^{\circ} 42^{\prime} \mathrm{N}, 83^{\circ} 13^{\prime} \mathrm{W}$ (western Straits of Florida); 1573 m .

Distribution. - Antillean distribution; off Campeche Bank, Mexico (Map 6). 700-1817 m. 5-8 ${ }^{\circ} \mathrm{C}$, based on four records.

14. Caryophyllia paucipalata Moseley, 1881
Plate VIII, figures 1-6
Caryophyllia paucipalata Moseley, 1881: 138, pl. 1, figs. 3, 3a.

Description. - The corallum is trochoid, narrowing to a base of attachment measuring about half the calicular diameter. The calice of the lectotype is round, measuring 10.5 mm in diameter; the corallum is 17.5 mm tall. The theca is very thick and bears broad, equal, flat costae barely distinguishable in the upper two-thirds of the corallum. On the basal third, faint intercostal striae are present. Low, rounded costal granules are visible only in the upper corallum; consequently the theca is rather smooth.

The septa of the lectotype are arranged pentamerally (5/5/10/20); however, the septal arrangement in three subsequently collected specimens is hexameral, and the latter is believed to be the normal condition. S_{1} are slightly exsert and extend almost halfway to the columella. S_{1} are only slightly larger than the S_{2} and S_{3}, which are about the same size. The S_{4} are about half the size of the S_{3}. The inner edges of all septa are slightly sinuous, the paliferous septa (S_{2}) to the greatest degree. The septa bear moderately tall, pointed granules.

Typical Caryophyllia-like pali stand before the S_{2}; however,
only five pillar-like pali are present in the lectotype. The columella, which lies slightly below the pali, consists of one-five twisted laths. The fossa is moderately deep.

Discussion. - C. paucipalata is unique among the Atlantic Caryophyllia in that its pali stand before the antipenultimate group (second group) of septa instead of the penultimate group (usually the third) as in all others.
C. paucipalata should not be confused with C. paucipaliata Yabe \& Eguchi, 1942, a Pliocene fossil from Japan.

Material. - BL-266 (1) MCZ; Rosaura-34 (2) BM 1938.3.1.83-91. - Types.
Types. - The two syntypes from Chall-24 are deposited at the BM (1880.11.25.34). The more complete specimen, which formed the basis of the original description and both figures, is herein designated as lectotype. The other specimen (paralectotype) is very worn but hexameral in septal arrangement.
Type-Locality. - Off Culebra, Virgin Islands; 714 m .
Distribution. - Known only from the Windward Group, Lesser Antilles (Map 9). 714-843 m.

15. Caryophyllia ambrosia caribbeana, new subspecies

Plate V, figure 4; Plate VI, figures 1-3, 9

Caryophyllia communis var. costata: Pourtalès, 1880: 100, pl. 1, figs. 12-13.
Caryophyllia ambrosia: Boone, 1928: 7-8, pls. 2-3. - Keller, 1975: 180, pl. 2, figs. 5-8.
?Caryophyllia clavus: Lewis, 1965: 1063.
Caryophyllia sp. cf. C. ambrosia: Calrns, 1978: 10.
Description. - The trochoid to turbinate corallum tapers to a very narrow, pointed, unattached base. The lower part of the corallum is usually curved about $90^{\circ}\left(20^{\circ}-180^{\circ}\right)$ in the direction of the smaller calicular axis. The largest specimen measures $44.3 \times$ 36.8 mm in calicular diameter and 69 mm tall. The expression of costae and costal granulation is quite variable. Usually the C_{1} are prominent and ridged, highest near the calicular edge, and extend almost to the base. Broader, flat costae, equal in size and separated
from one another by narrow, shallow striae, correspond to the other septa. Sometimes none of the costae are ridged, but all are broad and flat or slightly convex; at other times, in addition to the primaries, the secondary costae are also slightly ridged. The costal granulation is usually very coarse, consisting of small, pointed spines, producing a very rough texture.

Septa of three different sizes are distinguishable: primaries, secondaries (bearing the pali), and tertiaries. Adult coralla usually possess 14,16 , or 18 primaries (56,64 , or 72 septa), rarely 12 ; all are highly exsert. This causes the calicular edge to be serrate, because the theca rises to an apex at each primary. The tertiaries flanking each primary are also quite exsert. The primaries extend three-fourths of the distance to the columella, the secondaries about half the distance. The secondaries are only slightly exsert and usually do not extend as far toward the columella as the tertiaries. The inner edges of the primaries and tertiaries are straight to slightly sinuous; those of the secondaries are the most sinuous, especially adjacent to the pali. The septa are thin and smooth except for low, blunt granules arranged in widely spaced rows on the crests of septal undulations, which run perpendicular to the trabeculae.

Each secondary septum bears a large palus, sometimes larger than the septum it borders, which extends to the columella. The pali are separated from the secondaries by deep, narrow notches and have very sinuous margins. Their granulation is much more prominent than that of the septa, usually composed of long (threefour times the palar thickness), blunt spines, which are often fused into short carinae.

The columella is elongate, enclosed by the elliptical palar crown. It is composed of numerous twisted, fascicular ribbons, which are usually fused to one another and to the pali. The ribbons often occur in one straight row but may also be arranged in two parallel rows or randomly in an elliptical field. The interiors of older coralla are solidly filled in with stereome.

Discussion. - Some authors (e.g., Pourtalès and Moseley) have attributed the common western Atlantic Caryophyllia to Ceratocyathus communis Seguenza, 1864, an Italian fossil species.

There is no doubt that C. ambrosia is similar, if not identical, to Ceratocyathus communis, as well as to C. affinis, C. ponderosus, C. scillae, C. suborbiculata, C. ecostatus, and C. costatus, all attributable to Seguenza. However, because none of Seguenza's types are preserved, his figures are inadequate, and the geological age of his fossils is not certain, some authors (e.g., Zibrowius) have chosen not to accept his names for Recent species. Therefore, the first available name for the Recent species is Caryophyllia ambrosia Alcock, 1898.

The Caribbean and Gulf of Mexico specimens differ slightly but consistently from typical Caryophyllia ambrosia Alcock, 1898. The two most conspicuous differences, both of which are qualitative and somewhat subjective, concern the shape of the corallum and the nature of the costae. First, the corallum of C. a. caribbeana is more open, not as slender as in C. a ambrosia. Second, the costae of C. a. caribbeana are more prominent, often ridged, and highly granulated, producing a rough texture. Furthermore, they are usually unequal, the C_{1} and C_{2} being larger. The costae of $C . a$. ambrosia are flat and equal, with a very fine, rounded granulation, producing a smooth texture. These morphological differences are augmented by both a geographic and bathymetric isolation of the two forms. C. a. caribbeana is widely distributed in the Gulf and Caribbean, off Brazil, and as far north as $26^{\circ} 28^{\prime} \mathrm{N}$ off east Florida, at depths of 183-1646 m . The typical subspecies is known from the Indian Ocean, eastern Atlantic, and in the western Atlantic off the northeast coast of North America no farther south than $38^{\circ} 34^{\prime} \mathrm{N}$, from $1600-3000 \mathrm{~m}$. It has been reported from off the northeast coast of the United States by Moseley (1881) and Verrill (1885a, 1908a) as C. communis.

The first new name applied to the Caribbean subspecies was C. communis var. costatus Pourtalès, 1880; however, this combination is a junior homonym of Seguenza's (1864) Ceratocyathus (= Caryophyllia) costatus. The name caribbeana is proposed for the new subspecies. C. seguenzae Duncan, 1873 (eastern Atlantic) may also prove to be another subspecies of C. ambrosia.

Material. - P-340 (8) USNM 45974 ; P-364 (5) UMML 8: 351; P-394 (15) USNM 45973; P-445 (1) USNM 45975; P-448 (1) USNM 45976; P-478 (9) USNM 45980, (4)

Abstract

UMML 8: 350; P-605 (1) USNM 45977; P-607 (11) USNM 45978; P-636 (2) USNM 45979; P-682 (7) USNM 45923, (2) UMML 8: 349; P-741 (12) USNM 45981, (1) UMML 8: 236; P-747 (2) USNM 45957; P-753 (100) USNM 45922; P-754 (6) USNM 45958; P-846 (2) USNM 45959; P-850 (3) USNM 45982; P-861 (4) USNM 45960; P-881 (13) USNM 45961; P-889 (4) USNM 45962; P-891 (2) USNM 45963; P-918 (6) USNM 45964; P-944 (1) USNM 45965; P-984 (2) USNM 45966; P-1171 (2) USNM 45971 ; P-1 187 (3) USNM 45967 ; P-1255 (1) USNM 45968; P-1256 (1) USNM 45969; P-1262 (2) USNM 45970; P-1355 (1) 45983; 49 specimens from 19 Gerda stations in the Straits of Florida; GS-31 (55) USNM 45924; CI-12 (1) USNM 45985; CI-93 (1) USNM 45984 ; O-1884 (1); O-1911 (20); O-1981 (15) USNM 45658; O-1982 (3) USNM 45661 ; O-1985 (34) USNM 53370; O-1989 (30) USNM $45659 ;$ O-2202 (2) ; O-2637 (1) ; O-2772 (2); O-2774 (1); O-2775 (1); O-3252 (4); O-3550 (1); O-3553 (2); O-3554 (1); O-3562 (1); O-3573 (2); O-4226 (11) USNM 45925; O-4302 (9); O-4304 (7); O-4421 (1); O-4423 (9) ; O-4713 (3); O-4840 (1) ; O-4907 (10) ; O-4911 (1); 0-4913 (2) ; O-5629 (1) ; O-5636 (7); O-5639 (1); O-5740 (3); O-5925 (1); O-5929 (4); O-6695 (2); O-6696 (1); O-6701 (1); O-6703 (2); O-6721 (6); O-6722 (5); O-10173 (2); O-10491 (3); O-10513 (1); O-10825 (3); O-10827 (2); O-10831 (1); O-10833 (1); O-10843 (1); O-10875 (5); O-10876 (1); O-10877 (1); O-10901 (2); SB-2474 (1); SB-2475 (13) ; SB-3514 (1); SB-3515 (6) ; SB-5142 (4) ; SB-5144 (1); SB-5168 (1); BL-2 (2) MCZ; BL-134 (2) MCZ; BL-143 (1) MCZ; BL-214 (1) MCZ; BL-227 (1) MCZ; BL-254 (1) MCZ; BL-258 (2) MCZ; BL-274 (1) MCZ; Alb-2117 (8) USNM 7057 ; Alb-2385 (2) USNM 10375; Alb-2392 (5) USNM 16106; Alb-2393 (1) USNM 10417; Combat-450 (23); Combat-449 (3); Caroline-23 (1); 47 specimens from 18 Atlantis stations from off the coasts of Cuba (MCZ); TAMU 65A9-4 (12) TAMU; TAMU 65A9-14 (22) TAMU; TAMU 65A9-15 (1) TAMU; TAMU 66A5-4 (2) TAMU; TAMU 67A5-1A (1) TAMU; TAMU 67A5-7E (2) TAMU; TAMU 67A5-8B (2) TAMU; TAMU 67A5-13E (1) TAMU; TAMU 68A3-9A (2) TAMU; TAMU 68A7-7B (1) TAMU; TAMU 68A7-9A (5) TAMU; TAMU 68A7-12B (2) TAMU; TAMU 68A7-13B (1) TAMU; TAMU 68A7-13A (3) TAMU; TAMU 68A7-15D (2) TAMU; TAMU 68A7-15H (2) TAMU; TAMU 68A13-12A (1) TAMU; TAMU 68A13-23 (1) TAMU; TAMU 70A10-35 (1) TAMU; TAMU 70A10-41 (9) TAMU; TAMU 71A8-29 (2) TAMU; SME-1758 (2) SME; SME 1761 (4) SME; SME 1777 (1) SME; Chain-35 (1); Anton Bruun-831 (6) MCZ. - Type of C. a. caribbeana.

Types. - Syntypes of typical C. ambrosia are deposited at the Indian Museum, Calcutta, the ZMA (Coel. 1179), and the MNHNP. The holotype of C. a. caribbeana, collected at P-388, is at the USNM (45972).
Type-Locality. $-10^{\circ} 16^{\prime} \mathrm{N}, 76^{\circ} 03^{\prime} \mathrm{W}$ (off Isla de Rosario, Colombia); 814-1050 m (of new subspecies).

Distribution. - Widespread throughout Caribbean and Gulf of Mexico, ranging from off Florida to off Uruguay (Map 10). Between $26^{\circ} 30^{\prime} \mathrm{N}$ and $38^{\circ} 30^{\prime} \mathrm{N}$ off eastern coast of U.S. the species is poorly documented. Typical C. ambrosia occurs north of $38^{\circ} 30^{\prime} \mathrm{N}$, in the eastern Atlantic, and Indian Ocean. C. a. caribbeana: 183-1646 m. $5-16^{\circ} \mathrm{C}$, based on 12 records. - C. a ambrosia: $1600-2670 \mathrm{~m}$.

16. Caryophyllia barbadensis, new species
 Plate VIII, figures 7-9; Plate IX, figure 1

Caryophyllia antillarum Pourtales, 1874: 34 (in part: see Types); 1880: 100 (in part: BL-294).

Description. - The corallum is slender, slightly curved, and subcylindrical, tapering only slightly toward the base of attachment. The calice is round to slightly elliptical. The holotype measures $6.0 \times 5.5 \mathrm{~mm}$ in calicular diameter and 12.9 mm tall. The costae, which extend to the base, are equal, broad, slightly convex, and separated by shallow, narrow striae.

Septa are octamerally arranged: $8 / 8 / 16$. The eight primaries are exsert and extend almost to the columella. Secondaries and tertiaries are equal in size, less exsert, and extend about halfway to the columella. The inner edges of all septa are sinuous, those of the secondaries being the most wavy. Septal granules are prominent, equal to the septal thickness in height, and usually fuse into short, horizontal carinae at the inner edges of all the septa.

Eight tall pali, separated from the secondary septa by deep and narrow notches, form a ring encircling the columella. The pali have very sinuous margins and bear short, horizontal carinae like the septa. The columella is composed of two-four twisted ribbons linearly arranged in the elongate fossa.

Discussion. - C. barbadensis is distinguished from all other Atlantic Caryophyllia by its octameral symmetry and very sinuous pali. Other distinctive characters are its shape, tertiary septa equal in size to the secondaries, and the horizontal carinae on the septal faces.

Material. - Types.

[^4]Distribution. - Known only from Barbados, Lesser Antilles (Map 11). 183-249 m.

17. Caryophyllia corrugata, new species

Plate IX, figures 2-5
Description. - The corallum is small, ceratoid to trochoid, and attached by a pedicel of about one-third the calicular diameter. The calice is strongly flared and elliptical; the calicular diameter of the holotype measures $9.0 \times 7.8 \mathrm{~mm} . \mathrm{C}_{1}$ and C_{2} are prominently ridged and extend about halfway to the base; C_{3} are ridged only near the calice. Fine thecal lamellae, which often bifurcate and rejoin one another, run perpendicular to the costae and form a very striking pattern. Those that encompass the narrow pedicel are continuous. These lamellae are similar to those found on two Pacific species, C. rugosa Moseley, 1881 and C. lamellifera Moseley, 1881.

Septa are arranged in six systems and four complete cycles. S_{1} are slightly larger than the S_{2}; both are highly exsert and extend almost to the columella. S_{3} and S_{4} are progressively smaller and less exsert. The inner edges of the S_{1}, S_{2}, and S_{4} are straight or only slightly sinuous, whereas the inner edges of the S_{3} are very wavy, particularly near the adjacent pali. Moderately tall, blunt, pointed granules are arranged in widely spaced, well-defined, curved rows perpendicular to the trabeculae.

Tall, slender pali, separated from the septa of the third cycle by deep, narrow notches, extend to the columella. They have rounded upper edges and moderately sinuous inner and outer margins. The columella consists of several narrow, twisted ribbons linearly arranged in the elongate fossa.

Discussion. - C. corrugata is easily distinguished from all other Atlantic Caryophylia by its distinctive thecal sculpture. Although similar to Moseley's two species in this regard (see Description), it is clearly different from them in size and shape.

[^5]Types. - Holotype: BL-69 (MCZ). - Paratypes : P-991 (1) USNM 46859; SB-3494 (2) USNM 46860.

Type-Locality. - Off Havana, Cuba; 183 m .
Distribution. - Antillean distribution from the Virgin Islands to Cuba (Map 11). 183-380 m.
18. Caryophyllia parvula, new species

Plate IX, figures 6-8; Plate X, figures 5-6
Description. - The corallum is small, subcylindrical to ceratoid, and firmly attached by a broad, smooth base, which is usually thickened by deposits of stereome. The upper half of the corallum is brownish in color, whereas the basal deposits are creamy white. The holotype measures $6.1 \times 5.0 \mathrm{~mm}$ in calicular diameter and 5.8 mm tall but is not considered to have reached its adult size. The C_{1} and C_{2} of the holotype are highly ridged; C_{3} are ridged only near the calice. No costal granulation is apparent. In contrast, a paratype (BL-139) has a smooth theca with no evidence of costae and very low, inconspicuous thecal granules.

The septa of the holotype are arranged in six systems and four cycles but S_{4} are missing in two half-systems and are developed only incipiently in four other half-systems. It is not unusual for specimens of smaller calicular diameters to have 8-11 half-systems in various stages of development. S_{1} are highly exsert and slightly larger than the S_{2}, which, in turn, are much larger than the $S_{3} ; S_{4}$ are equal in size to or slightly smaller than the S_{3}. The inner edges of all septa are sinuous, especially those of the S_{3}. The septal faces of the S_{1}, S_{2}, and S_{3} are covered with randomly arranged, low, pointed granules. Septal granulation on the S_{4} and sometimes the S_{3} consists of low carinae, directed obliquely toward the columella, giving these septa a frilled appearance.

The fossa is moderately deep. A tall, narrow palus is separated from each septum of the third cycle by a deep, narrow notch. The inner and outer palar margins are slightly sinuous and their faces often bear short, horizontal carinae similar to those found on the S_{4}. The columella is formed of four-six narrow, irregularly shaped rods, which terminate below the level of the pali.

Discussion. - This species can be distinguished from the other western Atlantic species of Caryophyllia by its small size, wide base of attachment, and the distinctive carinae of the S_{4}.

Etymology. - The specific name parvula (Latin, = little) refers to the small size of the corallum in relation to the other western Atlantic Caryophyllia.

Material. - O-4459 (1); O-4938 (1, on base of M. carolina); BL, off Havana, 158 fms ($=289 \mathrm{~m}$) (1) MCZ; BL-177 (1) MCZ; Steamer Norseman, $21^{\circ} 48^{\prime} \mathrm{S}, 40^{\circ} 03^{\prime} \mathrm{W}$, $128 \mathrm{~m}(5)$; IOSP-1 (1) SME; Gos-39 (1) ; Atl-3332 (1) MCZ; Hummelinck-1443 (1). Types.

Types. - Holotype: P-1140 (USNM 46865). - Paratypes: BL-139 (1) MCZ; G-984
(1) USNM 46868; SB-3494 (2) USNM 46866; SB-3496 (1) USNM 46867; Alb-2319
(1) USNM 36359; Alb-2320 (2) USNM 10094.

Type-Locality. $-20^{\circ} 50^{\prime} \mathrm{N}, 73^{\circ} 34^{\prime} \mathrm{W}$ (off northeast Cuba); 274-289 m.
Distribution. - Antillean distribution; Arrowsmith Bank, Yucatan; off Venezuela; off southeastern Brazil (Map 12). 97-399 m.
19. Caryophyllia zopyros, new species

Plate X, figures 1-4

Caryophyllia antillarum: Pourtalès, 1880: 110 (in part: BL-239, BL-273, BL-294).
Description. - The shape of the corallum is very similar to that of C. antillarum: trochoid to ceratoid and firmly attached by a pedicel of about one-half the calicular diameter, which expands to form a thin encrusting base of attachment. The calice is usually round or slightly elliptical. A typical adult specimen measures 10 mm in calicular diameter and $15-17 \mathrm{~mm}$ tall. Broad, equal, flat to slightly convex costae are distinguishable only near the calice. They are separated at the calicular edge by shallow striae, which become indistinguishable toward the base. Low, rounded costal granules are present over the entire surface of each costa such that, on the average, three-four occur across each costa near the calicular edge. Often the upper half of the corallum is light brown, the lower half white. The theca is thick.

Septa are usually arranged decamerally in three systems; only
one specimen examined has eleven primaries (44 septa). Primaries are exsert and extend about halfway to the columella. Secondaries and tertiaries are progressively less exsert and extend a progressively shorter distance toward the columella. The inner edges of the primary and tertiary septa are moderately sinuous; those of the secondary septa are most wavy. The septal faces are covered by widely spaced, low, pointed granules in a random arrangement.

A high, narrow palus stands before each secondary, separated from it by a deep, narrow notch. Both the inner and outer palar margins are sinuous and their faces bear tall, blunt granules larger than those on the septal faces. The circumscribed columella stands lower in the fossa and is composed of several slender, twisted, interconnected ribbons, which are also in contact with the inner edges of the pali.

Discussion. - Caryophyllia zopyros resembles C. antillarum in many respects, but can be distinguished by a number of characters: its theca bears equal costae instead of being porcelaneous, its fossa is deeper, its pali are narrower, and its primaries are less exsert and less distinctive.

Etymology. - The specific name zopyros (Greek, = pyrotechnic) alludes to the resemblance of the calicular view of the corallum to an exploding fireworks display.

Material.-BL-157 (1) MCZ; Atl-3478 (2) MCZ; Pocock-IV (1) NMC. - Types.
Types. - Holotype: BL-273 (MCZ 5577). - Paratypes: BL-273 (10) MCZ 5577, (1) USNM 46870; BL-239 (2) MCZ; BL-294 (2) MCZ; P-890 (1) USNM 46869; Discovery Bay, Jamaica, 73 m (1) USNM 46056.
Type-Locality. $-13^{\circ} 03^{\prime} 05^{\prime \prime} \mathrm{N}, 59^{\circ} 36^{\prime} 18^{\prime \prime} \mathrm{W}$ (off Barbados); 188 m .
Distribution. - Antillean distribution (Map 13). 73-618 m.

Genus Concentrotheca, new genus

Diagnosis. - Solitary, subcylindrical, attached by polycyclic base. Costae inconspicuous; wall thick and smooth. Pali in one crown before S_{3} or second group of septa. Columella papillose. Type-species: Thecocyathus laevigatus Pourtalès, 1871, here designated.

Discussion. - The new genus Concentrotheca is erected for the single species T. laevigatus, which clearly does not belong to Thecocyathus Milne Edwards \& Haime, 1848 as originally placed by Pourtalès. It differs from this European Jurassic genus in having pali only before one cycle, a polycyclic base, and no epitheca. The monotypic genus is most closely related to Caryophyllia in the Caryophylliinae but differs in having a polycyclic base and a papillose columella.

Etymology. - The generic name refers to the concentric thecal rings of polycyclic development. Gender: feminine.
20. Concentrotheca laevigata (Pourtalès, 1871), new comb. Plate XVI, figures 7-12

Thecocyathus laevigatus Pourtalès, 1871: 14, pl. 5, figs. 3-4; 1878: 202 (in part: BL-5); 1880: 96. - Gardiner \& Waugh, 1938: 171. - Zibrowius, 1974c: 25; 1976: 109-110, pl. 62, figs. A-N.-Cairns, 1977b: 5; 1978: 11.

Description. - The corallum is subcylindrical and firmly attached by a polycyclic base containing up to five concentric thecal rings. The calice is variable in shape: sometimes round, elliptical, or irregular. The largest specimen examined measures 8.4 mm in calicular diameter and 14.2 mm tall. The theca, particularly near the calicular edge, is thickened with stereome, which produces a heavy corallum. The theca is usually smooth and porcelaneous with no costal granulation. Equal, slightly convex costae, separated by narrow striae, are sometimes barely visible through the exterior, glossy deposits.

Septa are arranged in a regular hexameral pattern (six systems and three cycles) at calicular diameters of less than 5 mm . Above this calicular diameter there are 7-12 primary septa (half-systems), an equal number of secondaries, and usually twice as many tertiaries. However, it is common for one or more half-systems to be incomplete (lacking both tertiaries) or overdeveloped (with quaternary septa), with both conditions occurring in the same calice. The primaries are the largest septa, slightly exsert, and have vertical inner edges extending to the columella. The secondaries and terti-
aries are progressively smaller and barely exsert. All septal edges are vertical and straight except for the lower inner edges of the secondaries, which are slightly sinuous adjacent to their pali. Randomly arranged, low, rounded granules cover the septal faces.

A tall, narrow, pointed palus often occurs before each secondary. The presence of pali, however, is quite variable. In a corallum containing 10 secondaries, there may be $0-10$ pali. The pali are usually larger than the columellar elements and project higher in the fossa. However, sometimes the pali and columellar pillars are similar, in which case the pali can be distinguished by their position directly before the secondaries. The pali are granulated like the septa. The papillose columella is composed of $1-13$ slender, granulated pillars.

```
Material. - P-587 (1) USNM 46240; G-849 (1) USNM 46238, (1) UMML 8: 385;
G-885 (1) USNM 46239; GS (G)-71-7 (1) USNM 46242; BL-5 (57) MCZ; Bibb-194 (1)
MCZ; Alb-2601 (1); Alb-2672 (1); Combat- ? off Jacksonville, Florida, 321 m (5);
Gos-1584 (1) ; Gos-1737 (2) ; Gos-1766 (1); west of Anna Maria Key, Florida, 366-487
m (1). - Syntypes.
```

Types. - One hundred fourteen syntypes, divided into nine lots, bearing the numbers 2772 and 5609, are at the $\mathbf{M C Z}$. Only three of the lots can be assigned a locality: Bibb-155 (50), 141 (1), and 169 (17). The other 46 specimens are labelled as "Florida Reefs, $100-315 \mathrm{~m}$."
Type-Locality. - Straits of Florida; 183-576 m.
Distribution. - Western Atlantic: northern temperate distribution from off North Carolina to Florida Keys; Arrowsmith Bank, Yucatan (Map 13). $183-800 \mathrm{~m}, 10-12^{\circ} \mathrm{C}$ based on four records. Eastern Atlantic: Azores. 600-772 m.

Genus Gyathoceras Moseley, 1881
Diagnosis. - Solitary, ceratoid to turbinate, fixed. Septotheca usually costate. No pali. Columella fascicular, composed of several twisted ribbons. Type-species: Cyathoceras cornu Moseley, 1881, by subsequent designation (Faustino, 1927).

Cyathoceras sp. cf. C. cornu

Plate XII, figures 2, 4
Synonymy for C. cornu:
Cyathoceras cornu Moseley, 1881: 156-157, pl. 4, figs. 7, 7a. - Vaughan, 1907: 78.

- Wells, 1936: 106; 1958: 261. - Squires, 1961: 17.
?Cyathoceras woodsi Wells, 1964: 110-112, pl. 1, figs. 4-7.
Description. - The lectotype of C. cornu is ceratoid and straight, measuring 22.7 mm from the calice to the broken pedicel. The calice is irregularly round, with a diameter of about 11.2 mm . The theca is very smooth and porcelaneous; small costal ridges are distinguishable only near the calice and near the fracture. There are no costal granules or intercostal striae.

The septa are arranged hexamerally in four complete cycles plus six pairs of S_{5}, for a total of 60 septa. S_{1} and S_{2} are equal in size, slightly exsert, and have wavy inner edges bordering the columella. S_{3} are smaller, with straight inner edges. S_{4} and S_{5} are progressively smaller, the S_{5} being quite rudimentary, and have straight, laciniate inner edges. The moderately deep fossa contains a fascicular columella composed of three very broad, twisted, and fused ribbons. The paralectotype from Chall-163 (Twofold Bay, New South Wales) is different in several respects and may be a different species. It is not considered in this comparison.

The three specimens from the Gerda and Pillsbury stations are very similar to C. cornu, but because of their small size and immaturity, they are not identified as such. These specimens are ceratoid to trochoid and firmly attached by a pedicel measuring about one-half the calicular diameter. The largest specimen measures $7.9 \times 7.1 \mathrm{~mm}$ in calicular diameter and 12.3 mm tall. Costae are equal, flat or slightly ridged, and separated by very shallow, thin striae.

Septa are decamerally arranged; however, the broken base of one specimen reveals 12 septa. Ten large septa (primaries) are slightly exsert and have very sinuous, entire inner edges. The 10 secondaries are three-fourths that size and have slightly less sinuous margins. The 20 tertiaries are much smaller and have straight, slightly serrate
inner edges. All septa bear small, blunt granules arranged in closeset lines oriented parallel to the trabeculae.

The fascicular columella is composed of seven-eight broad, twisted, and fused ribbons.

Discussion. - Because C. cornu is known from only three adult specimens (lectotype - Pl. XII 1,3, paralectotype (?), and Calypso171), its range of variation is very poorly known and identification of small specimens is therefore uncertain. The three specimens in question are very similar to C. cornu, differing primarily in their symmetry and the nature of their costae. Both of these differences may be due to the variation in their size. Cyathoceras woodsi Wells, 1964 from off Queensland, Australia is a similar decameral species differing from C.sp. cf.C.cornu primarily in its smaller size.C. woodsi may prove to be a synonym of C. cornu.

Material. - P-596 (1); G-889 (1); G-893 (1); Calypso-171 (1) SME. - Types of C. cornu; types of C. woodsi.

[^6]Distribution. - Off Rio de la Plata, Uruguay and Twofold Bay, New South Wales, Australia. The three compared specimens are known only from off Arrowsmith Bank, Yucatan Channel (Map 14). The bathymetric range of the types is $220-1097 \mathrm{~m}$. The range of the compared specimens is $220-241 \mathrm{~m}$.
22.

Cyathoceras squiresi, new species
Plate XI, figures 5-9

Aulocyathus sp. Squires, 1959: 23-24, figs. 11-12.
Description. - The attached corallum is ceratoid to trochoid, ranging in shape from straight to slightly curved, bent, or scolecoid; the calice is usually round. The largest specimen examined (holo-
type) measures 10.7 mm in calicular diameter and 14.5 mm in height. The corallum tapers only slightly to a thick pedicel and monocyclic base, which is strengthened by deposits of stereome. The wall is likewise thickened, producing a heavy corallum. Very faint, shallow straie separate broad, flat, equal costae, which extend to the base. The costae are finely granulated with an average of threefour low, rounded granules occurring across the width of each costa near the calicular edge. In specimens in good condition, the costae and granulation are sometimes obscured by very smooth, glossy stereome.

The septa are rarely arranged in a hexameral pattern; instead, there are usually 10 primary septa (sometimes 9 or 11), all equal in size with very wavy inner edges. The secondary and tertiary septa are progressively smaller, with less wavy inner edges, and do not reach the columella as do the primaries. None of the septa, which often number 40, are exsert. The septal faces bear prominent granules arranged in rows oriented obliquely to the septal edges (perpendicular to the trabeculae). The granules often fuse to form carinae, particularly on the upper, inner edges of the primaries and secondaries.

The fossa is moderately deep and contains a compact columella composed of two-nine twisted, fascicular ribbons. The ribbons are interconnected basally and also fuse with the inner edges of the primary septa.

Discussion. - C. squiresi is easily distinguished from the other Recent species of Cyathoceras by its nonexsert septa and lack of hexameral symmetry. It is clearly identical to Aulocyathus sp. reported by Squires (1959), who mistakenly cited the number of septa in his specimen as 28 instead of 38.

[^7]Types. - Holotype: CI-246 (USNM 46874). - Paratypes: CI-246 (4) USNM 46875; CI-140 (5) USNM 46876; G-44 (10) USNM 46877, (1) UMML 8: 282; E-26004 (2) USNM 46878; E-26017 (9) UMML 8: 296.
Type-Locality. $-26^{\circ} 22^{\prime} \mathrm{N}, 79^{\circ} 37^{\prime} \mathrm{W}$ (northern Straits of Florida); 743-761 m.
Distribution. - Northern temperate distribution from off Georgia to southern Florida (Map 14). 686-822 m.

Genus Labyrinthocyathus, new genus

Diagnosis. - Solitary, ceratoid to trochoid, fixed. Costae usually absent. No endotheca. No pali. Columella composed of interconnecting network of lamellar plates. Type-species: Labyrinthocyathus langi, n. sp., here designated.

Discussion. - Labyrinthocyathus is established for species similar to Cyathoceras and Ceratotrochus, but which have distinctive columellas composed of a network of plates instead of papillose, fascicular columellas of twisted ribbons. The genus Crispatotrochus is also similar to Labyrinthocyathus. The holotype of the type-species C. inornatus T. Woods, 1878 (deposited at the Macleay Museum, Sydney) has a fascicular columella of twisted ribbons (Pl. XII 5) similar to that of Cyathoceras. The following species are placed within this genus: L. langin. sp. (type of genus) (Recent, western Atlantic), Ceratotrochus limatulus Squires, 1964 (Recent, New Zealand), Cyathoceras cornu sensu Gardiner, 1904 (Recent, Madagascar) (PI. XI 10-11), Cyathoceras kondoi Wells, 1977 (Eocene, Tonga), and probably Parasmilia mentaldoensis Chevalier, 1961 (Miocene, Italy). The latter species was placed in Parasmilia instead of the superficially similar Cyathoceras because of the presence of an endotheca and of fine septal granules (not carinae) in Parasmilia. However, an endotheca was not reported for the holotype of P. mentaldoensis. These five species, the first four of which have been examined by the author, conform to the generic description, the diagnostic feature being the columella.

[^8]23. Labyrinthocyathus langi, new species

Plate XIII, figures $1-4$
Description. - The corallum is ceratoid to trochoid and usually bent or slightly curved. The holotype has a round calice measuring 12.0 mm in diameter narrowing to a slender pedicel 3.7 mm in diameter. It is attached by a slightly expanded base. The corallum wall is thick, particularly near the calicular edge. The theca is smooth, bearing no granulation; costae are only slightly expressed or absent. When present they are broad, flat, and separated by very faint, narrow striae.

Septa are arranged in six systems and four cycles. The holotype has two S_{5} but also lacks two S_{4}, resulting in 48 septa. S_{1} and S_{2} are equal in size, slightly exsert, and extend to the columella. S_{3} and S_{4} are progressively smaller; however, the S_{3} also reach the columella. The inner edges of the first two cycles are sinuous, whereas those of the last two cycles are less so. Widely spaced rows of low, blunt granules oriented perpendicular to the trabeculae occur on the septal faces. Sometimes short carinae occur near the septal edges.

The fossa is moderately deep with a compact columella, which is round to elliptical in outline. The columella is a maze of short, interconnected lamellae, which are not conspicuously granulated. Usually a short section of a columellar lamella borders the inner edge of every S_{3}. This often occurs by the bifurcation of a more centrally located lamella near the inner edge of an S_{1} or S_{2}; the forked portions of the lamella are then directed toward each of the two S_{3} that flank the S_{1} or S_{2}.

Discussion. $-L . l a n g i$ is most easily distinguished from L. facetus, n. sp. by its lack of granules or carinae on the columellar elements. It is also similar to Parasmilia mentaldoensis Chevalier, 1961, except that the latter is decameral.

Etymology. - This species is named in honor of Judith Lang, who provided me with the Eastward ahermatypes, which included the holotype of this species.

Material. - Gos-1645 (1); Caroline-94 (2) ; E-26023 (1) USNM 46809; E-30176 (1); E-30178 (2). - Types.

Types. - Holotype: E-26017 (USNM 46871). - Paratypes: G-694 (1) UMML 8: 297; E-14038 (2) USNM 46872; Atl-3341 (2) MCZ; Alb-2354 (5) USNM 46873.
Type-Locality. $-26^{\circ} 38.5^{\prime} \mathrm{N}, 79^{\circ} 32.5^{\prime} \mathrm{W}$ (northern Straits of Florida) ; 770-785 m.
Distribution. - Antillean distribution from Virgin Islands to Cuba; Arrowsmith Bank, Yucatan; off east coast of Florida (Map 15). 695-810 m.

24. Labyrinthocyathus facetus, new species

Plate XII, figures 6-9

Description. - The corallum is conical, ceratoid in the smaller paratype and subcylindrical in the larger holotype. The calice is slightly elliptical, with the longer axis defining the orientation of the slightly elongate columella. The holotype measures 10.2×10.0 mm in calicular diameter and 21.1 mm tall. It is solidly attached to the substrate by a thick pedicel 4.4 mm in diameter. The pedicel and theca are both extensively thickened by layers of stereome. There are no costae, even at the calicular edge. The theca is covered by small, low, rounded granules and is yellowish-brown toward the calice, white toward the base.

Septa are arranged in six systems and four cycles. The holotype lacks two pairs of S_{4} (44 septa), whereas the paratype has only 11 half-systems and lacks one pair of S_{4} (42 septa). S_{1} and S_{2} are equal in size, very thick near the theca, and moderately exsert in the paratype, but almost nonexsert in the holotype. These larger septa have vertical, entire inner edges, which are sinuous, especially near the columella. The S_{3} are slightly smaller, much thinner, and also have sinuous inner edges. The S_{4} are the smallest septa, yet are well developed, with a much finer sinuosity to their inner edges. All septal faces are smooth, covered by only a few randomly arranged, low, blunt granules.

The columella is very distinctive. It is composed of four-six highly granulated, irregularly shaped pillars, interconnected in the holotype but independent in the paratype. These pillars are not flattened, twisted ribbons as in Caryophyllia or Cyathoceras, but highly modified lamellae, which bear coarse granules and short carinae.

Discussion. - L. facetus is distinguished from the only other Recent Atlantic species of Labyrinthocyathus, L. langi, by its more compact and granulated columella and by the yellowish color of of its upper theca.

Etymology. - The specific name facetus (Latin, =elegant, well made) is given to this handsome coral.

Material. - Types.
Types. - Holotype: GS(G)-16 (USNM 46879). - Paratype: O-11722 (1) USNM 46880.

Type-Locality. $-24^{\circ} 15.7^{\prime} \mathrm{N}, 81^{\circ} 50.3^{\prime} \mathrm{W}$ (Pourtalès Terrace, western Straits of Florida); 284-385 m.

Distribution. - Straits of Florida; off Savannah, Georgia (Map 15). 385-402 m.

Genus Oxysmilia Duchassaing, 1870

Diagnosis. - Solitary, ceratoid to trochoid, fixed. Corallum base increases in diameter by repeatedly covering raised costae with exothecal dissepiments, so as to produce partitioned concentric rings. Septotheca costate. No pali. Columella papillose or elongate, fused mass, not composed of twisted ribbons. Type-species: Lophosmilia rotundifolia Milne Edwards \& Haime, 1849, by monotypy.
25. Oxysmilia rotundifolia (Milne Edwards \& Haime, 1849) Plate X, figures 7-9; Plate XI, figures 1-4

Lophosmilia rotundifolia Milne Edwards \& Haime, 1849: 247, pl. 5, figs. 3, 3a;
1857: 180. - Pourtalès, 1874: 40, pl. 7, figs, 2-3; 1880: 96, 108.
Desmophyllum incertum Duchassaing \& Michelotti, 1860: 60-61, pl. 9, fig. 4 (not 5). - Duchassaing, 1870: 25.

Oxysmilia rotundifolia: Duchassaing, 1870: 27. - Vaughan \& Wells, 1943: 204. Durham, 1949: 153. - Cairns, 1978: 11.
?Lophosmilia urena Duchassaing, 1870: 26.
Parasmilia ? punctata Lindström, 1877: 21, figs. 37-38.
?Cyathoceras portoricensis Vaughan, 1901: 293, pl. 2, figs. 1 a-c. - Lewis, 1965 : 1062.

Cyathoceras incertum: Rossi, 1958: 9-10, fig. 1.
Description. - The shape of the corallum is variable, ranging from ceratoid to trochoid to long and cylindrical. Most coralla have a thick pedicel, measuring one-third to two-thirds the calicular diameter, which expands into an encrusting base equal to or larger than the calice in diameter. The base is not polycyclic as defined by Durham (1949); instead, up to six concentric thecal rings can be present, as described in the generic diagnosis. The calice is elliptical; the largest specimen measures $35.0 \times 27.0 \mathrm{~mm}$ in calicular diameter and 48 mm tall. Sometimes this species is found clumped in small quasicolonies probably produced by independent settlement of larvae.

Law, rounded costae of equal width, separated by wide, shallow grooves, correspond to every septum but are prominent only near the calicular edge and toward the base. Costal granulation is indistinguishable.

Septa are arranged in six systems and five complete cycles; larger coralla have some $\mathrm{S}_{6} . \mathrm{S}_{1}$ are highly exsert, with vertical inner edges that reach the columella. The remaining cycles of septa are progressively smaller and less exsert. The inner edges of all septa are straight and entire, except for those of the S_{5}, which are irregularly serrate. The lower, inner edges of the S_{1} and S_{2} are usually in contact with the columella; however, the S_{3} are usually joined to the columella through small, slender paliform lobes (paliform trabeculae?), which are identical to the columellar elements in shape. Low, rounded, close-set septal granules are aligned parallel to the trabeculae near the septal edge, but are randomly arranged on the rest of the septal face.

The fossa is deep and bears an elongate, variable columella. Sometimes it is a massive, fused structure, which may be trilobed because of the partitioning of the inner edges of the lateral S_{1}. Usually it is a spongy mass of thin trabeculae, which are united basally. It also can be carinate, composed of thick granulated pillars, or quite inconspicuous.

75

Discussion. - Duchassaing (1870) established Oxysmilia for the single species L. rotundifolia Milne Edwards \& Haime, 1849, because he considered it to be a colonial form distinctive from the solitary Lophosmilia. Pourtalès $(1874,1880)$ soon realized that it was not a colonial species and therefore returned it to Lophosmilia. Vaughan \& Wells (1943) have maintained the monotypic genus Oxysmilia in order to distinguish it from the distinctive genera Cyathoceras and Lophosmilia, which have differently shaped columellas.

There is no doubt that D. incertum is a junior synonym of O. rotundifolia. P. punctata Lindström, 1877, is also considered to be a young, worn specimen of this species. C. portoricensis is probably a small, elongate O. rotundifolia, but it is too small ($\mathrm{cd}=5.5 \times 7.0$ mm) to accurately identify.

```
Material. - P-707 (1) USNM 46059; P-709 (1) USNM 46060; P-875 (2) UMML 8: 384; P-876 (4) USNM 46061; P-1303 (2) USNM 46062; P-1384 (2) USNM 46063; P-1386 (2) USNM 46064; P-1387 (2) USNM 46065; P-1393 (4) USNM 46066; G-725 (7) USNM 46057, (1) UMML 8: 240; G-984 (1) USNM 46058; O-1890 (4); 0-4297 (21) ; O-4459 (1) ; O-4832 (4); O-4833 (1); O-4904 (1); O-5016 (5); O-5648 (1); O-5954 (1) ; O-5955 (2) ; O-6435 (2) ; SB-3476 (1) ; SB-3496 (2) ; BL-132 (1) MCZ; BL-133 (1) MCZ; BL-155 (28) MCZ; BL-156 (1) MCZ; BL-272 (6) MCZ; BL-292 (1) MCZ; Alb-2322 (3) ; E-9541 (1) USNM 46067; E-26547 (1); \(27^{\circ} 54^{\prime} 53^{\prime \prime} \mathrm{N}, 93^{\circ} 26^{\prime} 50^{\prime \prime} \mathrm{W}, 100\) m (2) BLM-Texas; Chain-35 (1); Chain-36 (1); Chain-43 (11); Hummelinck-1443 (7). - Holotypes of L. rotundifolia, D. incertum, P. punctata, and C. portoricensis.
```

Types. - A specimen that is probably the holotype of L. rotundifolia is deposited at the MNHNP; however, its label is unclear. The holotype of D. incertum is housed at the MIZS (Coel. 318). The holotype of Parasmilia punctata Lindstrom, 1877, is deposited at the NRM (type 114). The holotype of C. portoricensis is at the USNM (19633). The type of L. urena Duchassaing, 1870, is not at the MNHNP or the MIZS and is presumed lost.
Type-Locality. - "America"; no depth specified.

Distribution. - Common throughout Caribbean and Bahamas, ranging from off North Carolina to Surinam; one record from western Gulf of Mexico (Map 16). 46-640 m.

Genus Trochocyathus Milne Edwards \& Haime, 1848

Diagnosis. - Solitary, turbinate to ceratoid, fixed or free. Septotheca costate, partially covered by a pellicular epitheca. Discrete pali arranged opposite all but last cycle of septa in two crowns. Columella essential, papillose, or spongy. Type-species: Turbinolia mitrata Goldfuss, 1827, by subsequent designation (Milne Edwards \& Haime, 1850).

Discussion. - Alloiteau (1958) incorrectly changed the type of the genus to T. plicata Michelotti, 1838, apparently based on recommendation 69 B 11 or 12 of the International Code of Zoological Nomenclature; however, Milne Edwards \& Haime (1850: xiv) clearly chose T. mitrata at a much earlier date.

The generic limits of Trochocyathus, Paracyathus Milne Edwards \& Haime, 1848, Tethocyathus Kühn, 1933, and Thecocyathus Milne Edwards \& Haime, 1848 have been interpreted differently by past authors primarily because of their choice of diagnostic characters and the interpretation of these characters. Consequently the numerous species assigned to these genera by Semper (1872), Alcock (1902), Marenzeller (1907), Vaughan (1907), Gardiner \& Waugh (1938), Yabe \& Eguchi (1942), and others should be reanalyzed in light of recent emendations of the generic diagnosis by Wells (1956) and Chevalier (1961).

Chevalier (1961) defines Paracyathus as possessing paliform lobes, not true pali as found in Trochocyathus. Zibrowius (1976) implies that Paracyathus is a rhizangiid. Without making a thinsection to check the trabecular structure of a paliform lobe vs. a true palus, one can usually distinguish Paracyathus by its multilobate paliform lobes, which are often indistinguishable from the columella.

Tethocyathus has been differentiated from Trochocyathus because of its extensive epitheca (Vaughan \& Wells, 1943). However, Alloiteau (1958) correctly pointed out that the type-species of Trochocyathus, Turbinolia mitrata Goldfuss, 1827 ($=$ T. plicata), has a pellicular epitheca as do most other Trochocyathus. Chevalier
(1961) again uses the presence of true pali vs. paliform lobes to distinguish the two. According to him, Tethocyathus has paliform lobes and Trochocyathus has true pali. Without a longitudinal thin-section through a paliform process, Tethocyathus can usually be diagnosed by its thick, prominent epitheca (not pellicular). Also, if Thecocyathus microphyllus Reuss, 1871 (type-species of Tethocyathus) is found to be polycyclic, this may be an additional generic difference. However, even if the base is polycyclic, this is not universally accepted as a generic level character and the degree of expression of the epitheca is an unreliable character, especially since different specimens of the same species may or may not have an epitheca.

With this discussion in mind, the following three species are provisionally assigned to Trochocyathus: T. vawsonii, T. fossulus, n. sp., and T. fasciatus, n. sp.
26. Trochocyathus rawsonii Pourtalès, 1874

Plate XIII, figures 5-7; Plate XIV, figures 1-6

Trochocyathus rawsonii Pourtalès, 1874: 35, pl. 6, figs. 7-10; 1878: 199 (in part: not BL-68); 1880: 96, 101 (in part: not BL-280). - Zibrowius, 1974a: 767; 1976: 153. - Cairns, 1977b: 5; 1978: 11.
Montlivaultia poculum Pourtalès, 1878: 205-206, pl. 1, figs. 21-22; 1880: 96.
Paracyathus laxus Pourtalès, 1880: 96, 104-105, pl. 1, figs. 9-11.
Not Trochocyathus rawsonii: Gardiner, 1904: 100-103, 124, pl. 1, figs. 2 a-b, pl. 2, figs. A-K. - Wells, 1956: F342; 1958: 261. - Spuires, 1961: 17.

Description. - The shape of the corallum is quite variable. It is commonly turbinate with a blunt monocyclic base, but also can be bowl-shaped or trochoid. The turbinate and bowl-shaped forms can occur either free or attached; the trochoid form is always attached. The free form usually bears a small scar of former attachment or a small object that has become incorporated into its base. The calice is often round but also may be elliptical or irregular. The largest calice examined measures $25.9 \times 22.5 \mathrm{~mm}$ in diameter; the largest specimen measures 33.0 mm tall. Costae are usually masked by thin, wrinkled bands of epitheca, which extend to within $1-2 \mathrm{~mm}$ of the calice. The costae are usually distinguishable only near the
calicular edge, where they bear low, blunt granules and are separated by deep furrows.

Septa are arranged in six systems and five cycles, but the last cycle is never complete. At a calicular diameter of only 14 mm the septa are regularly arranged in four complete cycles, with pali before the first three cycles. With an increase in size, the higher septal cycles become difficult to distinguish because of the random and incomplete development of the fourth and fifth cycles. S_{1} are the largest and the only independent septa. The higher cycle septa are progressively smaller and sometimes are interconnected with one another within each system through their pali. The lower, inner edges of the P_{4} often unite with the P_{3}, which, in turn, sometimes are fused to the P_{2} near the columella. All septa are slightly exsert and have straight to slightly sinuous, entire edges except for those of the last cycle, which are coarsely dentate. The septal and palar faces bear low, rounded granules, randomly arranged except near the edges of the septa, where several granules are often arranged in lines parallel to the trabeculae.

Tall pali as thick as the septa are present before all but the last cycle of septa. P_{1} are the smallest and extend to the columella. Two of the six P_{1}, those opposite the principal septa, are slightly smaller than the other four. P_{2} are twice as large and also extend to the columella. P_{3} are equal in size to the P_{2} but are slightly recessed from the columella. When S_{5} are present in a half-system, P_{4} also occur, which are then the smallest pali and the farthest away from the columella. The space between the inner edges of the P_{3} (and P_{4}) and the columella is often occupied by progressively smaller secondary and tertiary paliform lobes.

The papillose columella is elliptical in outline and slightly lower in the fossa than the pali. It is composed of numerous, irregularly shaped, interconnected pillars and fused to the inner edges of the adjacent pali.

Discussion. - Pourtalès (1874) originally described T. rawisonii from small specimens of $10-17 \mathrm{~mm}$ calicular diameter with few S_{5} and no epitheca, characters typical for a small specimen. Later (1878), he described M. poculum from a larger, worn specimen of

22 mm calicular diameter with $10 \mathrm{~S}_{5}$, poorly developed pali, and a very small columella. This specimen was an extreme variation of T. rawsonii in which the corallum underwent rejuvenescence, making it taller. Furthermore, the secondary paliform lobes of the higher cycle septa became long and slender, occupying the space normally taken up by the columella. Transitions from this form with long, slender paliform lobes and small columella to more typical T. ravesonii are known. Finally, in 1880, Pourtalès described P. laxus, the typical adult T. rawsonii.

Gardiner's (1904) reference to T. rawsonii from South Africa was unfounded and led to Wells's $(1956,1958)$ and SQuires's (1961) incorrect listings. Gardiner's specimen had a more elongate corallum, better delineated costae, and no S_{5}.

Abstract

Material. - P-479 (1) USNM 46085; P-848 (9) USNM 46086; P-849 (1) USNM 46087; P-876 (6) USNM 46088; P-890 (9) USNM 46089; P-929 (1) USNM 46090; P-1303 (3) USNM 46091 ; P-1357 (3) USNM 46093 ; P-1395 (2) USNM 46092; G-480 (1) USNM 46081; G-694 (1) USNM 46082; G-1036 (6) USNM 46083; G-1312 (2) USNM 46084; GS (G)-5 (1) USNM 46098; GS (G)-15 (1) UMML 8: 382; GS (G)-23 (1) USNM 46099; GS (G)-48 (2) USNM 46100; O-2080 (6); O-4226 (34) USNM 46097, (3) UMML 8: 242; O-4398 (40); O-4931 (1); O-5645 (1); O-5648 (9); O-10513 (1) ; SB-1788 (1) ; SB-2424 (10) ; BL-2 (1) MCZ; BL-32 (14) MCZ; BL-50 (3) MCZ; BL-273 (1) MCZ; BL-300 (5) MCZ; Caroline-38 (1); Caroline-102 (1); MAFLA-2106 (1) FDNR; MAFLA-2746 (1) FDNR; TAMU 65A9-15A (7) TAMU; Explorer-4 (1); off Egmont Key, Florida, 366 m (1). - Syntypes of T. rawsonii, P. laxus; 1olotype of M. poculum; Gardiner's (1904) T. vawsonii.

Abstract

Types. - Ten syntypes of T. rawsonii, divided into four lots, are deposited at the MCZ. One lot (5627) contains four specimens collected by Stimpson off the west coast of Florida (183 m); the other three lots $(2762,5479 \mathrm{C}, 5627$) contain three, one, and two syntypes respectively, all collected from a Hassler station off Barbados. Fourteen syntypes of P. laxus collected from four stations are also at the MCZ: BL-149 (1), BL-214 (1), BL-253 (8), and BL-254 (4). They all bear the MCZ number 5482. The holotype of M. poculum (2759), collected by Stimpson, presumably off the west coast of Florida, is also at the MCZ. Type-Locality. - West coast of Florida and Barbados; 183 m

Distribution. - Common throughout Caribbean, ranging from off Georgia to off the Amazon, Brazil; Campeche Bank, Mexico; Florida west coast (Map 17). 82-622 m. 8-23 ${ }^{\circ} \mathrm{C}$, based on four records.

Description. - The attached corallum is ceratoid, tapering to a massive, monocyclic base with a diameter of one-half to threefourths the calicular diameter and secondarily thickened by stereome. The holotype is $10.2 \times 9.7 \mathrm{~mm}$ in calicular diameter and 16.8 mm tall. The theca, which is largely obscured by encrusting organisms in both specimens, is smooth, with low, equal costae visible only at the calicular edge.
There are three different kinds of septa: primaries, secondaries, and tertiaries, arranged octamerally, resulting in 32 septa. The primaries are the largest and most exsert. The tertiaries, although slightly less exsert than the secondaries, extend slightly farther toward the columella than do the secondaries. The difference in exsertness of all three kinds of septa is slight. All septa have slightly sinuous inner edges. Their lateral faces are covered by large, blunt granules, which are randomly arranged except at the upper septal edge, where short carinae occur parallel to the trabeculae.

Tall pali are present before the primaries and secondaries. Those before the secondaries are two-three times larger and twice as wide as those before the primaries. The pali are single-lobed and distinct from the columella both in size and shape. The palar granulation is coarser and higher than that of the septa, sometimes forming horizontal carinae. The inner edges of all pali terminate at the columella, forming an elliptical ring, which encloses a field of numerous (7-14) irregular, tall columellar pillars, terminating just below the level of the pali. In the holotype, the pillars are narrow and evenly spaced; in the paratype, the pillars are massive and crowded. The upper edges of both pali and columella project above the calicular margin and are only slightly below the level of the exsert septa, resulting in a very shallow fossa.

Discussion. - There are several minor differences between the holotype and the paratype. The latter has a thicker base, more massive columellar elements, and more rounded septal granules.

These differences are probably a result of its greater deposits of stereome.

This species is easily distinguished from the other Recent species of Trochocyathus by its octameral symmetry and exsert calicular elements (shallow fossa). In corallum, septal, and columellar shape, it is similar to T. virgatus Alcock, 1902 and T. rhombocolumna Alcock; 1902.

> Etymology. - The specific name fossulus (Latin, =small ditch) refers to the very shallow fossa of this species.

Material. - Types.

Types. - Holotype: P-991 (USNM 46881). - Paratype: CI-6 (1) USNM 46882.
Type-Locality. $-18^{\circ} 47^{\prime} \mathrm{N}, 64^{\circ} 47^{\prime} \mathrm{W}$ (Virgin Islands); 205-380 m.

Distribution. - Known only from the Bahamas and the Virgin Islands (Map 17). 205-380 m.
28. Trochocyathus fasciatus, new species

Plate XIV, figure 10; Plate XV, figures 1-3
Description. - The corallum is ceratoid, attached by a narrow pedicel measuring one-third to one-fourth the calicular diameter. The holotype, which is broken off near the base, measures 7.3×6.2 mm in calicular diameter and 16.1 mm from calice to break, where the pedicel diameter is 2.2 mm . A smaller corallum (paratype) of 4.5 mm in greater calicular diameter and 11.8 mm tall, is attached to the holotype but is not an extra- or intratentacular bud. The third paratype is $8.4 \times 6.0 \mathrm{~mm}$ in calicular diameter and is also broken near the base. Costae are well-defined only near the calice, where the C_{1-3} are slightly ridged for several millimeters. In addition, the C_{1-2} and sometimes the C_{3} are characteristically pigmented a light brown for about one-fourth of the distance to the base. The C_{4} and the lower three-fourths of the theca are covered by low, rounded granules. There are no intercostal grooves.

Septa are arranged in six systems and four cycles. In the holotype
one half-system is incomplete (missing a pair of S_{4}), for a total of 46 septa; the small attached specimen lacks five pairs of S_{4} for 38 septa; and the large paratype is irregular in that it has only 11 half-systems and lacks four pairs of S_{4}, for only 36 septa. S_{1} and S_{2} are equal in size, exsert, and light brown on their upper, outer edges as a continuation of the costal stripes. Each of these septa has a straight, vertical inner edge separated from a small palus by a deep, narrow notch. The twelve P_{1-2} form a crown around the columella. S_{3} are half as large as the S_{1-2}, less exsert, and bear large pali, which are four-five times larger than the P_{1-2}. The $12 P_{3}$ project higher in thefossa than the P_{1-2} and also extend to the columella, forming a second distinct crown of pali. S_{4} are smaller and less exsert than the S_{3} and have slightly serrate inner edges. The septa and pali are covered by low rounded or low pointed granules, which are slightly larger on the pali. The septal granules are arranged in short lines parallel to the trabeculae.

The fossa is moderately deep and encloses a well-defined columella composed of a field of $10-15$ discrete, irregularly shaped rods, which terminate at a level below the P_{1-2}.

Discussion. - Trochocyathus fasciatus is easily distinguished from all other Atlantic Trochocyathus by its variegated costae. Unfortunately, it is known from only three specimens from one locality, which does not allow an adequate description of its variability.

[^9]Material. - Types.
Types. - Holotype: Alb-2354 (USNM 16116). - Paratypes: Alb-2354 (2, 1 attached to holotype) USNM 46913.
Type-Locality. - $20^{\circ} 59^{\prime} 30^{\prime \prime} \mathrm{N}, 86^{\circ} 23^{\prime} 45^{\prime \prime} \mathrm{W}$ (off Arrowsmith Bank, Yucatan Channel); 238 m .

Distribution. - Known only from type-locality (Map 18).

Diagnosis. - Solitary, turbinate to ceratoid, fixed or free. Septotheca covered by thick, often wrinkled, epitheca. Discrete paliform lobes arranged opposite all but last cycle of septa in two crowns. Columella essential, papillose at surface. Type-species: Thecocyathus microphyllus Reuss, 1871, by original designation.
29. Tethocyathus cylindraceus (Pourtalès, 1868)

Plate XIII, figures 8-11

Thecocyathus cylindraceus Pourtalìs, 1868: 134; 1871: 13-14 (in part: not Bibb173), pl. 2, figs. 14-15; 1874: 37; 1880: 96, 101 (in part: not BL-296). Agassiz, 1888: 149, fig. 464.
Tethocyathus cylindraceus: Wells, 1956: F423, figs. la, b.

Description. - The corallum is subcylindrical, tapering only slightly toward the expanded, polycyclic base. The calice is round; the largest corallum examined measures 14.6 mm in diameter and 15 mm tall. The wall is thick and usually covered by a smooth, thick epitheca terminating in a low rim at the calice and sometimes producing a circular groove between the outer, upper septal margins and the epithecal rim. Otherwise, the theca bears granulated, flat, indistinct costae that extend to the base.

Septa are usually arranged in six systems and four cycles; however, there are two S_{5} in the largest corallum examined. S_{1} are slightly larger than the S_{2}, which, in turn, are slightly larger than the S_{3}, all of which are considerably larger than the S_{4}. If the corallum is epithecate, the septa usually are not exsert; if costate, all septa are slightly exsert. The inner edges of all septa are broadly sinuous and those of the S_{4} are sometimes dentate. Septal granulation is prominent, consisting of numerous tall, pointed granules often arranged in lines and short carinae oriented parallel to the trabeculae.

Stout paliform lobes occur before all but the last cycle. \mathbf{P}_{1} are small, low in the fossa, and closest to the columella. P_{2} are two-three
times larger and slightly taller; their inner edges reach almost the same distance toward the columella as the $\mathrm{P}_{1} . \mathrm{P}_{3}$ are variable in size but usually are about the same size as the P_{1} and are slightly recessed from the columella. Two crowns of paliform lobes are thus formed, the inner crown of $12 \mathrm{P}_{1}$ and P_{2} and an outer crown of 12 P_{3}. In a fully developed specimen, the one P_{2} and two P_{3} of each system are grouped in a chevron; however, it is not unusual for some of the P_{2} to be missing.

The papillose columella, which is slightly lower in the fossa than the pali, is composed of 5-30 irregular pillars arranged in a circular field. They are interconnected among themselves and also attached to the inner edges of the adjacent pali.

Discussion.-This species is provisionally placed in Tethocyathus because of its thick epithecal covering and its great similarity to the type-species T. microphyllus (pers. comm., J. W. Wells). If the paliform lobes are found to be true pali, it may be necessary to transfer it to Trochocyathus.

Material. - G-694 (2) USNM 46069, (1) UMML 8: 241; G-708 (1) USNM 46070; G-1029 (1) USNM 46071; GS(G)-42 (1) USNM 46072; BL-296 (1) MCZ; Hassler, Barbados, 183 m (1) MCZ; Gos-112/27 (1); off Sand Key, Florida, 220 m (2); off Western Dry Rocks, Florida, 263 m (2). - Syntypes of T. cylindraceus.

Types. - Thirteen syntypes, divided into three lots numbered 2763 and 5611, are deposited at the MCZ. Neither labels with the syntypes nor information in the original description specify the stations at which they were collected. Type-Locality. - Off the Florida Reef; 183-366 m.

Distribution. - Straits of Florida; Jamaica; Barbados (Map 18). 155-649 m.
30. Tethocyathus recurvatus (Pourtalès, 1878)

Plate XIV, figures 7-9

Thecocyathus recurvatus Pourtalès, 1878: 202; 1880: 96.
Trochocyathus rawsonii: Pourtales, 1878: 199 (in part: BL-68).
Description. - The corallum is ceratoid and regularly curved between $30^{\circ}-90^{\circ}$, tapering to a narrow, blunt, monocyclic base. The
corallum is usually free but is sometimes attached to a small object. The calice is circular to slightly elliptical; the largest specimen examined is $7.5 \times 7.3 \mathrm{~mm}$ in calicular diameter and about 10.0 mm tall. The septotheca is moderately thick and covered by a smooth epitheca, which often forms a thin, circular rim at the calicular edge. The epitheca obscures the costae and costal granulation; however, intercostal striae, which delimit equal costae, can often be seen through the epitheca.

Septa are arranged in six systems and four cycles, but the fourth cycle is never complete. The largest specimen examined has only twelve S_{4} (36 septa) equally distributed in all six systems, which is probably the adult condition. S_{1} are exsert, with rounded upper and vertical inner edges. The higher cycle septa are progressively smaller and less exsert, but in every system the S_{3} flanked by S_{4} is enlarged to almost the same size as an S_{2}, whereas the other unflanked S_{3} is only slightly larger than the S_{4}. All inner septal edges are sinuous, but those of the S_{4} are less sinuous than those of the S_{1-3}. Low, pointed, randomly arranged granules cover the septal faces.

Two indistinct and incomplete crowns of paliform lobes stand before all but the last cycle of septa. P_{1}, the smallest and closest to the columella, are tall and narrow. P_{2} and P_{3} are twice as large, project higher in the fossa, and are slightly recessed from the columella. The outer calicular margins of some of the paliform lobes, especially the P_{2} and P_{3}, are molded around the inner edge of the septa. The paliform lobes are separated from their corresponding septa by deep, narrow notches. They are granulated and bear short, horizontal carinae.

The papillose columella lies slightly deeper in the fossa than the pali. It is composed of $5-15$ granulated pillars, which are interconnected basally and also attached to the adjacent pali. The columellar pillars are distinct from the paliform lobes.

Discussion. - This species is provisionally placed in Tethocyathus because of its prominent and complete epithecal exterior. However, like T. cylindraceus, if the paliform lobes are found to be true pali, T. recurvatus may have to be transferred to Trochocyathus.

Material. - P-600 (1) USNM 46103; G-254 (1) USNM 46101; G-688 (8) USNM 46102, (1) UMML 8: 244; G-912 (1) USNM 46105; BL-51 (1) MCZ; BL-68 (1) MCZ; E-43 (2) USNM 46104. - Syntypes of T. recurvatus.

[^10]Distribution. - Straits of Florida; off Cozumel, Mexico; off Jamaica (Map 19). 320-488 m.
31. Tethocyathus variabilis, new species

Plate XV, figures 7-10
Thecocyathus cylindraceus Pourtales, 1868: 134 (in part); 1871: 13 (in part: Bibb-173); 1880: 101 (in part: BL-296).
Thecocyathus laevigatus: Pourtalès, 1878: 202 (in part: BL-19).
Thecocyathus rawsonii: Pourtales, 1880: 101 (in part: BL-280).
Asterosmilia prolifera: Sgurees, 1959: 12.
"Thecocyathus" sp. A Zibrowius, 1976: 110-111, pl. 55, figs. A-N, pl. 56, figs. A-M.

Description. - The corallum is ceratoid, tapering to a wide pedicel, which measures up to 60% of the calicular diameter. The monocyclic base of attachment is only slightly expanded. The calice is round; larger specimens measure 10 mm in calicular diameter and are up to 22 mm tall. The theca is thick. Equal, slightly convex costae bear uniform, low, rounded granules, numbering, on the average, about three across the width of each costa near the calicular edge. Sometimes bands of epitheca or a solid epitheca obscure both the costae and costal granulation.

Septa are arranged in six systems and four cycles, but the last cycle is rarely complete. S_{1} are exsert and reach closer to the columella than any of the other septa. S_{2} are only slightly larger than the S_{3}, which, in turn, are considerably larger than the S_{4}. Each cycle is progressively less exsert. The inner edges of S_{1} and S_{4} are straight but the lower, inner edges of the S_{2} and S_{3} have numerous undulations in the proximity of the columella. The septa bear
small, pointed granules arranged in lines oriented parallel to the trabeculae.

All specimens have a round, deep-set, papillose columella composed of numerous tall, slender rods, which are round or elongate in cross section. In some specimens paliform teeth (lobes?) are regularly arranged before the S_{1}, S_{2}, and S_{3}. In rare cases, three indistinct crowns of paliform teeth, often identical in size and shape to the other columellar elements, are present. The paliform teeth before the S_{3} are nearest the calicular edge, whereas those before the S_{1} are nearest the axis. Palar elements, however, are usually completely absent, but, when they occur, they may be randomly arranged, occur in a triple crown, or occur only before the S_{2}.

Discussion. - This species is provisionally placed in the genus Tethocyathus because most of the large coralla examined are epithecate and few have paliform teeth (lobes?). However, because some specimens are definitely costate and others have prominent paliform teeth before the second and third cycles, both of which are considered to be generic or subgeneric level characters, a re-evaluation of these seemingly variable generic level characters is necessary.

Etymology. - The specific name variabilis (Latin, =changeable) refers to the variable phenotypic expression of this species.

Material. - P-587 (9); P-861 (5) UMML 8: 295; P-929 (5) UMML 8: 283; G-663 (2) ; G-664 (2) ; G-885 (1) ; BL-19 (1) MCZ; BL-173 (1) MCZ; BL-280 (1) MCZ; BL-296 (1) MCZ; Hudson-3A (11) NMC; Hudson-4B (3) NMC. - Squires's (1959) A. prolifera (AMNH - 4 specimens). - Types.

Types. - Holotype: P-861 (USNM 46980). - Paratypes: P-861 (20) USNM 46981; P-929 (16) USNM 46982; Caroline-38 (2) USNM 46983.
Type-Locality. $-12^{\circ} 42^{\prime} \mathrm{N}, 61^{\circ} 05.5^{\prime} \mathrm{W}$ (east of the Grenadine Islands); $18-744 \mathrm{~m}$.

Distribution. - Western Atlantic: Antillean distribution; Arrowsmith Bank, Yucatan Channel (Map 19). 250-576 m. - Eastern Atlantic: off Spanish Sahara; Azores. 269-860 m.

Genus Paracyathus Milne Edwards \& Haime, 1848

Diagnosis. - Solitary; turbinate; fixed or free. Septotheca costate. Paliform lobes often bi- or trilobed, opposite all but last cycle. Columella papillose, often indistinguishable from the inner paliform lobes. Type-species: Paracyathus procumbens Milne Edwards \& Haime, 1848, by subsequent designation (Milne Edwards \& Haime, 1850).
32. Paracyathus pulchellus (Philippi, 1842)

Plate XVI, figures 1-6

Synonymy complete for western Atlantic only:
Cyathina pulchella Philippi, 1842: 42.
Paracyathus pulchellus: Milne Edwards \& Haime, 1857: 55. - Lewis, 1965: 1062.Best, 1970: 306-308, fig. 8. - Zibrowius, 1976: 96-100, pl. 29, figs. A-K, pl. 30, figs. A-L. - Cairns, 1977b: 5, 11-13, pl. 2, figs. 2-3; 1978: 11.
Paracyathus defilippi Duchassaing \& Michelotti, 1860: 60, pl. 9, figs. 2-3; 1864: 65. - Duchassaing, 1870: 25. - Pourtalès, 1874: 38; 1878: 200; 1880: 96, 105. - Moseley, 1881: 144 (in part: specimen from off Azores). - Vaughan, 1901; 292. - Gardiner \& Waugh, 1938: 182. - Durham, 1949: 156. Squires, 1959: 12-15. - Lewis, 1960: 12; 1965: 1062. - Goreau \& Weils, 1967: 449. - Weisbord, 1968: 71. - Porter, 1972: 113. - Wells \& Lang, 1973: 58. - Keller, 1975: 178. - Defenbaugh, 1976: 27, 39, fig. 58.
Paracyathus confertus Pourtales, 1868: 134; 1871: 11, pl. 6, figs. 11-13. - Studer, 1878: 628. - Agassiz, 1888: 149-150, fig. 466. - Squires, 1958: 258.

Description. - The shape of the corallum is variable. Young specimens are often short and cylindrical but also may be conical. Larger specimens are usually trochoid to turbinate, tapering to a pedicel measuring one-fourth to one-half the calicular diameter and re-expanding into an encrusting polycyclic base. The calice is usually elliptical but can be perfectly round or strongly compressed. The largest corallum examined measures $15.5 \times 13.3 \mathrm{~mm}$ in calicular diameter, 24.0 mm tall, and contains 76 septa. The expression of costae is also variable. The costae are usually only conspicuous near the calicular edge as low, slightly convex ridges separated by narrow, shallow intercostal furrows. In other cases, the costae are highly ridged, extend to the base, and are separated by broad, deep
furrows. Costal granules, when present, are low and rounded. The proximal two-thirds of the corallum is often covered by encrusting organisms (e.g., bryozoans, algae, foraminifera), giving it a white appearance. Occasionally, bands of epitheca are deposited in this area, also giving the exterior a milky-white color. Otherwise, the distal part of the corallum and septa are usually brown or reddishbrown.

Septa are arranged in six systems and five cycles. Above a calicular diameter of about $8 \mathrm{~mm}, \mathrm{~S}_{5}$ begin to appear, but a full fifth cycle (96 total septa) is never attained. A pair of S_{5} usually occurs in all twelve half-systems before a second pair is added to any halfsystem. S_{1} and S_{2} are equal in size and moderately exsert. The higher cycle septa are progressively smaller and less exsert. The inner edges of all septa are straight to slightly sinuous. The septal and palar faces bear prominent, pointed or rounded granules, which sometimes fuse at the axial margin to form horizontal or oblique carinae, giving the septa a thick appearance.

The paliform lobes are the most variable character of this species and occur before all but the last cycle. They are tall and usually more prominently granulated than the septa. Each is separated from its respective septum by a deep, narrow notch. P_{1} and P_{2} are equal in size, lowest in the fossa, and closest to the columella. P_{3} are usually twice as large, terminate higher in the fossa, and are often wedge-shaped: their outer (calicular) edges are considerably broader than their inner (axial) edges. P_{4} are about the same size as the P_{3}, recessed from the columella, and terminate even higher in the fossa than the P_{3}. In the space between the inner edge of a P_{4} and the columella there are often two-four additional paliform lobes (multilobate condition) of progressively smaller size nearer the columella.

The fossa is extremely variable in depth. It is usually deep but can range from very deep to level with the upper edges of the septa, the latter condition being rare. The papillose columella is large and usually elliptical in outline, composed of up to 60 close-set, uniform, slender rods. The rods all terminate at the same level, sometimes forming a convex bulge in larger specimens. The columellar elements are interconnected basally and fused to the inner edges of the paliform lobes, from which they can be indistinguishable.

Material. - P-199 (1) USNM 46127; P-389 (5) USNM 46147; P-392 (14) USNM 46148; P-403 (1) USNM 46149; P-405 (1) USNM 46150; P-420 (1) USNM 46151; P-581 (1) USNM 46154 ; P-596 (2) USNM 46155 ; P-629 (1) USNM 46153; P-650 (18) USNM 46156; P-1140 (6) USNM 46158; 77 specimens from 23 additional Pillsbury stations throughout the Antilles; G-681 (1) USNM 46121; G-692 (1) USNM 46122; G-882 (1) USNM 46124; G-946 (1) USNM 46125; G-950 (1) USNM 46126; G-1329 (3) USNM 46123; 119 specimens from 18 additional Gerda stations in the Straits of Florida; CI-6 (1) USNM 46163; CI-7 (1) USNM 46164; O-1348 (2) ; O-2286 (1); O-4225 (1) ; SB-2263 (1) ; SB-2523 (2) ; SB-3407 (1) ; SB-3494 (13) ; BL-2 (1) ; BL-22 (1) ; BL-23 (1); BL-32 (1) ; BL-45 (19) ; BL-50 (1) ; BL-62 (1) ; BL-132 (2); BL-155 (1) ; BL-157 (1) ; BL-164 (1) ; BL-203 (1) ; BL-246 (1) ; BL-247 (1); BL-271 (5) ; BL272 (1) ; BL-278 (1) ; BL-290 (1); BL-292 (3) ; BL-293 (1), all specimens from Blake stations at MCZ; Hassler, off Barbados, 183 m (15) MCZ; Alb-2167 (1) USNM 16128; Alb-2316 (10) USNM 10077; Alb-2318 (3) USNM 14003 ; Gos-1533 (3) ; Gos-1591 (1); Gos-1785 (1); Gos-1860 (1); Caroline-17 (1); TAMU 65A9-15A (11) TAMU; TAMU 65A9-20 (3) TAMU; TAMU 65A14-9 (1) TAMU; TAMU 67A5-11C (22) TAMU; TAMU 70A10-39 (1) TAMU; TAMU 72F1-48 (5) TAMU; $27^{\circ} 54^{\prime} 53^{\prime \prime} \mathrm{N}, 93^{\circ} 26^{\prime} 50^{\prime \prime} \mathrm{W}$, $100 \mathrm{~m}(10)$ BLM-Texas. - Holotype of P. defilippi; syntypes of P. confertus; Moseley's (1881) P. defilippi.

Types. - The types of C. pulchella are at the Berlin Museum. The holotype of P. defilippi, a small specimen of 44 septa and only $4.0 \times 4.4 \mathrm{~mm}$ in calicular diameter, is at the MIZS (Coel. 229). Eight syntypes of P. confertus, divided into three lots, are at the MCZ (all numbered 5481). One lot is from Bibb-39; the locality of the other two is unknown. Another syntype is at the YPM (4769). Type-Locality. - Off Naples and Trapani, Mediterranean.

Distribution. - Western Atlantic: common throughout Caribbean and Gulf of Mexico, ranging from North Carolina to off the Amazon, Brazil (Map 20). 17-838 m. Most common, however, between $50-250 \mathrm{~m} .18-24^{\circ} \mathrm{C}$, based on six records. - Eastern Atlantic: Mediterranean; area bounded by Portugal, the Azores, and the Gulf of Guinea.

Genus De1tocyathus Milne Edwards \& Haime, 1848

Diagnosis. - Solitary, discoid to patellate, free (sometimes with a scar of previous attachment at center of base). Costae present. Pali opposite all but last cycle; inner edges of P_{3} join P_{2} near columella, forming deltas. Columella papillose. Type-species: Turbinolia italica Michelotti, 1838, by monotypy.

Key to the six western Atlantic species of Deltocyathus
1' Center of base bears distinct, circular scar; intercostal furrows near calicular edge extremely deep D. moseleyi, n. sp.
1^{\prime} Center of base not scarred; intercostal furrows moderately deep or shallow. 2

2 Shape of base conical (apical angle: $80^{\circ}-110^{\circ}-120^{\circ}$); no elongate costal spines; only species known from deeper than 1200 m
D. sp. cf. D. italicus (Michelotti)
2^{\prime} Shape of base flat, convex, or slightly conical (apical angle: $140^{\circ}-180^{\circ}$); may or may not have costal spines; found shallower than 1200 m. 3

3 Calicular rim usually thickened; S_{4} rudimentary, attached to S_{3} near columella by several slender processes; often more than 48 septa
D. eccentricus, n. sp.
3^{\prime} Calicular rim not thickened; S_{4} not rudimentary; usually 48 septa . 4
$4 \mathrm{C}_{1}$ always broader than other costae and usually projecting outward as large spines; S_{2} and C_{2} usually black
D. calcar Pourtalès, 1874
4^{\prime} Equicostate, no projecting costal spines; corallum white. . . 5
$5 \mathrm{~S}_{4}$ more exsert and extending farther toward columella than S_{3}; inner edge of each S_{4} unites with its adjacent P_{3} well above the notch that separates the $\mathrm{S}_{\mathbf{3}}$ from its corresponding $\mathrm{P}_{\mathbf{3}}$.
D. pourtalesi, n. sp.
$5^{\prime} S_{4}$ less exsert and smaller than S_{3}; inner edge of each S_{4} unites with its adjacent P_{3} below the notch that separates the S_{3} from its corresponding P_{3}. D. agassizii Pourtalès, 1867

Deltocyathus agassizii Pourtales, 1867: 113-114; 1871: 15 (in part: four specimens from "Florida and Cuba, 60-327 fms"). - Zibrowius, 1976: 161-162.
Not Deltocyathus agassizii: Pourtales, 1874: 35; 1878: 200. - Moseley, 1876: 546, 551. - Lindström, 1877: 10. - Boone, 1928: 8.

Deltocyathus italicus variety agassizii: Pourtalès, 1880: 102 (in part).
Description. - [The following description is based on the bestpreserved of the four syntypes.] The base of the corallum is flat and bears no scar of attachment. The calice is round, measuring 10.8 mm in diameter. At the calicular edge the costae are equal in width, rounded, and separated by moderately deep furrows. Toward the center of the base the C_{4} become much narrower and all of the intercostal furrows become much shallower. All but the C_{4} reach the center of the base. The costae bear large, worn granules on their outer surface and finer, pointed granules laterally.
Septa are arranged in six systems and four complete cycles. The S_{4} are smaller than the S_{3} and are joined to the S_{3} by several broad trabeculae at or slightly below the notch separating the S_{3} from their corresponding pali. The P_{3} join the P_{2} closer to the columella. The inner edges of all septa are slightly sinuous. Both septa and pali bear prominent, pointed granules. The columella is composed of 15-17 slender rods loosely fused together basally.

Discussion. - D. agassizii has been collected very rarely, known from only eight worn specimens. Subsequent records of this species made by Pourtalès (1874, 1878), Moseley (1876), Lindström (1877), Boone (1928), and probably Packard (1873), Verrill (1874, 1883), and Lewis (1965) pertain to one or more of the five other species of Deltocyathus known from the western Atlantic.
D. agassizii most closely resembles Deltocyathus pourtalesi, particularly in shape, costae, costal granulation, and absence of a basal scar. It can be distinguished by its lower connection of the S_{4} to the S_{3} and larger S_{3} than S_{4}.

Material. - Two specimens labelled "Florida and Cuba, 60-327 fms," collected by Bibb (MCZ); Alb-2750 (1); E-26023 (1) USNM 46243 . - Syntypes.

Types. - There are four complete specimens and one fragment (syntypes) deposited at the MCZ, all in worn condition. They were collected at Bibb-4 in 1867.
Type-Locality. - 1.6 miles (2.6 km) off Chorrera, Cuba; 494 m .
Distribution. - Known only from the Straits of Florida and off Anguilla, Lesser Antilles (Map 21). 494-907 m.

34. Deltocyathus calcar Pourtalès, 1874

Plate XVII, figures 7-10; Plate XVIII, figure 7

Deltocyathus agassizii: Pourtalès, 1871: 15-16 (in part: Bibb-201), pl. 2, figs. 4-5, pl. 5, figs. 9-10; 1878: 200 (in part). - Lindström, 1877: 10-11 (in part: specimen from Anguilla), pl. 1, fig. 13, pl. 2, figs. 14, 18, 19.
Deltocyathus agassizii variety calcar Pourtalès, 1874: 35-36, pl. 6, fig. 11.
Deltocyathus italicus: Pourtalès, 1880: 101-103 (in part: variety beta and delta), pl. 1, figs. 4-5. - Moseley, 1881: 145-147 (in part: off Bermuda, 200 fms), text-fig., page 145 (lower pair). - Tizard, et al., 1885: fig. 277. - Vaughan, 1901: 293. - Tommast, 1970: 56, figs. 5e, 7b. - Laborel, 1970: 153; 1971: 175. Deltocyathus calcar: Zibrowius, 1976: 157. - CAIRNs, 1977: 86-87, 2 figs.; 1977b: 5; 1978: 11.

Description. - The shape of the corallum base varies, ranging from conical to slightly rounded to almost flat. There is no scar of attachment at the apex. The calice is round; the largest specimen examined measures 14.8 mm in diameter, exclusive of costal spines. The corallum is usually pigmented in a distinct pattern. The most common scheme is for all or part of the S_{2} and C_{2} to be dark brown. Other patterns, in order of frequency, are: completely white; completely light brown; only the spines pigmented dark brown; and S_{2} and P_{1} dark brown.

The C_{1} are thick and rounded, substantially larger than the other costae. Each C_{1} usually bears a large accessory spine, which can project a distance equal to the radius of the calice from the calicular edge, giving the corallum a stellate appearance; sometimes, however, these spines are much reduced, expressed only as incipient nubs, or absent altogether. The costae of the higher cycles are thinner but also reach the apex, except for the C_{4}, which extend about
0.9 of that distance. All costae are separated by shallow striae and bear large, rounded, blunt granules, which give the appearance of a beaded margin to the higher cycle costae. The large costal spines are finely granulated. C_{2-4} are usually rounded but may be flattened or ridged also.

Septa are arranged in six systems and four cycles in typical Deltocyathus fashion. S_{1} and S_{2} are about equal in size and exsertness; they are larger than the S_{3}, which, in turn, are slightly larger than the S_{4}. The S_{4} are joined to the S_{3} by four-six thin processes just below the notch that separates the S_{3} from its $P_{3} . P_{1-3}$ are separated from their corresponding septa by deep, narrow notches. Septal granules are usually broad and arranged in lines parallel to the trabeculae. Palar granulation is higher than that of the septa, composed of broad, often bifid granules one-three times the palar thickness in height.

The fossa is shallow with a prominent columella, which is round to elliptical in outline, and composed of numerous compressed rods united at their bases and to the inner edges of the S_{1-3}.

Discussion. - Pourtalès (1874,1880) was essentially correct in assuming that there was a species of Deltocyathus with a continuous gradation from prominent costal spines to the spineless condition. He was wrong, however, in assuming that this species was D. agassizii or D. italicus and overlooked the four other distinct species of Deltocyathus in his own collection. Evaluation of characters not studied by Pourtalès, such as the junction of the S_{3} to the S_{4}, width of the costae, presence or absence of a basal scar, and relative size of S_{3} and S_{4} distinguishes these species.

The distinctive costal spines and pigment pattern are known only in this species. However, when both spines and pigment are lacking, it still can be differentiated from the other western Atlantic Deltocyathus by its prominent C_{1} and the nature of the junction of the S_{3} to the S_{4}.

```
Material. - P-198 (2) USNM 46274; P-340 (7) USNM 46269; P-446 (1) USNM
46273; P-737 (1) USNM 46271; P-797 (3) USNM 46262; P-874 (7) USNM 46261;
P-876 (3) USNM 46263; P-890 (4) USNM 46259; P-904 (1) USNM 46264; P-931 (1)
USNM 46260; P-943 (187) USNM 46268; P-969 (2) USNM 46277; P-1140 (1) USNM
```

46266; P-1232 (1) USNM 46258; P-1303 (2) USNM 46272; P-1354 (475) USNM 46267, (46) UMML 8: 377; P-1357 (34) USNM 46280; 213 specimens from 14 Gerda stations in the Straits of Florida (USNM); O-1251 (6); O-1867 (7); O-3203 (5); O-3621 (2); O-4226 (300) USNM 46283; O-4301 (1) USNM 46282; O-4832 (5); O-4833 (1) ; O-4928 (3) ; O-5733 (1); O-5915 (2) ; O-5955 (10); SB-50 (2) ; SB-2443 (1); SB-2445 (1); SB-3494 (19); specimens from 37 Blake stations throughout Antilles (MCZ) ; Bibb-201 (1) MCZ; Alb-2135 (1) USNM 16092; Alb-2323 (1) USNM 10122; Alb-2338 (1) USNM 10222; Alb-2342 (1) USNM 16093; Alb-2345 (1) USNM 10250; Alb-2347 (1) USNM 10257; Alb-2399 (1) USNM 10442; Combat-447 (3); Gos-1590 (2) ; Gos-1657 (1) ; Gos-1811 (1); Gos-1824 (3) ; Gos-1842 (2); Caroline-12 (4) ; Caro-line-13 (1); Caroline-25 (14); Caroline-81 (7); Caroline-99 (1); Caroline-102 (2); E-30150 (1); E-30178 (2) ; MAFLA-2106 (3) FDNR; MAFLA-2746 (1) FDNR; WB-1 (9) USNM 46276; WB-2 (2) USNM 46275; WB-318 (10) USNM 46281; TAMU 65A9-15A (4) TAMU; TAMU 67A5-13B (59) TAMU; TAMU 68A7-9A (3) TAMU; Explorer-1a (30) ; Explorer-1b (2) ; Chain-36 (1) ; Chain-38 (3); Chain-39 (1); Chain43 (1); SME-1778 (8) SME; Akaroa-185 (1) SME; Hummelinck-1443 (7); 225 km southwest of Egmont Key, Florida (50) AMNH. - Syntypes; Lindström's (1877) specimens (NRM) ; Moseley's (1881) specimens (BM) ; Vaughan's (1901) specimens (USNM).

Types. - One hundred forty-one specimens, divided into three lots of 122,18 , and 1 specimens, are deposited at the MCZ. They were collected at an undetermined Hassler station off Barbados. No types were designated by Pourtariss since he considered this species to be a variety of D. agassizii. Therefore, one specimen is chosen as holotype and the remaining specimens are designated as paratypes.
Type-Locality. - Off Barbados; 183 m .
Distribution. - Widespread in Caribbean and eastern Gulf of Mexico, ranging from off North Carolina to off Rio de Janeiro, Brazil; off Bermuda (Map 22). $81-675 \mathrm{~m} .8^{\circ}-19^{\circ} \mathrm{C}$, based on six records.
35. Deltocyathus sp. cf. D. italicus (Michelotti, 1838)

Plate XVII, figures $1-3$
?Turbinolia italica Mrchelottr, 1838: 51, pl. 1, fig. 8.
Deltocyathus agassizii: Pourtales, 1871: 15 (in part: Bibb-95, Bibb-141, Bibb-191); 1878: 200 (in part: BL-46). - Moseley, 1876: 546, 551 (in part). - Boone, 1928: 8.
Deltocyathus italicus: Pourtalès, 1880: 101 (in part: variety agassizii), pl. 1, figs. 2-3. - Moseley, 1881: 145-147 (in part: Chall. stations 24, 56, 78, 120). Marenzeller, 1904: 281 (in part: Valdivia-56). - Gravier, 1920: 34-36 (in part). - Keller, 1975: 177, pl. 2, figs. 1-4b. - Cairns, 1977b: 5; 1978: 11. Deltocyathus sp. A Zrbrowrus, 1976: 156-157, pl. 49, figs. A-L.

Description. - The patellate corallum is small and unattached, with an apical angle between $80^{\circ}-120^{\circ}$. The apex of the base is
bluntly pointed, with no scar or other sign of previous attachment. The largest specimen examined has a round calice measuring 16.5 mm in diameter, although $10-11 \mathrm{~mm}$ is more typical. C_{1} and C_{2} are equal in size, narrow, and highly ridged, especially toward the calicular edge. C_{3} are less prominent and usually rudimentary. C_{1-3} reach the apex but the C_{4} do not. Costal granulation is variable. C_{1} and C_{2} usually bear coarse granules on their outer edges, producing a serrated or sometimes a beaded margin. Smaller granules are present on the lateral surfaces of the costae. C_{3} and C_{4} are similarly granulated but not as prominently. The corallum is usually white but is sometimes uniformly pink.

Septa are arranged in six systems and four complete cycles, only rarely with septa of the fifth cycle. S_{1}, which are the largest and only independent septa, are only slightly larger than the S_{2}, which, in turn, are substantially larger than the S_{3} and S_{4}. The S_{4} are slightly larger than the S_{3}. Each S_{1} bears a tall, narrow palus separated from its septum by a deep, narrow notch. The two P_{1} attached to the principal septa are smaller than the other four. Larger and taller pali usually occur on the inner edges of the S_{2}; however, they are sometimes reduced in size or absent entirely. P_{3} are equal in size to the P_{2} and fused to the P_{2} by their lower, inner margins, if P_{2} are present, forming the characteristic deltas. S_{4} do not bear pali; their inner edges are solidly fused to the P_{3} at or near the notch separating the S_{3} from the P_{3}. All septa are highly exsert. The septal granulation is prominent but sparse, composed of tall, slender spines (up to two times the septal thickness) or broader, blunter granules. The septal and slightly larger palar granules sometimes form short, vertically oriented carinae.

The fossa is very shallow or nonexistent. The elongate columella, aligned with the principal septa, is composed of numerous slightly twisted, narrow rods, which are solidly fused together.

Discussion. - This species is either closely related or identical to the European fossil species D. italicus. The only difference is that the costal granulation of the latter seems to be coarser. D. sp. cf. D. italicus is easily distinguished from the other Atlantic species by
its strongly conical base and, to a lesser degree by its ridged costae, sometimes pink corallum, and greater depth range.

Material. - P-478 (4) USNM 46201; P-585 (1) USNM 46213; P-607 (5) USNM 46211 ; P-634 (2) USNM 46217; P-747 (1) USNM 46214; P-754 (1) UMML 8: 373; P-776 (4) ; P-861 (5) USNM 46207; P-881 (1) USNM 46202; P-891 (1) USNM 46200; P-904 (1) USNM 46210; P-905 (1) USNM 46212; P-919 (2) USNM 46208; P-920 (1) USNM 46204; P-988 (10) USNM 46199; P-1171 (1) UMML 8: 372; P-1177 (2) USNM 46198; P-1181 (2) USNM 46215; P-1238 (3) USNM 46203; P-1255 (2) USNM 46206; P-1256 (1) USNM 46209; P-1261 (1) USNM 46205; P-1435 (15) USNM 46218; G-190 (2) USNM 46185; G-923 (1) USNM 46197; 111 specimens from 18 additional Gerda stations in the Straits of Florida; 322 specimens from 18 Columbus Iselin stations in the Tongue of the Ocean and Exuma Sound, Bahamas; GS-31 (15) USNM 46234; GS-44 (1) USNM 46235; O-2202 (50) ; O-2775 (1) ; SB-1182 (6); SB3515 (1); BL-46 (MCZ); BL-117 (MCZ); BL-129 (1) MCZ; BL-132 (MCZ); BL-161 (MCZ) ; BL-162 (MCZ); BL-163 (MCZ); BL-173 (MCZ); BL-224 (MCZ); BL-238 (MCZ) ; BL-244 (MCZ); BL-261 (4) MCZ; Bibb-95 (MCZ); Bibb-141 (MCZ) ; Bibb-191 (MCZ) ; Alb-2384 (4) USNM 10372; Alb-2393 (1); Alb-2394 (3) USNM 14004; Alb2750 (7) USNM 36460A; Alb-2751 (100) USNM 36431; Alb-2754 (17) USNM 36476; Alb-2760 (1) USNM 36454; Alb-2761 (3) USNM 36472; Alb-2763 (2) USNM 36432; Gos-1580 (3) ; Gos-1595 (2) ; Caroline-1 (2) ; Caroline-23 (1); Caroline-84 (3) ; Caroline93 (6) ; WB-322 (6) USNM 46237; WB-391 (1) USNM 46236; Atl-2987A (20) MCZ; Atl-3345 (MCZ) ; Atl-3355 (MCZ); Atl-3363 (MCZ) ; Atl-3423 (MCZ); TAMU 65A9-4 (4) TAMU; TAMU 65A9-7D (12) TAMU; TAMU 65A9-11 (10) TAMU; TAMU 65A9-14 (1) TAMU; TAMU 66A5-4 (2) TAMU; TAMU 67A5-4G (1) TAMU; TAMU 67A5-6B (2) TAMU; TAMU 67A5-7E (3) TAMU; TAMU 67A5-8B (1) TAMU; TAMU 67A5-9E (7) TAMU; TAMU 68A7-1A (23) TAMU; TAMU 68A72B (16) TAMU; TAMU 68A7-13A (5) TAMU; TAMU 68A7-13D (2) TAMU; TAMU 68A7-15D (3) TAMU; TAMU 68A7-15H (2) TAMU; TAMU 68A7-17B (3) TAMU; TAMU 71A8-47 (6) TAMU; SME-1777 (1) SME. - Moseley's (1881) specimens.

Types. - According to Chevalier (1961) the types of D. italicus (Michelotti) are lost.
Type-Locality. - Tortona, Italy (Miocene).
Distribution. - Western Atlantic: widespread in the Caribbean and Gulf of Mexico, ranging from off Florida to off Rio de Janeiro, Brazil; Bermuda (Map 23). 403-2634 m. $3^{\circ}-7^{\circ} \mathrm{C}$, based on 10 records. - Eastern Atlantic: area bounded by Gulf of Gascony, the Azores, and Morocco; Gulf of Guinea. $1500-2300 \mathrm{~m}$.

Deltocyathus agassizii: Pourtalès, 1871: 15 (in part: Bibb-141); 1874: 35-36 (in part: off Barbados); 1878: 200 (in part: BL-2, 19, 20, 58). - Moseley, 1876: 546 (in part).
Deltocyathus italicus: Pourtalès, 1880: 101 (in part). - Moseley, 1881: 145 (in part: Chall-24, 56). - Jourdan, 1895: 16 (in part). - Gravier, 1920: 34 (in part).
Deltocyathus andamanicus: Gravier, 1920: 37, pl. 4, figs. 55-59, pl. 15, fig. 209.
Deltocyathus hexagonus: Zibrowius, 1976: 158-160, pl. 50, figs. A-M, pl. 51, figs. A-N. - Cairns, 1978: 11.

Description. - The base of the corallum is flat to slightly conical, with a diameter: height ratio between 2.4-3.2. The wall is very thin except toward the calicular edge, where it forms a thickened outer lip. The calice is irregularly round. The largest specimen examined measures 15.8 mm in calicular diameter. Costae and costal granulation are quite variable. C_{1} and C_{2} are equal in size and extend to the apex; C_{3} are slightly smaller and do not quite reach the apex; and C_{4} are the smallest, reaching $0.8-0.9$ of the distance to the apex. C_{1} and C_{2} are usually low and rounded but can be quite high and ridged. Low, rounded granules are usually present on the costae but may become fused toward the calicular edge, forming a series of transverse ridges. There is no scar of attachment at the apex. The coralla are usually white but are sometimes a dark brown or light red.

Septa are arranged in six systems and four complete cycles; however, additional half-systems, composed of four septa (one extra S_{2} and S_{3} and two extra S_{4}) are common. S_{1} are the largest septa, independent, and connected to the columella through tall, narrow pali. S_{2} are slightly smaller and also join the columella via their pali. S_{3} unite with the S_{2} near the columella by a fusion of the inner edges of their respective pali. S_{4} are well developed at the calicular edge but are very small below the upper rim, consisting of only a low ridge or series of spines. They join with the S_{3} by four-five narrow processes deep within the fossa near the columella. P_{1-3} are separated from their corresponding septa by deep, wide notches. The two P_{1} before the principal septa are smaller than the other pali.

The inner edges of S_{1-3} are slightly to very sinuous. Pointed septal and palar granules can reach as high as twice the septal thickness but are usually shorter and arranged in distinct, widely spaced lines oriented parallel to the septal trabeculae.

The fossa is very shallow but the columella is never higher than the theca. The elongate columella, aligned with the principal septa, is composed of 5-20 small, narrow rods, embedded in a fused basal mass. The columella sometimes expands as a thin, circular membrane fusing with the inner edges of S_{1-3}.

Discussion. - D. eccentricus is one of four species that both Pourtaliss and Moseley lumped first as D. agassizii and later as D. italicus. It is easily distinguished from the other species of Deltocyathus by its irregularly round calicular outline, thickened outer lip, reduced S_{4}, and rudimentary junction of the S_{4} to the S_{3}.

Etymology. - The specific name eccentricus (Latin, =deviation from circular shape) refers to the irregular outline of the calice.

Material. - P-340 (45) USNM 46421 ; P-394 (4) USNM 46423; P-478 (5) USNM 46419; P-585 (4) USNM 46429; P-605 (3) USNM 46426; P-606 (10) USNM 46418; P-607 (31) USNM 46416 ; P-753 (3) USNM 46431 ; P-861 (34) USNM 46425; P-881 (2) UMML 8: 247; P-889 (12) USNM 46415 ; P-891 (13) USNM 46430, (3) UMML 8: 375; P-904 (8) USNM 46420; P-905 (20) USNM 46427; P-944 (1) USNM 46424; P-984 (4) ; P-1225 (34) UMML 8: 376; P-1256 (7) USNM 46417; P-1261 (1) USNM 46422; P-1356 (1) USNM 46434; 98 specimens from 26 Gerda stations from the Straits of Florida; CI-27 (4) USNM 46435; CI-84 (5) USNM 46436; O-1986 (1); O-3252 (2) ; O-3560 (3) ; O-4226 (1) USNM 46438; SB-3515 (39); BL-2; BL-19; BL20; BL-58; BL-100; BL-101; BL-130; BL-154; BL-157; BL-176; BL-208; BL-211; BL-230; BL-233; BL-244 - all BL specimens at MCZ; Bibb 141 (MCZ); Hassler, off Barbados, 183 m (MCZ) ; Alb-2750 (20) USNM 36461; Combat-45 (1); Combat447 (1); Gos-1632 (4); Gos-1638 (2); Gos-1639 (2); Gos-1723 (1); Gos-1827 (1); Caroline-23 (1); Caroline-25 (8); Caroline-67 (20); Caroline-93 (1); Caroline-94 (1); E-43 (1) ; Atl-2950; Atl-2990B; Atl-2999; Atl-3370; Atl-3371; Atl-3375; Atl-3459 all Atl specimens at MCZ; TAMU 71A8-71 (3) TAMU; Explorer 1c (17). - Moseley's (1881) specimens. - Types.

Types. - Holotype: P-881 (USNM 46986). - Paratypes: P-881 (71) USNM 46428. Type-Locality. $-13^{\circ} 21^{\prime} \mathrm{N}, 61^{\circ} 03^{\prime} \mathrm{W}$ (off St. Vincent); 576-842 m.

Distribution. - Western Atlantic: throughout the Caribbean and Gulf of Mexico, ranging from South Carolina to off the Amazon,

Brazil; Bermuda (Map 24). 183-907 m. - Eastern Atlantic: area bounded by Portugal, the Azores, and Cape Verde Islands. 3001000 m .
37. Deltocyathus moseleyi, new species

Plate XVIII, figures 1-3
Deltocyathus agassizii: Pourtales, 1871: 15 (in part). - Moseley, 1876: 546 (in part: Chall-56). - Lindström, 1877: 10 (in part: eastern Atlantic specimens), pl. 2, figs. 15-17. - Pourtalès, 1878: 200 (in part: BL-2).
Deltocyathus italicus: Moseley, 1881: 145 (in part: Chall-56). - Jourdan, 1895; 16 (in part). - Gravier, 1920: 34 (in part), pl. 3, figs. 45-56.
Deltocyathus sp. B Zibrowius, 1976: 160-162, pl. 52, figs. A-K, pl. 53, figs. A-L.
Description. - The base of the corallum is variable in shape, ranging from flat to almost hemispherical in large specimens. There is usually a slightly indented scar of attachment at the center of the base, but sometimes there is a projecting umbo, or even a short conical pedicel. C_{1-3} are only slightly wider than the C_{4}. All costae are rounded and extend to the basal scar. At the calicular edge, the costae are separated by very deep furrows, which become progressively shallower toward the scar. The costae bear very fine, pointed granules; those on the lateral surfaces toward the calicular edge are so tall that they often touch those of adjacent costae. The calice is round. The largest specimen measures 16.0 mm in calicular diameter, but $10-11 \mathrm{~mm}$ is more typical. The corallum is usually light brown, except for the basal scar and the area surrounding it, which are white. Reddish-brown and pure white coralla are also known.

Septa are arranged in six systems and four cycles in typical Deltocyathus fashion. The S_{4} are smaller than the S_{3} and joined to them very deep in the fossa close to the columella by two-three narrow processes. The inner edges of all septa are straight. The pali that correspond to the S_{1-3} are separated from their corresponding septa by narrow and moderately deep notches. The two P_{1} before the principal S_{1} are half as large as the other four $\mathrm{P}_{1} . \mathrm{P}_{3}$ are the most exsert, whereas P_{1} are the least exsert pali. Septal and palar granulation consists of high, slender spines; those on the pali are usually
taller (up to three times the thickness of a palus). The septal granules are arranged in radiating lines paralleling the trabeculae.

The columella is usually elliptical, aligned with the principal S_{1}. It is composed of $10-15$ thickened pillars, sometimes slightly clavate, which are fused to one another and to the inner edges of the S_{1} and S_{2}.

Discussion. - This species is unique among the Atlantic species of Deltocyathus, being the only one with a basal scar. It is further differentiated by its fine costal granulation and deep intercostal furrows.

Material. - P-610 (2); P-874 (1) UMML 8: 281; P-876 (1) UMML 8: 294; P-931 (1) ; G-723 (1); GS (G)-40 (1) ; BL-2 (1) MCZ; Gos-1606 (1); Gos-1641 (1); E-26023 (1) UMML 8: 293. - Lindström's (1877) specimens; Moseley's (1881) specimens. Types.

Types. - Holotype: P-876 (USNM 46984). - Paratype: P-876 (1) USNM 46985. Type-Locality. $-13^{\circ} 14^{\prime} \mathrm{N}, 61^{\circ} 05^{\prime} \mathrm{W}$ (off St. Vincent); 231-258 m.

Distribution. - Western Atlantic: Straits of Florida; off Belize; Windward Group, Lesser Antilles; Bermuda (Map 21). 201-777 m. - Eastern Atlantic: area bounded by Celtic Sea, Azores, and Madeira. 200-1200 m.
38. Deltocyathus pourtalesi, new species Plate XVIII, figures 4-6

Deltocyathus agassizii: Pourtalès, 1878: 200 (in part: BL-20, 50, 51, 57, 58).
Deltocyathus italicus variety delta Pourtalès, 1880: 103 (in part: BL-101), pl. 1, figs. 6-8.

Description. - The base of the corallum is flat with no scar of attachment, but sometimes a small umbo occurs at the center. The calice is round; the largest specimen measures 14.9 mm in calicular diameter and 6.5 mm tall. C_{1} and C_{2} are equal in width and only slightly larger than C_{3} and C_{4}, giving the base an equicostate appearance. All but the C_{4} reach the center of the base. The costae
have serrated outer edges resulting from large, blunt granules; they also bear smaller, pointed granules laterally. The costae are separated by furrows, which are most deeply incised toward the calicular edge. The upper, outer edges of the septa are usually highly dentate. The corallum is always white.

Septa are arranged in six systems and four complete cycles. S_{1} are independent, each septum joining the columella through a tall, wide palus. S_{2} are equal in size to the S_{1} whereas the S_{3} are the smallest septa, joined to the S_{2} near the columella by a fusion of their pali. The S_{4} are larger and more exsert than the S_{3}; they fuse solidly with the $\mathrm{P}_{\mathbf{3}}$ above the level of the notch that separates the S_{3} from their corresponding pali. All septa are highly exsert because of the very low level of the theca. P_{1-3} are separated from their corresponding septa by deep, narrow notches; usually those notches corresponding to the $\mathrm{S}_{\mathbf{3}}$ are deepest. The two $\mathrm{P}_{\mathbf{1}}$ before the principal S_{1} are half as large as the other P_{1}. The inner edges of all septa are straight to slightly sinuous. The septal and palar granules are widely spaced, randomly arranged, pointed, and about equal to the septal thickness in height.
The columella is elliptical to round and composed of 4-20 irregularly shaped rods fused basally and connected to the inner edges of the S_{1-3}. The level of the columella is higher than the upper thecal edge.

Discussion. - D. pourtalesi is distinguished from the other Atlantic species of Deltocyathus by its flat base, very low theca, equal costae, and $\mathrm{S}_{\mathbf{4}}$ that are slightly larger than the $\mathrm{S}_{\mathbf{3}}$.

Etymology. - This species is named in honor of L. F. Pourtalès, who greatly contributed to the knowledge of deep-water corals.

```
Material. - P-211 (1) USNM 46289, (1) UMML 8: 377; G-56 (1) USNM 46290;
G-664 (6) USNM 46291; G-720 (1) USNM 46292; G-721 (1) USNM 46293; BL-20
(25) MCZ; BL-50 (2) MCZ; BL-51 (3) MCZ; BL-57 (11) MCZ; BL-58 (2) MCZ; BL-
101 (10) MCZ; Alb-2342 (1) USNM 10235; Gos-1811 (2); Atl-3396 (59) MCZ; Atl-
3397 (2) MCZ; Atl-3400 (1) MCZ; Atl-3416 (1) MCZ. - Types.
```

[^11]Distribution. - Off Cuba; Straits of Florida; off South Carolina (Map 25). 311-567 m.

Genus Stephanocyathus Seguenza, 1864
Diagnosis. - Solitary, patellate, free. Costae usually present. Paliform lobes usually present on all septa. Columella trabecular, papillose, or fused on surface. Type-species: Stephanocyathus elegans Seguenza, 1864, by subsequent designation (Wells, 1936).
39. Stephanocyathus (Stephanocyathus) diadema
(Moseley, 1876)
Plate XIX, figures 1-6
Ceratotrochus diadema Moseley, 1876: 553-554. - Thomson, 1878: 113, fig. 30.
? Ceratotrochus discoides Moseley, 1876: 554.
Flabellum angulare: Pourtalès, 1878: 203.
Stephanotrochus diadema: Pourtalès, 1880: 96, 104, pl. 2, fig. 1. - Moseley, 1881 : 152-153, pl. 3, figs. 1 a-c. - Sclater, 1886: 130. - Agassiz, 1888: 149-150. Tizard, et al., 1885 ; fig. 281.
?Stephanotrochus discoides: Moseley, 1881: 153-154, pl. 3, figs. 2 a-c.
Not Stephanotrochus diadema: Jourdan, 1895: 18. - Roule, 1896: 319. -Sterhens, 1909: 24. - Gravier, 1920: 43-51. - Thompson, 1931: 9.
Stephanocyathus diadema: Gardiner \& Waugh, 1938: 191. - [Bayer, 1973]: illustrated on Haitian postage stamp, 1.5 gourdes. - Zibrowius, 1976: 165. Cairns, 1977: 87, upper right figure; 1977c: 730-731, figs. 1-2; 1978: 11.
Not Stephanocyathus diadema: Zibrowius, Southward \& Day, 1975: 100, pl. 3, fig. F (corrected in addendum, p. $100=S$. moseleyanus). - Sorauf \& Podoff, 1977: pl. 1, figs. 5-6 (= S. paliferus).
Stephanocyathus diadema nobilis: Keller, 1975: 180, pl. 2, figs. 9 a-b.
Description. - The adult corallum is bowl- or saucer-shaped, free, and rests on a very small, projecting umbo, which is its original point of attachment. Smaller coralla (cd less than than 30 mm) have flat, very thin walls, with a deeply serrated calicular edge. The largest corallum examined measures 64.0 mm in calicular diameter and 33.5 mm in height, making it one of the largest solitary ahermatypic corals in the western Atlantic. About half of the coralla examined are white; the other half are uniformly pink.
C_{1} and C_{2} are prominent, ridged, and have up to 21 projecting teeth. An average-size specimen ($\mathrm{cd}=48 \mathrm{~mm}$) has only $12-14$ teeth on each C_{1} and C_{2}, the first tooth occurring about 12 mm from the center of the base. C_{3} are sometimes ridged near the calicular edge but rarely have costal teeth. C_{4} and C_{5} are barely distinguishable. There is no costal granulation.

Septa are arranged in six systems and five cycles. The calicular edge is jagged because the theca forms a point corresponding to every septum, the most projecting points corresponding to the S_{1} and S_{2}. The S_{1} are highly exsert and are the only independent septa. The upper margin of each S_{1} usually forms a large, exsert lobe, which is reduced in size just below the calicular edge by a wide notch or broad indentation. Toward the columella, the septum enlarges again as a wide paliform lobe. The S_{2} are equally as exsert as the S_{1} and almost as large; the other cycles are progressively less exsert and smaller. The inner margins of all septa follow the general shape described for the S_{1}. In each system the inner edges of the two P_{3} are united with the P_{2} by a spongy extension of the columella. Likewise, the P_{4} are connected to the P_{3} and the P_{5} to the P_{4}, at distances progressively farther from the columella. The edges of the S_{1} are entire; however, those of the higher cycle septa are irregularly dentate. The septa and paliform lobes bear small, blunt granules arranged in lines oriented parallel to the septal trabeculae.

The columella is elliptical in outline, its longer axis aligned with the principal S_{1}. It is composed of a solidly fused, granular mass, which is usually flat, sometimes concave. Calcareous deposits of the same texture extend outward from the columella into all six systems, serving to unite the inner edges of the higher cycle septa.

Discussion. - Aspects of the synonymy are discussed in Cairns (1977c).

```
Material. - P-337 (9) USNM 46321; P-338 (8) USNM 46325; P-364 (2) USNM
46318; P-374 (1) USNM 46326; P-391 (2) USNM 46319; P-407 (7) USNM 46322;
P-413 (5) USNM 46320; P-636 (2) USNM 46307; P-672 (3) USNM 46323; P-682 (2)
USNM 46324; P-741 (3) USNM 46308; P-748 (6) USNM 46309; P-754 (1) USNM
46310; P-830 (1) UMML 8: 312; P-850 (2) USNM 46311; P-1177 (2) USNM 46312;
P-1178 (2) USNM 46313, (2) UMML 8: 249; P-1197 (2) USNM 46314; P-1224 (9)
USNM 46315; P-1262 (10) USNM 46316; P-1304 (2) USNM 46317; P-1435 (64)
```


Abstract

USNM $46329 ; 31$ specimens from 10 Gerda stations in the western Straits of Florida; 267 specimens from 35 Columbus Iselin stations in Exuma Sound, Bahamas; GS-31 (71) USNM 46306, (13) UMML 8: 313; O-1302 (2); O-2202 (1); O-2575 (3); O-2813 (3); O-2814 (5) USNM 53397; O-2820 (13) USNM 53371; O-3562 (5); O-3659 (2); O-3663 (1); O-3664 (11); O-3666 (1); O-4430 (4) USNM 53372; O-4570 (5); O-5639 (2); O-10875 (5); O-10876 (4); O-10877 (7); O-10878 (6); O-10897 (2); O-11240 (3); BL-46 (1) MCZ; BL-111 (2) MCZ; BL-173 (1) MCZ; Alb-2117 (24) USNM 7059; Alb-2384 (6) USNM 10369; Alb-2385 (1); Alb-2392 (5) USNM 10408; Alb-2678 (52) USNM 14555; Alb-2751 (6) USNM 36456; Alb-2754 (1) USNM 36480; Alb-2760 (2) USNM 36422; E-30176 (1); Atl-2992A (3) MCZ; WB-322 (8) USNM 46305; TAMU 65A9-11 (2) TAMU; TAMU 67A5-5D (1) TAMU; TAMU 68A7-13B (2) TAMU; TAMU 70A10-41 (10) TAMU; TAMU 70A10-42 (19) TAMU; Anton Bruun-831 (4) MCZ. - Syntypes of C. diadema; holotype of C. discoides.

Types. - The lectotype (Chall-120) and paralectotype (Chall-78) of C. diadema are both deposited at the BM (1880.11.25.55). The paralectotype of S. diadema is small, broken, and outside the geographic range for the species. It is probably S. moseleyanus or another species of Stephanocyathus. The holotype of C. discoides (Chall-120) is also at the BM (1880.11.25.56).
Type-Locality. $-8^{\circ} 37^{\prime} \mathrm{S}, 34^{\circ} 28^{\prime} \mathrm{W}$ (off Recife, Brazil); 1234 m .
Distribution. - Widespread in Caribbean and eastern Gulf of Mexico, ranging from off South Carolina to off Rio de Janeiro, Brazil (Map 26). 795-2133 m. $3^{\circ}-8^{\circ} \mathrm{C}$, based on 12 records.

40. Stephanocyathus (Stephanocyathus) paliferus
 Cairns, 1977

Plate XIX, figures 7-9, 11

Stephanocyathus elegans: Pourtalès, 1880: 103 (not C. elegans Seguenza, 1864).
Stephanocyathus nobilis: Erhardt, 1976: 59-61, pl. 1, figs. 1-2.
Stephanocyathus diadema: Sorauf \& Podoff, 1977: pl. 1, figs. 5-6.
Stephanocyathus (S.) paliferus Cairns, 1977c: 731-735, figs. 4-7; 1978: 11.
Description. - The corallum is bowl-shaped, free, and usually has a small scar of attachment at the center of the base, which often incorporates a small piece of substrate into the corallum. The largest specimen examined (the holotype) is 42.0 mm in calicular diameter and 21.0 mm in height. The theca, even of small specimens, is moderately thick and always white.

The costae corresponding to the first two cycles of septa bear up to 12 low, blunt spines, which, in larger specimens, occur only on
the lower face of the corallum, being absent from the calicular edge. Costae corresponding to the higher cycle septa are prominent only near the calicular edge, where they are rounded and slightly convex, separated by broad, shallow, grooves; toward the apex they are indistinguishable or represented by faint lines. The calicular edge is entire.

Septa are arranged in six systems and five cycles, but the last cycle is rarely complete. The holotype has 90 septa; however, two other coralla of lesser calicular diameters have 98 septa. The S_{1} are the largest septa, most exsert, and independent of the others. The S_{2} are only slightly less exsert; the higher cycle septa are progressively smaller. The rudimentary S_{5} are very small, thin, and are usually independent. The inner edges of all septa, except the S_{5}, are straight and entire. The septa and paliform lobes bear numerous low granules, which are often arranged in poorly-defined lines parallel to the trabeculae.

Each septum but those of the last cycle bears a large paliform lobe, which is separated from its septum by a deep, broad notch. The notch is deeper and narrower in the higher cycle septa. P_{1} and P_{2} extend to the columella; however, P_{2} are usually slightly larger. The two P_{1} before the principal S_{1} are smaller than the other P_{1}. P_{3}, about the same size as the P_{2}, are slightly recessed from the columella. P_{4}, equal in size to the P_{1}, are recessed even farther from the columella. Within each system, the P_{4} unite with the P_{3} and the P_{3} with the P_{2} by a solid fusion of their lower, inner edges.

The columella is elongated along an axis defined by the principal S_{1}. It is composed of numerous distinct pillars, which usually remain individualized but sometimes fuse into a more solid structure. The columellar elements are basally fused among themselves and to the adjacent $\mathbf{P}_{\mathbf{1}}$ and $\mathbf{P}_{\mathbf{2}}$. The columella is sometimes absent.

Discussion. - S. paliferus is easily distinguished from the other Atlantic Stephanocyathus by its distinct paliform lobes and well individualized columellar elements. Erhardt's (1976) record of S. nobilis is undoubtedly a small S. paliferus.

[^12]
Abstract

UMML 8: 277; P-861 (1) USNM 46444 ; P-889 (1) USNM 46445; P-984 (1) USNM 46446; P-1171 (3) USNM 46450; P-1255 (2) USNM 46451; G-524 (1) USNM 46439; G-967 (1) USNM 46440; G-1012 (10) USNM 46441, (1) UMML 8: 317; G-1015 (1) USNM 46442; O-450 (3) USNM 53364; O-1555 (1) USNM 53369; O-1889 (1) USNM 53403; O-1981 (75) ; O-1982 (2) USNM 53373; O-1984 (4) USNM 53401; O-1985 (29); O-1989 (115) USNM 53405; O-2774 (1); O-3584 (4); O-3627 (1); O-4203 (1) USNM 46452; O-4226 (3) USNM 46453; O-4421 (5); O-4423 (4); O-4840 (1); O-4907 (9); O-5028 (1); O-5037 (3); O-5636 (7); O-5740 (7); O-5925 (3); O-5930 (15); O-6708 (1); O-6721 (1); O-11290 (1); SB-2475 (7); SB-2488 (1); SB-3513 (4); SB-3514 (4); SB-3515 (19) ; BL-274 (1) MCZ; BL-280 (1) MCZ; BL-281 (1) MCZ; Alb-2143 (3) USNM 7145; Combat-45 (4); Combat-449 (1) USNM 53366; E-43 (1) Cornell; Atl2985 (3) MCZ; Atl-3344 (3) MCZ; Atl-3439 (2) MCZ. - Types of S. paliferus.

Types. - The holotype and 19 paratypes of S. paliferus are deposited at the USNM (47755-47759).
Type-Locality. $-23^{\circ} 58^{\prime} \mathrm{N}, 79^{\circ} 17^{\prime} \mathrm{W}$ (Santaren Channel, Bahamas); 555 m .
Distribution. - Common throughout Caribbean and Bahamas, ranging from off Florida to off the Amazon, Brazil; Campeche Bank, Mexico; off Florida west coast (Map 27). 229-715 m. 11 ${ }^{\circ}$ $19^{\circ} \mathrm{C}$, based on eight records.
41. Stephanocyathus (Stephanocyathus) laevifundus

Cairns, 1977
Plate XIX, figure 10; Plate XX, figures 1-4

Stephanocyathus variabilis: Pourtaliss, 1880: 104, pl. 2, fig. 2 (not Ceratocyathus variabilis Seguenza, 1864).
Stephanocyathus (S.) laevifundus Cairns, 1977c: 735-736, figs. 8-12.
Description. - The corallum is discoidal, with a flat or slightly concave base. The center of the base is usually blunt, rarely projecting, and never incorporates any of the substrate. The largest corallum examined measures 46.0 mm in calicular diameter and 17.0 mm in height. The corallum is always white. The base is smooth, sometimes glossy, with only faint lines representing costae radiating from the center. Rarely the C_{1} and C_{2} are slightly ridged near the upturned edge of the base. Very low, rounded granules are barely distinguishable on the base and do not alter the smooth texture. The calicular margin is not serrate.

Septa are arranged in six systems and five cycles; a complete
fifth cycle is often present in specimens measuring only 25 mm in calicular diameter. S_{1} and S_{2} are equal in size and highly exsert. The higher cycle septa are progressively smaller and much less exsert. The S_{1} and S_{5} are independent; each S_{1} reaches the columella by a large paliform lobe, whereas the S_{5} are rudimentary, reaching the columella as very low ridges. The remaining septa are joined to one another within each system by the inner edges of their paliform lobes: the P_{4} to the P_{3} and the P_{3} to the P_{2}. The inner edges of all septa, except the S_{5}, are straight and entire. Septal and palar granulation is similar to that of the two previously discussed species, consisting of small, low, rounded granules arranged in close-set radiating lines parallel to the underlying trabeculae, which are most conspicuous near the septal margin.

All but the last cycle of septa bear paliform lobes, each of which is separated from its corresponding septum by a shallow, broad indentation. P_{1} are the largest lobes, closest to the columella, and sometimes thickened on their axial margins. Two of the six P_{1}, those aligned with the principal septa, are smaller than the four lateral P_{1}. The paliform lobes of the remaining three cycles are progressively smaller, farther away from the columella, and usually more acute.

The columella is elongated in the axis defined by the principal S_{1} and is variable in structure. It is often a low, solidly fused mass but it also can be composed of small, individualized pillars united at their bases.

Discussion. - The most distinctive feature of S. laevifundus is its smooth, flat base. Comparisons to other species are made by Cairns (1977c).

[^13]Distribution. - Antillean distribution; off Panama (Map 28). $300-1158 \mathrm{~m} .5^{\circ}-7^{\circ} \mathrm{C}$, based on three records.

Subgenus Odontocyathus Moseley, 1881
Diagnosis. - Like the nominal subgenus but with basal part of one or two cycles of costae (C_{1} and C_{2}) bearing stout spines or tubercles. Type-species: Platytrochus coronatus Pourtalès, 1867, by monotypy.

42. Stephanocyathus (Odontocyathus) coronatus (Pourtalès, 1867)
 Plate XX, figures 5-6, 8-9

Platytrochus coronatus Pourtales, 1867: 114.
Trochocyathus ? coronatus: Pourtales, 1871:14-15, pl. 6, fig. 16. - Moseley, 1876; 550-551. - Pourtalìs, 1880: 96, 106.
Odontocyathus coronatus: Moseley. 1881: 148-151, pl. 2, figs. 4a-b, 5a-b, text-fig. Tizard, et al., 1885: fig. 280.
Stephanocyathus (Odontocyathus) coronatus: Gardiner \& WaUgh, 1938: 191. Zibrowius, 1976: 91. - Cairns, 1977c: 736-738, figs. 13-16; 1978: 11.
Stephanocyathus (Odontocyathus) sp. Keller, 1975: 179.
Description. - The corallum has a nearly horizontal base, which bears a small, raised scar of attachment at its center. At the basal diameter between $12-18 \mathrm{~mm}$ the wall rises almost vertically, forming an angle of $60^{\circ}-80^{\circ}$ with the plane of the base. The largest corallum examined measures 34.5 mm in calicular diameter, 25.0 mm in basal diameter, and 35.0 mm in height. On the base, the C_{1} and C_{2} each bear three-four spines, which are progressively larger toward the edge. At the edge of the base each of the 12 costae bears a massive tubercle, sometimes very irregular in shape, measuring up to 9 mm in length. These 12 tubercles project outward, usually forming an expanded base of support. Costae and costal granulation are usually inconspicuous; however, on one well-preserved specimen, low, smooth costae separated by very shallow grooves are present. Low,
round granules are closely arranged such that six-seven occur across the width of a costa.
Septa are arranged in six systems and five cycles, but the last cycle is never complete; a corallum rarely has over 72 septa. S_{1} and $\mathrm{S}_{\mathbf{2}}$ are the largest septa, equal in size, and highly exsert. The higher cycle septa are progressively smaller and much less exsert. The inner edges of all septa are straight and entire. The septal faces are covered by numerous, very small, low granules arranged in lines parallel to the trabeculae.
Each septum, except the S_{5}, has a distinct paliform lobe, which is separated from the septum by a deep, broad notch. P_{1} and P_{2} are closest to the columella, equal in size, and are the smallest, lowest lobes. They are extremely variable in shape: often tall and rounded, standing well above the columella and encircling it, but sometimes elongate and pointed, overhanging the columella. In the extreme case, they are quite long, slender, and pointed, indistinguishable from the columellar elements. Finally, especially in small coralla, the upper edges of the P_{1} and $\mathrm{P}_{\mathbf{2}}$ can be horizontal, merging directly with the columella, all at the same level. $\mathrm{P}_{\mathbf{3}}$ are two-three times larger, reach higher in the fossa, and are recessed from the columella. When two S_{5} flank an S_{4}, the S_{4} bears a paliform lobe of equal size and height to the P_{3}, but slightly more recessed from the columella. The P_{4} do not reach the columella; instead, their inner edges are loosely joined to the inner edges of the P_{3}. When an S_{4} is not flanked by two S_{5}, it remains small, rudimentary lower in the fossa, and bears only a slight, sometimes dentate paliform lobe. The P_{1} and P_{2} form an inner, lower crown of lobes, whereas the P_{3} and P_{4} form an outer, higher crown.

The columella is small, elongate to round in outline, and quite variable. It may be composed of several poorly individualized, stout rods, which are strongly fused basally or occur as a low, level, spongy mass or as long, slender, contorted rods.

Discussion. - The only other Atlantic Odontocyathus is S. (O.) nobilis (Moseley, 1873), known from the eastern Atlantic and questionably from the Indian Ocean (Zibrowius, 1976). At the USNM there is a single specimen (Pl. XX 7, 10) that appears to
be S. (O.) nobilis from off Fortaleza, Brazil: $3^{\circ} 22^{\prime} \mathrm{S}, 37^{\circ} 49^{\prime} \mathrm{W}, 763 \mathrm{~m}$ (Alb-2756) ; this would be its first and only record for the western Atlantic. S. (O.) coronatus is distinguished by its more prominent costal tubercles and large paliform lobes.

```
Material. - P-607 (2) USNM 46476; P-741 (1) USNM 46468; P-754 (1) USNM
46469; P-830 (3) USNM 46470; P-846 (1) USNM 46471; P-892 (2) USNM 46472, (2)
UMML 8: 251, 318; P-954 (1) USNM 46473; P-1187 (10) USNM 46474; P-1262 (4)
USNM 46475; G-93 (1) USNM 46459, (1) UMML 8: 319; G-131 (2) USNM 46460; G-
143 (1) USNM 46461; G-182 (5) USNM 46455, (1) UMML 8:320; G-187 (1) USNM
46456; G-375 (1) USNM 46462; G-403 (3) USNM 46457; G-448 (1) USNM 46463;
G-872 (1) USNM 46464; G-674 (1) USNM 46458; G-1016 (1) USNM 46467; G-1111
(1) USNM 46465; GS-31 (4) USNM 46466; O-3562 (1); O-3573 (1); O-4148 (1);
O-4570 (9): O-5639 (7); O-5930 (11); SB-446 (1); BL-141 (1) MCZ; BL-175 (2)
MCZ; BL-185 (1) MCZ; Alb-2117 (6) USNM 7062; Alb-2656 (1) USNM 14623; Alb-
2750 (5) USNM 36411; Combat-452 (4) USNM 53365; Gos-112/79 (1) Cornell; Gos-
112/86 (2) Cornell; E-30176 (3); Atl-2990B (3) MCZ; Atl-2991 (16) MCZ; Atl-2992A
(3) MCZ; Atl-2994 (2) MCZ; Atl-2995 (3) MCZ; Atl-3313 (10) MCZ; Atl-3363 (1)
MCZ; Atl-3366 (11) MCZ; Atl-3367 (2) MCZ; Atl-3369 (4) MCZ; Atl-3454 (1) MCZ;
Atl-3457 (3) MCZ; Atl-3470 (1) MCZ; TAMU 65A9-14 (3) TAMU; TAMU 68A7-
13A (1) TAMU; TAMU 70A10-41 (6) TAMU; Anton Bruun-831 (5) MCZ. - Holotype
of P. coronatus; Moseley's (1881) specimens (BM).
```

Types. - The small and extremely worn holotype is deposited at the MCZ (2769). Type-Locality. $-30^{\circ} 41^{\prime} \mathrm{N}, 77^{\circ} 03^{\prime} \mathrm{W}$ (Blake Plateau, off northern Florida); 841 m .

Distribution. - Throughout the Caribbean and eastern Gulf of Mexico; Bahamas (Map 29). 543-1250 m. $3^{\circ}-8^{\circ} \mathrm{C}$, based on 10 records.

Subfamily Turbinolinnae Milne Edwards \& Haime, 1848

Genus Trematotrochus T.-Woods, 1879
Diagnosis. - Solitary, ceratoid to cuneiform, perforate, free. Costae prominent with hispid granulation. Three-four cycles of septa, the highest cycle septa often rudimentary but corresponding to well-developed costae. Paliform lobes variable but usually present before S_{2}. Columella styliform, or fused by union of inner edges of septa and paliform lobes, or slightly compressed. No endotheca or epitheca. Type-species: Conocyathus fenestratus T.-Woods, 1878, by monotypy.

Discussion. - When Wells (1937) established the subgenus Batotrochus for Turbinolia corbicula, he noted its resemblance to Trematotrochus but differentiated Batotrochus by its larger columella and lack of paliform lobes. Some of the Atlantis specimens, however, have paliform lobes before the S_{2} and the difference in the size of the columella of T. corbicula and T. fenestratus is not thought to be a generic level character. Dennant (1899) emended the generic definition to include a wider range of columellar shapes. I have compared T. corbicula with 11 topotypic specimens (Pl. XXI 2,5) and the two syntypes of T. fenestratus (Australian Museum, Sydney, Paleontology, F: 1698), all collected from the Balcombian of Muddy Creek, near Hamilton, Victoria, and found the two species to be almost identical. The main difference concerns the costae: the costae of T. fenestratus are equal, whereas those of T. corbicula alternate in width, the C_{3} being twice as broad as the C_{1} and C_{2}. Based on this comparison and the variation found in the Atlantis specimens, Turbinolia (B.) corbicula is transferred to Trematotrochus, making Batotrochus a junior synonym of Trematotrochus.
43. Trematotrochus corbicula (Pourtalès, 1878), new comb. Plate XXI, figures 1, 3-4, 6; Plate XL, figure 10

Turbinolia corbicula Pourtalès, 1878: 203, pl. 1, figs, 12-13; 1880: 96. - Gardiner \& Waugh, 1938: 171.
Turbinolia (Batotrochus) corbicula: Wells, 1937: 239, pl. 1, figs. 3-4. - Keller, 1975: 176. - Cairns, 1978: 11.

Description. - The corallum is free, ceratoid, and very small, rarely exceeding 4 mm in length and 2.4 mm in calicular diameter. The theca is fenestrate (perforate), consisting of 24 hispid costae, which alternate in width, the C_{3} being twice as broad as the C_{1} and C_{2}. In each deep intercostal groove, there is a single row of large pores penetrating the theca. Thin, horizontal bars (synapticulae?) between the pores bridge the intercostal space. The C_{1} reach the base, whereas the C_{2} terminate at about 90% of the distance to the base. Each pair of C_{3} unites with a C_{2} near the base and extends toward the base for a short distance as one costa. The costae bear
long, narrow, blunt granules on both their outer and lateral edges. The calice is round.
S_{1} and S_{2} are equal in size, slightly exsert, and extend to the columella. S_{3} are rarely developed, but if so, only as small ridges in the upper corallum. The septal faces bear few large, blunt granules.

Some specimens have six small, granulated paliform lobes associated with the inner edges of the S_{2}. The lobes are closely adjacent to the columella and are separated from the S_{2} by deep, wide notches. The fossa is very shallow. The papillose columella is composed of one-five tightly fused elements and is joined by the inner edges of the S_{1} and S_{2}.

Material. - Atl-2987D (10) USNM 46477, (36) MCZ; Atl-2999 (1) MCZ. - Syntypes.

Types. - One syntype from BL-19 (5603) and two from BL-20 (5602) are deposited at the MCZ. An additional syntype from BL-20 is at the BM (1970.1.26.53).
Type-Locality. - Off Bahia Honda, Cuba; 402-567m.
Distribution. - Known only from off northwestern Cuba (Map 30). $400-576 \mathrm{~m}$.

Genus Peponocyathus Gravier, 1915

Diagnosis. - Solitary, free, imperforate. Shape variable, including bowl-shaped, cylindrical, hemispherical, and globose. Presence of pali variable: usually present before S_{2} but may be present before all but last cycle. Columella papillose. Type-species: Peponocyathus variabilis Gravier, 1915 ($=$ P. folliculus (Pourtalès, 1868)), by original designation.
44. Peponocyathus folliculus (Pourtalès, 1868)

Plate XXII, figures 1-4
Stephanophyllia folliculus Pourtalès, 1868: 139.
Paracyathus ? folliculus: Pourtales, 1871: 11-12.
Leptocyathus ? stimpsonii: Lindström, 1877: 9 (in part: 23 out of 26 specimens), specimens), pl. 1, figs. 7-8.

Leptocyathus stimpsonii: Pourtalès, 1878: 201 (in part: BL-5); 1880: 104 (in part BL-100).
Peponocyathus variabilis Gravier, 1915: 5, figs. 1-2; 1920: 39, pl. 4, figs. 60-73, pl. 13, fig. 202, pl. 14, figs. 203-204.
Trochocyathus (Peponocyathus) variabilis: Vaughan \& Wells, 1943: 205, pl. 41, figs. 9, 9a-b.
Peponocyathus folliculus: Zibrowius, 1976: 178-180, pl. 46, figs. A-L, pl. 47, figs. A-K.

Description. - The corallum is free (only rarely fixed) and is variable in shape. It can be a long or short cylinder, a truncated cone, hemispherical, globose, or even onion-shaped. Gravier (1920) illustrated many of its forms under the name of variabilis. The calicular diameter is usually exceeded either basally or midway on the corallum. The largest specimen examined measures 7.0 mm in height and 4.5 mm in calicular diameter, but coralla are more typically $3-5 \mathrm{~mm}$ high, with a smaller calicular diameter.
In cylindrical specimens there are usually 24 costae, but in more rounded coralla C_{4} are often present. The costae are separated by deep, narrow grooves, each costa bearing prominent granules (arranged two-three across a costa), as well as randomly arranged lateral granules that project into the intercostal groove. The costae follow much the same arrangement as in P. stimpsonii, differing only in that C_{4} are present only in larger coralla and originate laterally, usually halfway between the base and the calice or near the calice.

Septa are arranged in six systems and three cycles; only the largest coralla have distinct $\mathrm{S}_{4} . \mathrm{S}_{1}$ are the largest and most exsert septa and extend to the columella. S_{2} and S_{3} are smaller and less exsert than the S_{1}, but equal in size to each other. Sometimes the inner edges of the S_{3} fuse with the S_{2}. Even though distinct C_{4} are sometimes present, S_{4} usually are not, or if so, they are developed only in the upper calice as an extension of the costae. The septa and pali are covered with high, blunt granules, which exceed the thickness of a septum in height.
Before each S_{2} there is a highly granular palar rod very similar in shape to the columellar elements. The columella is composed of several tuberculated rods, which rest in a very shallow fossa.

Discussion. $-P$. folliculus is similar to P. stimpsonii in morphology and geographic and depth ranges. However, it can be differentiated by its highly variable shape (often cylindrical), presence of C_{4} without corresponding S_{4}, lateral origin of C_{4} instead of at the base, and the absence of S_{4} except in very large individuals. P. folliculus is also very similar to P. orientalis Yabe \& Eguchi, 1932, known from the Pleistocene of Ryukyu. P. folliculus differs in being smaller and having less septa.

Material. - BL-2 (2) MCZ; BL-5 (23) MCZ, (3) USNM; BL-100 (6) MCZ; Gos-1590 (6) ; Hudson-4B (1) NMC. - Holotype of S. folliculus; Lindström's (1877) specimens (NRM).

Types. - The holotype of S. folliculus is deposited at the MCZ (Bibb-51). Fourteen syntypes of P. variabilis are deposited at the MOM (Prince of Monaco station 2214). Type-Locality. $-24^{\circ} 12^{\prime} 40^{\prime \prime} \mathrm{N}, 81^{\circ} 19^{\prime} 25^{\prime \prime} \mathrm{W}$ (western Straits of Florida); 433 m .

Distribution. - Western Atlantic: Antillean distribution (Map 30). 284-457 m. - Eastern Atlantic: Azores; the high grounds between Madeira and Portugal. 300-732 m.
45. Peponocyathus stimpsonii (Pourtalès, 1871)

Plate XX, figure 11 ; Plate XXII, figures 5-7
Leptocyathus stimpsonii Pourtales, 1871: 12, pl. 3, figs. 1-3.-Lindström, 1877: 9 (in part: 3 of 26 specimens), pl. 1, figs. 5-6. - Pourtalès, 1878: 201 (in part: not BL-5) ; 1880: 104 (in part: not BL-100). - Duncan, 1883: 363.
Deltocyathus italicus: Jourdan, 1895: 16 (in part).
Deltocyathus lens: Gravier, 1920: 36, pl. 3, figs. 47-54, pl. 13, figs. 200-201.
Deltocyathus stimpsoni: Gardiner \& Waugh, 1938: 172.
Peponocyathus stimpsonii: Lewis, 1965: 1063. - Zibrowius, 1976: 180-182, pl. 48, figs. A-L. - Cairns, 1977b: 5; 1978: 11.
Notocyathus sp. Lewis, 1965: 1062.
Notocyathus (Paradeltocyathus) orientalis: Keller, 1975: 178.
Description. - The corallum is hemispherical, rarely exceeds 7 mm in calicular diameter, and is always wider than tall. It is free and sometimes has an irregular, asymmetrical base caused by asexual budding from a parent fragment. Equal costae corresponding to all septa are bordered by very deep, narrow intercostal
grooves. Only the C_{1} are independent, reaching the base of the corallum. Each C_{3} extends three-fourths of the distance to the center of the base, where it is joined by its two adjacent C_{4}; this combined costa continues for only a short distance before it joins a C_{2} very close to the center of the base. Each costa bears a distinct row of outwardly projecting granules as well as randomly arranged lateral granules, which extend into the intercostal groove.
There is no distinct boundary separating the costae from the septa. The upper costae are so produced and close-set and the septa are so exsert that the upper thecal edge is entirely hidden from view. The septa are arranged in six systems and four cycles. S_{1} are the largest, most exsert septa and extend to the columella. The higher cycle septa are progressively smaller and less exsert. The inner edges of the S_{4} are usually attached to the $\mathrm{P}_{\mathbf{3}}$ by their lateral septal granules. The septa bear prominent, blunt granules, which are as high as the thickness of a septum. Sometimes the granules fuse into short, vertically oriented carinae at the upper septal edges.

The presence and symmetry of pali are quite variable; usually, however, there are distinct pali at the inner edges of the S_{2}, appearing as highly tuberculated rods. Less often, there are wider and thinner pali before the S_{3}. Sometimes, however, pali are missing altogether or they merge indistinguishably with the columella. The columella is composed of six-eight slightly smaller tuberculated rods, which are very similar to the pali in shape. Usually six of the columellar rods are regularly arranged directly before the S_{1}, resembling pali of the first cycle.

Discussion. - There is confusion about the generic placement of this species and its relative P. folliculus (see Carrns, 1976) because of overnaming and varying interpretations of the turbinolid genera. A comprehensive generic revision of this subfamily is greatly needed.
P. stimpsonii is extremely similar to the Indo - West Pacific Notocyathus (Paradeltocyathus) orientalis (Duncan, 1876). Further comparisons may show them to be synonymous (PI. XL 8-9).

Duncan (1883) unjustly criticized Lindström (1877) in his discussion of Leptocyathus stimpsonii. Lindström was faulted for not finding pali in front of the S_{2} and S_{3}, as Duncan clearly observed
in his specimens. Inasmuch as the variation in distinctness and number of pali in this species is great, I believe that both authors observed correctly.

```
Material. - G-966 (1) USNM 46478; O-4226 (64); Alb-2665 (4) YPM 8489; Gos-
1657 (1); Gos-1735 (1); Gos-1768 (1); BL-20 (2) MCZ; BL-50 (4) MCZ; BL-51 (2)
MCZ; BL-253 (1) MCZ; Hassler, off Barbados, 183 m (1) MCZ; MAFLA-2106 (1)
FDNR; MAFLA-2957 (1) FDNR; TAMU 65A9-15A (3) TAMU; Hummelinck-1443
(5). - Syntypes of L. stimpsonii; Lindström's (1877) specimens (NRM); Lewis's
(1965) specimen (USNM 46479).
```

Types. - Four syntypes (5572) from off Conch Reef, Florida (Bibb-201) are deposited at the MCZ. One syntype from Bibb-201 is at the YPM (4766). The syntype from off Tennessee Reef, Florida (Bibb-181) is missing.
Type-Locality. - Off Florida Keys; 110-293 m.
Distribution. - Western Atlantic: Antillean distribution; Campeche Bank, Mexico; off Florida west coast ; off Amazon, Brazil (Map 31). 110-553 m. - Eastern Atlantic: Madeira; Azores. 200600 m .

Subfamily Desmophyllinae Vaughan \& Wells, 1943
Genus Desmophyllum Ehrenberg, 1834

Diagnosis. - Solitary, trochoid, fixed. No pali. Columella absent or very small. Sparse endothecal dissepiments. Type-species: Desmophyllum dianthus Ehrenberg, 1834 by subsequent designation (Milne Edwards \& Haime, 1850).
Desmophyllum cristagalli
Milne Edwards \& Haime, 1848
Plate XXI, figures 7-8; Plate XXII, figure 8

1920: 72-76, pl. 8, figs. 130-135. - Nobre, 1931: 65-66. - Hoffmeister, 1933: 8-9, pl. 2, figs. 1-4. - Durham, 1949: 158, pl. 10, figs. 2, 4, 7-8. Durham \& Barnard, 1952: 86-87, pl. 11, fig. 48. - Squires, 1958: 91; 1959: 18-20 (in part: Sta. V7-12). - Wells, 1958: 262. - Ralph \& Squires, 1962: 9-10, pl. 3, figs. 1-10. - Squires \& Keyes, 1967: 25, pl. 3, figs. 12-14. Best, 1969:310, fig. 11. - Squires, 1969: 16-17, map 1. - Laborel, 1970: 156. - Livingston \& Thompson, 1971: 788. - Zibrowius, 1974a: 758, pl. 3, figs. 1-10. - Zibrowius, Southward \& Day, 1975: 98, pl. 4, figs. A-B. Keller, 1975: 176. - Zibrowius, 1976: 183-187, pl. 23, figs. A-O, pl. 24. figs. A-M. - Sorauf \& Jell, 1977: 2-18, pls. 1-8.
Desmophyllum costatum Milne Edwards \& Haime, 1848: 254.
Desmophyllum cumingii Milne Edwards \& Haime, 1848: 254, pl. 7, fig. 11.
Desmophyllum serpuliforme Gravier, 1915: 12, figs. 4-5; 1920: 78, pl. 7, figs. 121129, pl. 16, fig. 215.

Description. - D. cristagalli varies greatly in its corallum shape and diameter of attachment. The corallum is usually greatly flared, with a firm pedicel one-eighth to one-fourth the diameter of the calice, but also can assume a cylindrical shape with a base almost as large as the calice. Some coralla attain a very large size, up to $50 \times$ 80 mm in calicular diameter; elongate, narrower coralla measure up to 20 cm in length. These sizes are exceptional; an average-size specimen containing a full five cycles of septa measures about $45 \times$ 35 mm in calicular diameter and $60-70 \mathrm{~mm}$ tall. The shape of the calice is usually round in young specimens, becoming elliptical with greater size. Narrow, ridged costae often correspond to the first three cycles but may be entirely absent. The theca is thick, especially in larger coralla, and covered by low, fine, rounded granules.

Septa are closely arranged in six systems and five cycles. Coralla with calicular diameters ranging from $20-50 \mathrm{~mm}$ usually have a complete fifth cycle (96 septa). Coralla larger than 45 mm in calicular diameter often have supplementary S_{6}. The largest corallum examined (Alb-2781, off Chile) with a calicular diameter of $77.0 \times$ 55.0 mm has 180 septa. S_{1} and S_{2} are equal in size, exsert, and descend vertically into a very deep fossa. S_{3} are smaller and less exsert but are considerably larger than the S_{4}. The S_{4} are equally or less exsert than the S_{5} but descend deeper into the fossa. The inner edges of all septa are entire and straight. The septal faces are covered by numerous, very fine granules, which are so low that the face ap-
pears smooth. Occasionally there are large, irregular deposits of stereome on the septal faces.

The fossa is very deep; in those forms that are elongate, sparse endothecal dissepiments are present. A small columella composed of one to several small rods is sometimes present in young specimens. Columellas are rare in larger specimens; none occurred in any of the western Atlantic specimens examined.

Discussion. - Both Alcock (1902) and Vaughan (1907) suggested that the small specimen described as Desmophyllum reflexum Duchassaing \& Michelotti, 1860, is synonymous with D. cristagalli. The holotype of D. reflexum is not present at the MIZS or the MNHNP, and the original description and figures are inadequate to identify the specimen. The brief description of the costal and septal granulation, however, does not agree with that of D. cristagalli. I consider D. reflexum to be a species dubia.
SQuires (1959) treated D. solidum Pourtalès, 1871, as a junior synonym of D. cristagalli. Examination of the holotype shows it to be synonymous with Thalamophyllia riisei (Duchassaing \& Michelotti) instead.

Material. - G-114 (1) USNM 46480; G-130 (2) USNM 46481; G-311 (1) USNM 46482; G-859 (1) USNM 46483; CI-140 (1) UMML 8: 252; CI-246 (1) USNM 46484 ; BL-2 (2) MCZ; BL-288 (2) MCZ; Gos-1656 (2); Gos-2150 (2) ; Gos-2609 (2) ; E-26017 (1); E-26052 (1); WH-104/68 (1) SME; Atl-260 (1) AMNH; Atl-280-14 (10); Atl2995 (2) MCZ; AtI-3451 (5) MCZ; TAMU 65A9-4 (1) TAMU; SME-1776 (4) SME. Holotype of D. cristagalli; holotype of D. serpuliforme; Marenzeller's (1904a) specimen (USNM 22074); Squires's (1959) specimen (AMNH).

Types. - The holotype of D. cristagalli is deposited at the MNHNP. The syntypes of D. costatum are probably lost; they cannot be found at the MNHNP or BM. The types of Gravier's D. serpuliforme are deposited at the MOM (Prince of Monaco station 1344) (Zibrowius, 1976).
Type-Locality. - Gulf of Gascony; unknown depth.
Distribution. - Western Atlantic: off Nova Scotia; off New Jersey; Muir Seamount; near Kelvin Seamount; Straits of Florida; off Cuba; off Martinique, Lesser Antilles; off southeastern Brazil (Map 32). 155-1939 m. - Elsewhere: widespread in Atlantic, Pacific, Indian, and Antarctic Oceans. 80-2460 m.

47.

 Desmophyllum striatum, new speciesPlate XXII, figure 9; Plate XXIII, figures 2-3
Desmophyllum cailetti: Lindstrôm, 1877: 12.
Desmophyllum cristagalli: Pourtales, 1878: 203 (in part: BL station off Havana, $158 \mathrm{fm}=289 \mathrm{~m}$); 1880: 106 (in part: BL-135).

Description. - The corallum is trochoid with a slightly flared calice. The calice narrows to a thick pedicel with a diameter measuring $40-50 \%$ that of the calice. The base may spread out as a thin, translucent layer up to three times the calicular diameter. The largest specimen, the holotype, measures $9.7 \times 8.7 \mathrm{~mm}$ in calicular diameter and 8.7 mm tall. Low, ridged C_{1} and C_{2} extend halfway to the base and bear large, blunt granules. Only if S_{4} are present in a system are C_{3} expressed. There are also very fine (0.2 mm in width), thecal striae oriented perpendicular to the costae. The striae occasionally bifurcate and anastamose; 40-42 parallel striae occur in the holotype. These striae are also found on the base. This thecal ornamentation is identical to that found in three species in the genus Caryophyllia (C. lamellifera, C. rugosa, and C. corrugata, n. sp.).

Septa are arranged in six systems and four cycles; the last cycle is never complete. The holotype has 38 septa. S_{1} are highly exsert, thick, and meet in the lower fossa. S_{2} are almost as large but less exsert and less thick, and also meet at the bottom of the fossa. Often only two of the four S_{4} within a system are developed, in which case the S_{3} flanked by two S_{4} are enlarged to almost the size of an S_{2}. Both septa, the S_{2} and the accelerated S_{3}, extend closely parallel toward the center of the fossa. The remaining S_{3} (unflanked by S_{4}) and all S_{4} are slightly exsert, small, and do not reach the center of the fossa. Small paliform lobes, not separated from the septa by notches, are present on the lower, inner edges of the S_{2} and accelerated S_{3}. If all four S_{4} are developed in a system, the higher cycle septa are progressively and regularly smaller. Very close-set, fine, pointed granules cover the septal faces.

The fossa is narrow and deep, usually without a trace of a columella. However, sometimes the lower, inner edges of the S_{1} and S_{2} fuse to produce a rudimentary columella.

Discussion. - This species is easily distinguished from D. cristagalli, the only other Desmophyllum known from the Atlantic, by its much smaller size, fewer septa, and very distinctive thecal striae, which occur even on an individual 1.5 mm in calicular diameter.
D. striatum could also easily be confused with individual corallites of T. riisei, particularly because these two species are often collected together. It can usually be differentiated by its thecal striae, thicker pedicel, and less exsert septa.

Etymology. - The specific name striatum (Latin, =groove, channel) refers to the distinctive, horizontal thecal striae.

Material. - Nekton-244 (4) USNM, (1) UMML 8: 284; Nekton (beta)-563 (1). Lindström's (1877) specimen (NRM) ; Types.

Types. - Holotype: CI-6 (USNM 46886). - Paratypes: P-1411 (1) USNM 46887; SB-3494 (1) USNM 46888; BL-69 (1) MCZ; BL station off Havana, 158 fm ($=289$ m) (1) MCZ; Bay of Cochinos, Cuba (1) USNM 46889.

Type-Locality. $-25^{\circ} 10^{\prime} \mathrm{N}, 77^{\circ} 05^{\prime} \mathrm{W}$ (Virgin Islands); 320 m .
Distribution. - Greater Antilles; Bahamas (Map 32). 130-823 m.

Genus Thalamophyllia Duchassaing, 1870
Diagnosis. - Colonial, forming reptoid colonies by extratentacular budding from stolons. Corallites ceratoid. No pali or columella. Type-species: Desmophyllum riisei Duchassaing, 1860, by monotypy.
48.

Thalamophyllia riisei
(Duchassaing \& Michelotti, 1860)
Plate XXIII, figures $1,4-6,9-10$

Desmophyllum rusei Duchassaing \& Michelotti, 1860: 61, pl. 9, fig. 5.
Desmophyllum riisei: Duchassaing \& Michelotti, 1864: 66. - Pourtalès, 1880: 96, 106, pl. 1, fig. 14. - Agassiz, 1888: 150, fig. 469. - Goreau \& Wells, 1967: 449. - Porter, 1972: 113. - Wells \& Lang, 1973: 58. - Lang, 1974: 278, fig. 7. - Land, Lang \& Barnes, 1977: 170.
Thalamophyllia riisei: Duchassaing, 1870: 28. - Zibrowius, 1976: 187.
Desmophyllum simplex Verrill, 1870: 371, fig. 2. - Gravier, 1920: 81.
Desmophyllum solidum Pourtales, 1871: 17, pl. 5, figs. 5, 6; 1880: 96. - Agassiz, 1888: 150, fig. 470.

Lophohelia exigua: Lindstrőm, 1877: 14.
Cyathoceras riisei: Vaughan, 1907: 68.
?Desmophyllum fasciculatum: Allan \& Wells, 1962: 390, pl. 3, figs. 5-6.
Description. - The reptoid colony forms loose aggregations of corallites separated from one another by $5-10 \mathrm{~mm}$ but all interconnected basally by very thin, narrow stolons. Often the delicate stolons are obscured or abraded away. An individual ceratoid corallite has a thin pedicel, which expands into a flared calice. The largest specimen examined measures $13.0 \times 11.0 \mathrm{~mm}$ in calicular diameter and 19.2 mm tall. Highly ridged, narrow C_{1} extend to the base; C_{2} extend only halfway to the base. The highest cycle costae (C_{3} or C_{4}) are usually broader than the others and are covered by low, inconspicuous granules.

Septa are arranged in six systems and four cycles; the fourth is never complete. The largest specimen examined contains 42 septa. Corallites measuring $4-10 \mathrm{~mm}$ in calicular diameter usually have 24 septa; S_{4} occur only in larger specimens. S_{1} are extremely exsert, with rounded upper edges and vertical, straight inner edges, which almost meet in the bottom of the fossa. S_{2} are also quite exsert but much less than the S_{1}. If S_{4} are not present in a system, the S_{3} are often very thick, with correspondingly broad costae. If S_{4} are present, they become the thick septa with broad costae, whereas the S_{3} remain thin. When the highest cycle septa are thick, it is the result of a secondary thickening of stereome and corresponds to the "solidum" form. If the highest cycle septa are thin, the specimen is the typical form. Both forms are found within millimeters of each other and have no taxonomic validity. Very low, rounded, uniformly spaced granules cover the septal faces. The fossa is usually elongate and deep. There is no columella.

Discussion. - Zibrowius (1976) resurrected Thalamophyllia Duchassaing, 1870, to accomodate two species, D. riisei and D. gasti Döderlein, 1913. It differs from Desmophyllum only in its tendency to reproduce asexually by budding from a basal expansion. T. riisei is easily distinguished from T. gasti by its prominent costae and flared calice.

Vaughan (1907) placed D. riisei in the genus Cyathoceras be-
cause he observed a columella in the holotype. I agree with Joubin (1928) in assuming that a labelling error occurred regarding the holotype, since it distinctly does not have a columella (Wells, pers. comm.).

Material. - P-405 (USNM 46491); P-596 (USNM 46492) ; P-991 (UMML 8: 256); G-103 (USNM 46486); G-984 (USNM 46487); G-985 (USNM 46488); G-986 (USNM 46489) ; CI-158 (USNM 46493); O-4297; SB-3494; BL-22 (MCZ); BL-155 (MCZ); BL-156 (MCZ) ; BL-157 (MCZ) ; BL-177 (MCZ); BL-203 (MCZ); Alb-2135 (USNM 16076); Alb-2157 (USNM 16090); Alb-2166 (USNM 7384); Alb-2323; Alb-2327 (USNM 16073); Alb-2332 (USNM 16071); Alb-2334 (USNM 10193); Alb-2336 (USNM 10210A); Gos-39 (Cornell); E-30159; E-30178; Chain-43; Nekton (gamma)244; Cardiff Hall, Jamaica, 39-43 m (USNM 46495); off Golding Cay, Bahamas, 914 m (USNM 46496) ; off Acklin's Island, Bahamas, 33 m (USNM 46494). - Holotype of D. solidum; holotype of D. simplex; Lindström's (1877) specimens (NRM).

Types. - The holotype of D. riisei was reported to be at the MIZS in 1962 but could not be found there in the summer of 1975. The type-colony of D. simplex Verrill, is at the YPM (3862). The holotype of D. solidum Pourtalès, collected at Bibb-141, is deposited at the MCZ (2760).
Type-Locality. - St. Thomas, Virgin Islands.
Distribution. - Antillean distribution, ranging from Bahamas to off Surinam; off Panama (Map 33). 18-1317 m.
49. Thalamophyllia gombergi, new species Plate XXIII, figures 7-8, 11

Description. - Small, phaceloid colonies are formed by closely adjacent budding from a common basal layer of coenosteum. The colonies are secondarily increased by settlement of planulae on old or dead corallites. The corallites are cylindrical, tapering only slightly toward the base; the diameter of the thickened pedicel ranges from one-half to three-fourths that of the calicular diameter. The calice is round to slightly elliptical, measuring $7.0 \times 6.8 \mathrm{~mm}$ in the largest corallite of the holotype colony; its height is 10.8 mm . Broad, flat, equal costae correspond to all septa. They are set apart by very faint striae, which become indistinguishable halfway to the base. Four-five very fine, rounded costal granules occur across the width of each costa near the calice. The theca is very thick.

Mature corallites have 24 septa arranged in six systems and three cycles. A small, cylindrical corallite measuring 1.4 mm in diameter and 2.1 mm in height possesses only the first cycle of septa. All septa are slightly exsert. S_{1} are larger than the S_{2} and both have entire, vertical inner edges. S_{3} are much smaller and have irregular, slightly sinuous inner edges. Low, blunt, randomly arranged granules cover the septal faces. The fossa is extremely deep and narrow, bordered by the inner edges of the S_{1} and S_{2}. There is no columella.

Discussion. - This species is placed in the genus Thalamophyllia because of its tendency to bud from a common basal expansion. It is easily distinguished from the other two species in the genus, T. riisei and T. gasti, by its broad, granulated costae, thick wall, and cylindrical corallites.

Etymology. - This species is named in honor of David Gomberg, who provided me with the Gilliss (Geology) ahermatypes, which included the holotype of this species.

Material. - Types.

Types. - Holotype: a small colony of five corallites from GS (G)-25 (USNM 46890). - Paratypes: GS (G)-25 (7) USNM 46891, (1) UMML 8: 285; GS (G)-27 (13) USNM 46892, (4) UMML 8: 292; GS (G)-71-6 (2) USNM 46893; GS (G)-71-7 (1) USNM 46894.
Type-Locality. $-24^{\circ} 21.3^{\prime} \mathrm{N}, 81^{\circ} 40.2^{\prime} \mathrm{W}$ (Pourtalès Terrace); 190 m .
Distribution. - Known only from the Pourtalès Terrace, Florida (Map 33). 155-220 m.

Genus Lophelia Milne Edwards \& Haime, 1849
Diagnosis. - Colonial, forming large dendroid colonies by intratentacular budding. Coenosteum dense. Costae and columella poorly developed. Pali absent. Sparse tabular endothecal dissepiments. Type-species: Madrepora prolifera Pallas, 1766, by subsequent designation (Milne Edwards \& Haime, 1850).

Synonymy incomplete:
?Madrepora pertusa Linnaeus, 1758: 797.
Madrepora prolifera Pallas, 1766: 307. - Linnaeus, 1767: 1281. - Ellis \& Solan DER, 1786: 153, pl. 2, figs. 2-5. - ESper, 1791: 104, 289, pl. 11.
Lophelia prolifera: Milne Edwards \& Haime, 1850a: 81. - Cecchini, 1917: 149. Teichert, 1958: 1066. - Squires, 1959: 22-23 (in part: V3-23; Station V712 is Solenosmilia variabilis). - Moore \& Bullis, 1960: 125-128, fig. 2. Rossi, 1960: 9-10. - Stetson, Squires \& Pratt, 1962: 22, fig. 13. - Squires, 1963: 23, fig. - Chevalier, 1966: 974-975. - SQuires, 1969: 16. - Best, 1969: 312-313, fig. 13. - Laborel, 1970: 156. - Cairns, 1977b: 5; 1978: 11.
Lophohelia prolifera: Milne Edwards \& Haime, 1857: 117. - Pourtalès, 1871: 24-25, pl. 1, figs. 3-5. - Duncan, 1873: 328-332, pl. 42, figs. 7-8. - Moseley, 1881: 178-179, pl. 8, figs. 7-8 (not Chall-109). - Verrill, 1883: 63-64. Agassiz, 1888: 151, fig. 472. - Jourdan, 1895: 25. - Marenzeller, 1904: 307, pl. 15, figs. 3, 3a. - Gourret, 1906: 121, pl. 11, fig. 10, pl. 12, fig. 10A. Gravier, 1920: 87-89 (in part: not pl. 10, fig. 157). - Nobre, 1931: 67-68, pl. 19-20.
Lophohelia affinis Pourtalès, 1868: 135.
Lophohelia tubulosa Studer, 1878: 631, pl. 1, figs. 8a-e.
Bathelia candida: Jourdan, 1895: 27.
Lophelia pertusa: Dons, 1944: 38. - Carlgren, 1945: 151, fig. 74. - Zibrowius, 1974a: 761, pl. 2, figs. 6-9; 1976: 192-197, pl. 21, figs. A-L.
Dendrosmilia nomlandi Durham \& Barnard, 1952: 85, pl. 10, fig. 47.
Desmophyllum cristagalli: Squires, 1959: 18-22 (in part: figs. 8-10).
Description. - The corallum increases by intratentacular budding, producing massive, dendroid, bushy colonies with branches which often anastomose. Terminal branches are slender and bear opposite, alternately arranged corallites. Toward the base, which can reach several centimeters in diameter, budding is less regular and often random. The calicular size and branching pattern are quite variable. Duncan's (1873) form gracilis is a slender phenotype with widely spaced corallites separated by four-five times their own calicular diameters. Moseley's (1881) form brachycephala has a closer branching pattern with stout, vertically compressed corallites having very thick walls. It can also occur as thick (12 mm in diameter), massive branches, bearing flared corallites reaching 20 mm in calicular diameter. Virtually all intergrades are expressed; none have subspecific value.

The shape of the calice is also variable, ranging from round to elliptical to highly irregular. The coenosteum is covered by very fine, rounded, uniform granules and sometimes shallow striae. Short, ridged costae sometimes correspond to the primary septa.

Septa are not arranged in regular systems or cycles; instead there are usually seven-nine primary septa (up to 11), which are slightly exsert and extend to the bottom of the fossa. Secondary septa, almost as wide but less exsert, also extend into the fossa. The tertiaries are smaller, less exsert, and rudimentary lower in the fossa; they are often missing from many systems and rarely flank every secondary septum. The granulation on the septal faces is variable. Usually the granules are small, inconspicuous, and widely spaced, producing a smooth texture, but sometimes they are prominent, arranged in close-set lines or even short carinae oriented parallel to the trabeculae.

The fossa is very deep and sometimes curved as the corallite is curved. Often a thin, endothecal dissepiment considerably shortens the fossa. A columella is rare but when present it is very small, composed of one-three short rods.

Discussion. - In view of the great variation found in L. prolifera and its wide geographic and depth ranges, it is probable that both Dendrosmilia nomlandi Durham \& Barnard, 1952 and Lophelia californica Durham, 1947, both described from the eastern Pacific, are junior synonyms. The type-specimen of D. nomlandi is only a small fragment of a branch with broken corallites. Extratentacular budding cannot be proven from this specimen. Also, the presence of a columella does not exclude it from being a Lophelia. No characters were given by Durham for differentiating L. californica from L. prolifera.

[^14]```
16154); Combat-308; Combat-412; Combat-436; Gos-1606; Gos-1615; Gos-1642; Gos-1643; Gos-1644; Gos-1645; Gos-1731; Gos-1738; Gos-1739; Gos-1742; Gos1743; Gos-1764; Gos-1796; Gos-2191; Gos-2468; E-14449 (USNM 54498); E-26004 (USNM 46022); E-26017; E-26019; E-26028 (USNM 46026); E-26031 (USNM 46027) ; E-26034; E-26037; WH-83/68 (SME); WH-89/68 (SME) ; WH-90/68 (SME); WH-91/68 (SME) ; SME-1776 (SME); SME-1777 (SME); TAMU 68A7-12B (TAMU); Almirante Saldanha-2803 (USNM 46238). - Syntypes of L. affinis; holotype of \(D\). nomlandi; Squires's (1959) specimens (AMNH); Moseley's (1881) specimens (BM).
```

Types. - The types of Pallas's prolifera, based on material from Norway, are unknown. Likewise, no type-material of M. pertusa is known to exist. Syntypes of Lophohelia affinis Pourtalès are present at the MCZ (5612), represented by 31 fragments including the illustrated specimen (Pourtales, 1871 : figs. 3-5). A branch is also deposited at the YPM (4774). Pourtales's material was collected at Bibb-5, off Coffin's Patches, Florida. Finally, the type-material of L. tubulosa Studer, from Gazelle-8, is deposited at the Berlin Museum (Zibrowius, 1976).
Type-Locality. - Off Norway.
Distribution. - Western Atlantic: from Nova Scotia to off Florida; Straits of Florida; eastern Gulf; Lesser Antilles; off southeastern Brazil (Map 34). $95-1000 \mathrm{~m}$, most common between $500-$ $800 \mathrm{~m} .3^{\circ}-12^{\circ} \mathrm{C}$, based on 11 records. - Elsewhere: eastern Atlantic; Indian Ocean; eastern Pacific. 60-2170 m.

Subfamily Parasmilinnae Vaughan \& Wells, 1943
Genus Anomocora Studer, 1878
Diagnosis. - Solitary, subcylindrical, free. Tendency to bud new coralla from edge zone with subsequent loss of organic connection. Wall thin. Columella trabecular, no pali. Tabular endothecal dissepiments common and widely spaced. Type-species: Coelosmilia fecunda Pourtalès, 1871, by monotypy.
51. Anomocora fecunda (Pourtalès, 1871)

Plate XXIV, figures 6-8
Coelosmilia fecunda Pourtalès, 1871 : 21-22 (in part: pl. 1, fig. 12, pl. 6, figs. 14 15; not pl. 3, figs. 4-5).
Parasmilia fecunda: Lindström, 1877: 21. - Pourtalès, 1878: 206 (in part: BL-45).

Anomocora fecunda: Studer, 1878: 641-642, pl. 1, figs. 9f-g, pl. 2, figs. 9a-e. Sguires, 1959: 15-19. - Cairns, 1977b:5; 1978: 11.
Blastosmilia fecunda: Duncan, 1878: 245.
Not Parasmilia fecunda: Pourtalès, 1880: 109 (=C. arbuscula). - Marenzeller, 1904: 311-312, pl. 15, fig. 5. - Gravier, 1920: 91-94, pl. 11, figs. 169-173 ( $=$ C. arbuscula). - Gardiner \& Waugh, 1939: 229.
Ceratotrochus ? Gravier, 1920: 57, pl. 6, figs. 104-105.
Not Anomocora fecunda: Eguchi, 1968: C-42, pl. C-10, figs. 1-5, pl. C-20, figs. 10-11, pl. C-23, fig. 3.
Coenosmilia fecunda: Zibrowius, 1976: 198-200 (in part: pl. 14, figs. A-K).
Description. - The corallum is cylindrical, straight to gently curved, and slightly tapered toward the base, which is invariably broken. Large coralla exceed 10 cm in length and 10 mm in calicular diameter. Numerous buds and scars of former buds are scattered irregularly on the theca. The buds detach from the parent at a small size; while still attached to the parent they rarely exceed 20 mm in length and never produce additional buds. Low costae, separated by shallow grooves, are distinguishable from the calice to the base. Both the theca and septa are very thin (about 0.3 mm ) and tabular dissepiments are widely spaced (about one every 4 mm ), giving the corallum a very low density. The calice is round to elliptical.

Septa are irregularly arranged; however, the fully developed condition is six systems and four cycles, in which case the $S_{1}$ are slightly exsert, larger than the $S_{2}$, and have entire, straight, vertical inner edges reaching the columella. $S_{2}$ are less exsert and often bear large, thin lobes or elongate, slender ribbons on their lower, inner edges. $S_{3}$ are smaller, not exsert, and usually bear two-five long, slender, contorted ribbons oriented perpendicular to the septal edge or inclined upward from it. These twisted ribbons intermingle with the lobes of the $\mathrm{S}_{2}$, sometimes forming a dense columella. If present, each $\mathrm{S}_{4}$ consists of a row of low spines. The septal faces are often smooth, with curved growth lines parallel to the septal margin, or are inconspicuously granulated in rows perpendicular to the trabeculae.

The fossa can be very deep or quite shallow, depending on how recently a dissepiment has formed. Dissepiments in the process of forming are common. They originate from the septal and thecal edges as numerous slender, adjacent plates, which merge with those of adjacent septa in the center of the interseptal space. Often a line remains where the junction occurred.

Discussion. - Both Pourtalès (1880) and Zibrowius (1976) have synonymized C. arbuscula and $A$. fecunda. Pourtalès (1880: 109) stated that they were simply extreme forms of the same species and that there were "... numberless intermediate ones, often parts of the same stock." After careful examination of all of Pourtalès's material, the USNM collection, and additional eastern Atlantic material, I cannot find any such intermediates. A. fecunta is consistently and distinctively different from C. arbuscula in many characters, such as: (1) a longer, cylindrical corallum, (2) a random budding pattern with buds that break off before a third geneation occurs, (3) more widely spaced dissepiments, (4) conspicuous lobes and ribbons on the inner edges of $S_{2}$ and $S_{3}$, and (5) absence of a solid, fused columella.

Material. - P-198 (17) USNM 46498; P-199 (2) USNM 46499, (1) UMML 8: 337; P-584 (3) USNM 46510; P-707 (2) USNM 46504; P-709 (25) USNM 46505, (1) UMML 8: 254; P-736 (20) USNM 46506; P-737 (7) USNM 46507; P-773 (2) USNM 46508; P-775 (19) USNM 46509, (11) UMML 8: 336; P-838 (1) USNM 46503; P-874 (1) USNM 46502; P-991 (1) USNM 46501; G-1270 (1); O-4832 (1); O-4939 (1); O-5648 (10) ; BL-45 (1) MCZ; Alb-2327 (1) ; Alb-2343 (3) USNM 10244; Gos-39 (1) Cornell; Caroline-102 (1); TAMU 65A9-15 (6) TAMU; TAMU 65A9-20 (9) TAMU; TAMU 65A9-21 (5) TAMU; Chain-16 (10) ; Explorer-4 (9). - Syntypes of C. fecunda; Lindström's (1877) specimens (NRM).

Types. - Six syntypes are deposited at the MCZ in three lots: one contains the figured specimen of plate 6, figures $14-15$ (MCZ 2752); the second lot contains four fragments, including the figured specimen of plate 1, figure 12 ; and the third lot (MCZ 5621) contains the figured specimen of plate 3, figures 4-5 (all Pourtales, 1871). The last specimen is neither $A$. fecunda nor C. arbuscula and may be an undescribed species. It differs from $A$. fecunda in that it is strongly attached, bears no buds, and has more distinct costal and septal granules and a solid columella. Since the description is obviously based on the specimen numbered MCZ 2752, it is designated lectotype and the five remaining fragments as paralectotypes. Type-Locality. - Southern Straits of Florida; 124-576 m.

Distribution. - Western Atlantic: throughout Caribbean, southeastern Gulf of Mexico; St. Peter and Paul Rocks (Map 35). 73567 m. - Eastern Atlantic: Azores; Madeira; Canary Islands. 130540 m .

## Genus Coenosmilia Pourtalès, 1874

Diagnosis. - Colonial; small bushy colonies produced by extratentacular budding from edge zone below calice. Columella trabecular; no pali. Tabular endothecal dissepiments abundant. Typespecies: Coenosmilia arbuscula Pourtalès, 1874, by monotypy.
52. Coenosmilia arbuscula Pourtalès, 1874

Plate XXIV, figures 9-11

Coenosmilia arbuscula Pourtalès, 1874: 39-40, pl. 7, fig. 1; 1878: 206. - Lewis, 1960: 12; 1965: 1062. - Cairns, 1977b: 5; 1978: 11.
Parasmilia fecunda: Pourtalès, 1878: 206 (in part: BL-32) ; 1880: 109. - Gravier, 1915: 3; 1920: 91-94, pl. 11, figs. 169-173.
Coenosmilia fecunda: Zibrowius, 1976: 198-200 (in part: pl. 15, figs. A-F).

Description. - Small, bushy colonies form by extratentacular budding. The corallites are typically $10-15 \mathrm{~mm}$ long with an elliptical to round calice measuring $7-10 \mathrm{~mm}$ in diameter. Larger, massive founder corallites also occur, measuring up to 50 mm in length, with calicular diameters of up to 14.5 mm . However, single corallites are rare. Budding occurs from the edge zone usually within 5 mm of the top of the corallite and is very regular; two corallites often bud on opposite sides of the parent calice but three corallites, separated from one another by $120^{\circ}$, or four at $90^{\circ}$, are not rare. The parent corallite often dies after budding, giving the colony the appearance of an independent settlement of planulae on older, dead coralla. The buds never lose their attachment to the parent. The largest colony examined has a series of four successive buds.

The corallites are ceratoid and elongate, firmly attached by a thick pedicel. Costae correspond to all septa but are usually distinct only near the calice. $C_{1}$ and $C_{2}$ are slightly ridged and narrower than the $\mathrm{C}_{3}$ and $\mathrm{C}_{4}$. All costae bear fine, pointed granules. The wall is $0.5-0.6 \mathrm{~mm}$ thick.

Septa are arranged in six systems and four cycles, but corallites with 40 regularly arranged septa are common. $S_{1}$ are slightly larger
than or equal in size to the $S_{2}$; both are exsert and extend to the columella. $S_{3}$ and $S_{4}$ are progressively smaller. $S_{4}$ are absent in small corallites and rudimentary in larger ones, represented only by a row of laciniate spines in the latter. The inner edges of the $S_{1}$ and $S_{2}$ are entire and usually straight, sometimes becoming sinuous on their lower, inner margins near the columella. The inner edges of the $S_{3}$ are dentate but not as irregular as those of the $\mathrm{S}_{4}$. Septal granules are arranged in lines parallel to the trabeculae. The granules are low and rounded on the upper septal margins and higher and pointed deeper in the fossa.

The fossa is moderately deep. Long corallites contain tabular dissepiments (about one every 2 mm ), which obscure much of the columella and shorten the fossa. The columella is a massive, elongate, convex structure, composed of numerous spongy, crispate trabeculae usually solidly fused together.

Discussion. - This species is very abundant in the Pourtalès collection at the MCZ. Perhaps because of a hasty examination or the lack of proper cleaning, Pourtalès included three other species in his identified material: Caryophyllia antillarum, Paracyathus pulchellus, and Thalamophyllia riisei.

Anomocora fecunda, C. arbuscula, and Asterosmilia prolifera are often collected together at the same station and the latter two are sometimes attached to A. fecunda. Because of the variation in growth form of all three species and their external similarities, they easily could be confused.

[^15]Distribution. - Western Atlantic: throughout Caribbean; southeastern Gulf of Mexico; off Guyana (Map 36). 109-622 m. - Eastern Atlantic: Azores; Madeira; Canary Islands, 130-540 m.

Genus Dasmosmilia Pourtalès, 1880
Diagnosis. - Solitary, turbinate or trochoid, free. Parricidal budding common. Theca very thin. Paliform lobes, usually several on each septum, befo-e all but last cycle. Trabecular columella formed by mingling of inner paliform lobes. Type-species: Parasmilia lymani Pourtalès, 1871, by subsequent designation (Wells, 1933).

## 53. Dasmosmilia lymani (Pourtalès, 1871)

Plate XXV, figures 1-3, 8-9

Parasmilia lymani Pourtalès, 1871: 20, pl. 6, figs. 8-10. - Verrill, 1882: 316; 1882a: 406-407.
Dasmosmilia lymani: Pourtalès, 1880: 96, 108. - Verrill, 1883: 64; 1885a: 535, fig. 17; 1908: 449. - Chevalier, 1966: 949. - Tommasi, 1970: 56, fig. 2. Laborel, 1970: 155; 1971: 175. - Defenbaugh, 1976: 27, 39, fig. 56. - Zibrowius, 1976: 142-143, pl. 26, figs. A-L, pl. 27, figs. A-L. - Cairns, 1977b: 5, 13-14, pl. 1, figs. 7-8; 1978: 11.

Description. - The corallum is cylindrical or ceratoid, often slightly curved, and usually has a broken base or is attached to a fragment of an older corallum. Individuals attached to the substrate are extremely rare. The shape of the calice is quite variable; it can be triangular, rectangular, round, or elliptical. Strongly compressed calices attain 28 mm in greater diameter with a corallum height of 50 mm ; however, populations exist with calicular diameters never exceeding 14 mm and heights that never exceed 30 mm . Costae are also variable. They are usually ridged, equal, and separated by broad, flat furrows. However, sometimes they are unequal (more prominent costae alternate with less prominent ones), rounded, or flat, and separated by narrow, shallow intercostal spaces. Low, rounded granules cover the costae; near the calicular edge they are arranged such that, on the average, two-four occur across the width
of a costa. The theca and septa are very fragile ( $0.3-0.5 \mathrm{~mm}$ thick) and often light brown.

Septa are arranged in six systems and six cycles, the last cycle never complete. $\mathrm{S}_{1-\mathbf{3}}$ are equal insize, slightly exsert, and each septum may bear a thin, small paliform lobe on its inner edge. If no paliform lobe is present, the septum merges with the columella. $\mathrm{S}_{4}$ are smaller, less exsert, and usually have sinuous inner edges. They bear much larger paliform lobes, which are sometimes divided into twofive lobes, all of which merge with the columella. $S_{5}$ and $S_{6}$ are progressively smaller, do not reach the columella, and do not have paliform lobes. There are usually 12-24 larger septa ( $\mathrm{S}_{1-2}$ or $\mathrm{S}_{1-3}$ ), with or without lobes; 12-24 paliferous septa ( $\mathrm{S}_{3}$ or $\mathrm{S}_{4}$ ); and 24-48 $S_{4}$ or $S_{5}$, resulting in 12-24 quartets of septa composed of three different sizes. Pairs of $S_{6}$ occur in some quartets, resulting in coralla of $106+$ septa. The septal granules are large and arranged both in lines parallel to the trabeculae as well as in curved rows perpendicular to the trabeculae.

The trabecular columella is composed of numerous crispate, twisted processes originating from the lower inner, edges of $S_{1-4}$ deep in the fossa. The fossa is deep, extending to the last formed tabular dissepiment, one of which occurs every $3-6 \mathrm{~mm}$; in a corallum with a calicular diameter of 15 mm , the fossa is 22 mm deep.

Remarks. - Evidence of three methods of propagation have been observed for $D$. lymani: (1) sexual reproduction, (2) asexual reproduction by longitudinal fission, and (3) asexual reproduction from fragments of a crushed or broken corallum. Coralla formed by the first method result from planulae settling on a hard substrate and would therefore be firmly attached. These individuals are rare. The second method results from an enlargement of the calice and a subsequent constriction into two separate calices and coralla, which produces only one additional specimen at a time. Coralla formed by this method can be found in various stages of division but are uncommon. Asexual budding from wedge-shaped fragments of a parent corallum is the most common condition observed. Verrill (1882) reported over 30 buds from one broken piece.


#### Abstract

Material. - P-112 (68) USNM 46567, (2) UMML 8: 258; P-722 (15) USNM 46566, (5) UMML 8: 387; G-19 (2) USNM 46561; G-132 (1) USNM 46562; G-610 (1) USNM 46563; G-866 (2) USNM 46564 ; G-1036 (4) USNM 46565, (1) UMML 8: 386; GS (G)5 (1) USNM 46568 ; O-10729 (10) ; SB-1694 (10) ; SB-1789 (3) ; SB-2416 (1); SB-2547 (4) ; SB-2813 (1) ; SB-2863 (30) ; SB-3520 (1); 77 specimens from 10 Albatross stations off northeastern coast of North America; FH-899 (4) USNM 5055; FH-940 (9) USNM 19188; FH-949 (1) USNM 36474; FH-1040 (1) USNM 19178; Combat164 (7) ; Combat-165 (1); 26 specimens from 10 Gosnold stations off northeastern coast of North America; BLM-33 III C (1) Alabama BLM; BLM-33 IV B (4) Alabama BLM; MAFLA-2212 (1); TAMU 67A5-10B (4) TAMU; TAMU 67A5-13B (2) TAMU; TAMU 68A7-9A (1) TAMU; TAMU 72 F1-48 (1) TAMU; IOSP-2 (1) SME; SME-1775 (1) SME. - Syntypes of $P$. lymani; Verrill's specimens (YPM).


Types. - Forty-nine syntypes, divided into six lots, bearing the numbers 2770, 5625 , or 5469 , are deposited at the MCZ. Of the six stations at which syntypes were collected, only three (Bibb-187, 194, and 203) are known for certain. Two additional specimens, perhaps also syntypes, are at the BM (1891.2.4.27 and 1970.1.26.33). Type-Locality. - Off Florida Keys; 128-269 m.

Distribution. - Western Atlantic: from off Massachusetts to Florida Keys; eastern Gulf of Mexico; off Isla de Margarita, Venezuela; off southeastern Brazil (Map 37). $48-366 \mathrm{~m} .7^{\circ}-21^{\circ} \mathrm{C}$, based on 15 records. - Eastern Atlantic: area bounded by Portugal, the Azores, and Spanish Sahara. 85-316 m.
54. Dasmosmilia variegata (Pourtalès, 1871)

Plate XXV, figures 4-7, 10; Plate XXVI, figure 1

Parasmilia variegata Pourtalès, 1871: 21, pl. 1, fig. 13.
Bathycyathus elegans Studer, 1878: 628-629, pl. 1, figs. 1a-d.
Dasmosmilia variegata: Pourtalès, 1880: 96, 109, pl. 2, figs. 11-12. - Gardiner \& WaUgh, 1938: 172-173. - Zibrowius, 1976: 143-144, pl. 28, figs. A-K. Cairns, 1977b: 5; 1978: 11.
Paracyathus confertus: Jourdan, 1895: 15.
Description.-The corallum is ceratoid to trochoid, usually strongly compressed, and almost always attached by a thick pedicel to a fragment of the parent corallum from which it budded. An independently attached specimen has never been reported. Small calices are round but become elliptical or irregular in shape with an increase in size. The largest specimen examined measures $20.2 \times 17.0$ mm in calicular diameter and 21.0 mm tall. Prominent, convex costae
are bordered by narrow, sharply incised intercostal striae. All costae but the $\mathrm{C}_{5}$ extend to the base. Small, pointed granules cover the costae; near the calicular edge they are arranged five-seven across the width of a costa. $\mathrm{C}_{1}$ and $\mathrm{C}_{2}$ are usually dark brown or black but occasionally the entire corallum is white. The corallum wall is very thin ( $0.2-0.4 \mathrm{~mm}$ ).

Septa are arranged in six systems and five cycles, the last cycle rarely complete. $S_{1}$ and $S_{2}$ are equal in size, highly exsert, swollen looking, and usually dark brown or black. Sometimes the septa adjacent to the $S_{1}$ and $S_{2}$ are also black. In half-systems lacking $S_{5}$, the $S_{4}$ are larger than the $S_{3}$, highly exsert, and, together with their adjacent $S_{1}$ and $S_{2}$, form exsert projections. When $S_{5}$ are present, both the $S_{3}$ and $S_{5}$ are larger than the $S_{4}$; in this case the $S_{5}$, together with their adjacent $S_{1}, S_{2}$, and $S_{3}$, form the exsert projections. Rounded septal granules are arranged both in lines parallel to the trabeculae and in rows perpendicular to the trabeculae.

Large, black, coarsely granulated paliform lobes are present on the lower, inner edges of the $S_{1}$ and $S_{2}$. These lobes also bear strong horizontal carinae. As seen in a longitudinal cross-section of the corallum, these septa also have up to 10 additional long, slender, twisted paliform lobes directed upward into the center of the fossa; the ends of the uppermost lobes form the columella. Twisted or stout paliform lobes are also present on the inner edges of the $S_{3}$ and $S_{4}$. They are smaller than the $P_{1}$ and $P_{2}$ but terminate much higher in the fossa. Widely spaced tabular dissepiments are present in larger coralla.

Material. - GS (G)-48 (1) USNM 46570; O-4226 (1+) USNM 46572; BL-254 (10) MCZ; off Egmont Key, Florida, 366 m (1) UMML 8: 257; off Anna Maria Key, Florida, $366-484 \mathrm{~m}$ (1) USNM 46571. - Syntypes of $P$. variegata.

Types. - Four syntypes, divided into two lots, both labelled "Florida Straits, 6077 fms"', are deposited at the MCZ. One lot of two specimens is numbered 2780 ; the other lot of two (5624) includes the figured type. Although not stated in the text or included with the specimens, the syntypes were collected from Bibb-201, 202, and 151. The type of B.elegans Studer is deposited at the Berlin Museum (Zibrowius, 1976). Type-Locality. - Off Florida Keys; 110-141m.

Distribution. - Western Atlantic: Florida Keys; off Tampa, Florida; off Península de Paria, Venezuela; off Amazon, Brazil
(Map 38). 110-366 m. - Eastern Atlantic: Cape Verde Islands; Azores. 185-600 m.

Genus Solenosmilia Duncan, 1873
Diagnosis. - Colonial, dendroid, or subphaceloid colonies formed by intratentacular budding. Stereome granular, costae sometimes correspond to first cycle. Tabular endothecal dissepiments. Columella small. Type-species: Solenosmilia variabilis Duncan, 1873, by monotypy.
55.

Solenosmilia variabilis Duncan, 1873
Plate XXVI, figures 2-4

Solenosmilia variabilis Duncan, 1873: 328, pl. 42, figs. 11-18; 1877: 361. - Pourtalès, 1878: 206, pl. 1, figs. 1-3; 1880: 96, 108. - Moseley, 1881: 181, pl. 9. figs. 1-5. - Marenzeller, 1904: 310-311, pl. 15, figs. 4, 4a.-Gravier, 1915: 3; 1920: 94-96, pl. 9, figs. 153-156. - Hoffmeister, 1933: 14, pl. 4, fig. 7. Gardiner \& Waugh, 1939: 229-230. - Wells, 1958: 262; 1964: 109. Squires, 1969: 16, map 2. - Laborel, 1970: 153, 156; 1971: 175. - Livingston \& Thompson, 1971: 788. - Zibrowius, 1974a: 768-769; 1976: 210-211, pl. 22, figs. A-N. - Cairns, 1978: 11.
Solenosmilia jeffreyi Alcock, 1898: 27-28, pl. 3, figs. 3, 3a-b.
Lophelia prolifera: Gravier, 1920: 87-89 (in part : pl. 10, fig. 157). - Squires, 1959 22-23 (in part: V7-12).
Madrepora oculata: SQuires, 1959: 5-8 (in part: A 180-112).
Solenosmilia sp. Keller, 1975: 177.
Description. - Colonies are bushy, achieved by intratentacular budding and its resultant dichotomous branching. Budding begins with an elongation of the calice and an increase in the number of septa. Next, the septa on opposite sides of the calice bridge over the fossa, dividing the calice in two but maintaining a connection between the polyps. Eventually the two corallites elongate and are completely partitioned by coenosteum. Normally, calices rarely exceed 5 mm in calicular diameter. The end branches may be quite slender ( $3-5 \mathrm{~mm}$ in diameter) or thick and massive ( $7-8 \mathrm{~mm}$ ) and often anastomose. Basally the branches are very thick (up to 20 mm
in diameter) and the colony is attached by an encrusting base also bearing corallites. The coenosteum is variable: it can be completely smooth and white; granular, glossy, and light gray; or granular with $8-10$ ridged costae around the circumference of the branch.

Septa are usually arranged in six systems and three complete cycles. $\mathrm{S}_{1}$ are highly exsert and have straight inner edges, which meet in the bottom of the fossa. $S_{2}$ are about one-third the size of the $S_{1}$ and are much less exsert but considerably larger than the $S_{3}$, which are developed only in the upper fossa. Sometimes, just before intratentacular division, a complete fourth cycle of septa is attained and some $S_{5}$ may be present (e.g., 60 septa) ; however, the development of the $S_{4}$ and $S_{5}$ is very irregular. The inner edges of the $S_{1-3}$ are straight and entire, whereas those of the $S_{4}$ and $S_{5}$ are dentate or laciniate. Septal granulation is low and very fine, producing a smooth texture.

Tabular endothecal dissepiments are present. When the fossa is deep, a rudimentary columella is often present, composed of spongy, crispate trabeculae.

Discussion. $-S$. variabilis is another branching species found on deep-water banks, probably contributing significantly to the bank's framework. In the eastern Atlantic it is found with the branching L. prolifera and M. oculata; in the western Atlantic it is found with L. prolifera and E. profunda. Earlier authors often failed to recognize S. variabilis from deep-water banks, usually mistaking it for L. prolifera, which it closely resembles. S. variabilis was found at the deepwater bank reported in this paper (see $E$. profunda).

Although not examined by the author, Keller's (1975) Solenosmilia sp. is undoubtedly S. variabilis. Solenosmilia is considered to be monotypic.

Remark. - Colonial deformities produced by tube-dwelling polychaetes (Eunice?) were noted in western Atlantic specimens, a condition that has also been reported by Zibrowius (1976) in specimens from the northeast Atlantic and Indian Oceans.

Material. - P-881 (USNM 46573); P-891 (USNM) 46574, UMML 8: 260) ; P-892 (USNM 46575); P-1262 (USNM 46576); G-118 (USNM 46577); G-1029 (USNM
46578) ; CI-140 (USNM 46579); O-1991; O-4301; O-4377; O-4405; O-10514; BL-20 (MCZ); BL-100 (MCZ); BL-154 (MCZ); BL-171 (MCZ); BL-218 (MCZ); BL-298 (MCZ) ; Alb-2416 (USNM 36345); Alb-2672; Gos-112/78 (Cornell); WH-104/68 (SME); TAMU 65A9-4 (TAMU) ; SME-1776 (SME); Akaroa-5c (SME). - Syntypes of S. variabilis; Squires's (1959) specimens (AMNH).

Types. - The original description of $S$. variabilis mentions specimens from two Porcupine stations: number 17 and number 32, both from the second expedition, all deposited at the BM. Syntypes of $S$. jeffreyi are deposited at the Indian Museum, Calcutta; MNHNP; and the ZMA (Zibrowius, 1976).
Type-Locality. - Off southwestern Spain; 1190-2003 m.
Distribution. - Western Atlantic: Muir Seamount; Antillean distribution, ranging from off Georgia to off Surinam; Recife to São Paulo, Brazil (Map 38). 220-1383 m. - Elsewhere: eastern Atlantic; Indian Ocean; off southeastern Australia. 280-2165 m.

## Genus Asterosmilia Duncan, 1867

Diagnosis. - Solitary, trochoid to ceratoid, free. Paliform lobes usually opposite third cycle. Columella papillose, lamellar, or crispate at surface, trabecular below. Type-species: Trochocyathus abnormalis Duncan, 1865, by subsequent designation (Vaughan, 1919).
56. Asterosmilia prolifera (Pourtalès, 1871)

Plate XXVI, figures 5-6, 8

Ceratocyathus prolifer Pourtaliss, 1871: 19-20, pl. 3, figs. 8-10.
Asterosmilia prolifera: Pourtalès, 1880: 96, 109-110, pl. 2, figs. 9-10. - Vaughan, 1919: 354. - Zibrowius, 1976: 206-208, pl. 18, figs. A-N. - Cairns, 1977b: 5; 1978: 11.
? Ceratotrochus johnsoni Duncan, 1882: 217, pl. 8, figs. 5-8.
Not Asterosmilia prolifera: SQuires, 1959: 12 (= Tethocyathus variabilis, n. sp.).
Description. - This is an exeedingly variable species which, for the sake of convenience, is divided here into two distinctive forms primarily based on the shape of the pali and secondarily on the corallum shape, costae, and color. The most common form (Pl.

XXVI5) is trochoid to ceratoid, slightly curved, and has a rather large, elliptical calice typically measuring $12.5 \times 11.0 \mathrm{~mm}$ in diameter. The costae are prominent only near the calice. A pointed, slender paliform lobe stands before each $\mathrm{S}_{3}$ and is separated from the septum by a deep, narrow notch. The columella is usually massive, elliptical, and composed of numerous slender rods, which either are fused together loosely or stand alone.

The previous form grades imperceptibly into another common form (Pl. XXVI 6) characterized by wider paliform lobes often twothree times wider than the $\mathrm{S}_{3}$. The corallum is usually more elongate (ceratoid), shaped like a tall, curved cone, and has a smaller calice, typically less than 10 mm in diameter. It has conspicuous, equal costae, which are prominent to the base; the costae are slightly convex, and bear fine, rounded granules. Sometimes the paliform lobes are so large that there is no room for a columella, but usually a single, thin, lamellar plate is present. In addition to these two forms, occasional variant specimens also occur that have no pali (Pl. XXVI 8) or only rudimentary ones.

Both forms are free; their bases are usually narrow, sometimes pointed and usually showing signs of repair from a previous fracture. They often reproduce asexually by parricidal budding, with one or two coralla originating from the calice of a parent. Most specimens are slightly curved and measure 20 mm in length on the average, although the longest is 50.0 mm .

Septa are typically arranged in six systems and four-five cycles. $S_{1}$ and $S_{2}$ are equal, exsert, and extend to the columella. Higher cycle septa are progressively smaller; often $S_{4}$ are represented only by spines or have a dentate inner margin. $S_{5}$ are rare. The figured type of $A$. prolifera, similar to the second described form, is atypical in that it has $32 \mathrm{~S}_{5}$. In this specimen there are 21 primary septa enclosing 21 groups of three higher cycle septa (four $S_{5}$ are missing). The ornamentation on the septal faces is also variable; granules may be completely absent or range from small and pointed to prominent, measuring two-three times the thickness of the septum. When present they are arranged predominantly in rows running perpendicular to the trabeculae.

Pali and columella have already been discussed. The fossa is of
variable depth ranging from very shallow to deep. Tabular endothecal dissepiments are present, particularly in the elongate coralla; however, most of the short coralla are solidly filled internally with stereome.

Material. - P-198 (1500) USNM 46777, (18) UMML 8: 259; P-199 (100) USNM 46778; P-200 (20) ; P-848 (1); P-913 (2) USNM 46802; 159 specimens from 19 additional Pillsbury stations from the northern coast of South America from Trinidad to Panama (USNM 46780-46797) ; O-4459 (3) ; O-4461 (7); O-5698 (1); SB-2445 (34); BL-253 (2) MCZ; BL-262 (1) MCZ; BL-272 (8) MCZ; BL-276 (1) MCZ; Combat-457 (4) ; Gos-1564 (3); TAMU 65A14-9 (11) TAMU. - Syntypes of C. prolifer; Squires's (1959) specimens (AMNH).

Types. - Twelve syntypes in two lots bearing numbers 2776 and 2789 are deposited at the MCZ. They are all from Bibb-143. A topotypic specimen, perhaps a syntype, is at the BM and bears the number MCZ 2776. Another syntype is at the YPM (4767). The syntypes of $C$. johnsoni, from Madeira ( 55 m ), are missing from the BM. Type-Locality. - Off French Reef, Florida; 82 m .

Distribution. - Western Atlantic: Straits of Florida; northeastern Gulf of Mexico; Bay of Campeche, Mexico; very common along coast of South America from Colombia to French Guiana; Windward Group, Lesser Antilles (Map 39). 32-311 m. - Eastern Atlantic: Madeira; Canary Islands; off Spanish Sahara. 110-125 m.

## 57. Asterosmilia marchadi (Chevalier, 1966)

Plate XXVI, figures 7, 9-10
?Trochosmilia elongata Studer, 1879: 176; 1879a: 675.
Dasmosmilia marchadi Chevalier, 1966: 944-949, pl. 5, figs. 3-4, text-figs. 11-13. Asterosmilia marchadi: Zibrowius, 1976: 208-209, pl. 19, figs. A-K. - Cairns, 1977 87, lower left figure.

Description. - The corallum is ceratoid, usually slightly curved, and tapers to a pointed, free base. Coralla bud asexually from the edge zone just below the calicular edge and remain attached to the parent until they are about 10 mm long, at which time they detach. Among the four western Atlantic specimens examined, the longest is 30 mm ; the most typical specimen measures $11.1 \times 9.7 \mathrm{~mm}$ in calicular diameter and 19.8 mm tall, and has two buds near the
calice (P. XXVI 7, 10). The corallum and septa are usually light brown or reddish-brown. The costae, separated by shallow, broad grooves, consist of thin, elevated ridges covered by small granules. They are unequal: those of the highest cycle ( $\mathrm{C}_{4}$ or $\mathrm{C}_{5}$ ) are narrower and less prominent.

Septa are arranged in six systems and four cycles with some $\mathrm{S}_{5}$. $S_{1}$ are exsert and have straight, entire inner edges reaching to the columella. The remaining cycles of septa are progressively smaller and less exsert; $S_{5}$, if present, are rudimentary. The lower, inner edges of the $\mathrm{S}_{3}$ usually bear broad, crispate paliform lobes, which tend to fuse together in pairs before the $S_{2}$ and extend to the columella. The inner edges of $\mathrm{S}_{4-5}$ are irregular. The septal granules are arranged in lines parallel to the trabeculae and form low carinae near the upper septal edges. The low-lying columella is seated in a relatively deep fossa. It is composed of several irregular, crispate lamellae, which are indistinguishable from the paliform lobes. Thin, closely spaced, slightly inclined tabular dissepiments are present in the lower half of the coralla.

Discussion. - A. marchadi is similar to the extremely variable A. prolifera but usually can be distinguished by the irregular junctions of the $S_{3}$ before the $S_{2}$ near the columella. Other characters that help to distinguish $A$. marchadi but are not diagnostic are: (1) a brownish color of the corallum, (2) a low, crispate columella, (3) $\mathrm{S}_{1}$ larger than $\mathrm{S}_{2}$, and (4) budding from the edge zone, not intratentacularly.

Trochosmilia elongata Studer, 1879, based on two specimens collected by the Gazelle off the mouth of the Congo River ( 180 m ), may be the senior synonym of this species (Zibrowius, 1976). Unfortunately, the types of $T$. elongata are not present at the Berlin or Berne museums, where the other Gazelle corals are deposited (ZiBROWIUS, pers. comm.).

[^16]Troglocarcinus balssi Monod, 1956 and A. marchadi. The crab chemically excavates a perfectly fitted cavity in the corallum wall and seems to obtain nourishment (mucous?) from the coral. Among the four western Atlantic specimens examined, one (Pl. XXVI 9) revealed this characteristic niche, identical to the eastern Atlantic ones.

Material. - P-198(1) ; P-734 (1); P-749 (1) ; P-781 (1). - Holotype of D. marchadi.
Types. - The holotype of $A$. marchadi, collected by the Gerard Tréca (18.2.1954), is deposited at the MNHNP. Eight paratypes are at the IFAN, Dakar.
Type-Locality. - South of the peninsula of Cape Verde; 97-98 m.
Distribution. - Western Atlantic: off eastern Florida; off northern coast of South America (Map 40). 32-229 m. - Eastern Atlantic: from Spanish Sahara to Gabon. $32-85 \mathrm{~m}$.

Genus Rhizosmilia Cairns, 1978
Diagnosis. - Small, phaceloid, clumped colonies formed by extratentacular budding. Corallite bases increase in diameter by adding exothecal dissepiments over raised costae, producing partitioned, concentric rings. Paliform lobes present before penultimate cycle. Columella prominent, varying from spongy to fascicular (a line of pillars) to lamellar. Endothecal dissepiments. Type-species: Rhizosmilia gerdae Cairns, 1978, by original designation.

## 58. Rhizosmilia gerdae Cairns, 1978

Plate XXVII, figures 5-8

Rhizosmilia gevdae Cairns, 1978a: 219-222, pl. 1, figs. 1-7.
Description. - The colony forms phaceloid clumps by extratentacular budding from a common basal coenosteum. Corallites are cylindrical or slightly tapered at the base. The base of a corallite increases in diameter by adding exothecal dissepiments over raised costae as described by Cairns (1978a). A typical corallite measures $12 \times 10 \mathrm{~mm}$ in calicular diameter and 21 mm tall, although adult corallites vary from 7-17 mm in greater calicular diameter and may
be up to 45 mm tall. Costae are usually well-defined only in the upper half of the corallum, where they are equal, low, rounded ridges separated by equally shallow grooves. Very small granules cover the costae.

Septa are arranged in six systems and four-five cycles. A corallite of $8-11 \mathrm{~mm}$ calicular diameter usually has a complete fourth cycle ( 48 septa), whereas, above 11 mm , pairs of $\mathrm{S}_{5}$ are common, but a complete fifth cycle is rare. $S_{1}$ are usually slightly larger than $S_{2}$, exsert, and have straight, vertical inner edges, which do not reach the columella. The remaining cycles are progressively smaller and less exsert; $S_{5}$ are rudimentary with dentate inner edges. The low, rounded septal granules are arranged in lines parallel to the trabeculae.

A large paliform lobe occurs before each septum of the penultimate cycle, separated from it by a deep, narrow notch; together they form a palar crown set deep in the fossa.

The columella is prominent and quite variable. It may be an elliptical, spongy mass; or linear, individualized pillars; or a single lamella. Widely spaced (about one every 5 mm ) endothecal dissepiments are present.

Discussion. $-R$. gerdae is similar to Rhizosmilia maculata (Pourtalès, 1874), particularly in its growth form and aspects of its paliform lobes, dissepiments, costal roots, and columella. It may be distinguished by the smaller size of its corallites (none known to exceed 15 mm in greater calicular diameter), complete absence of $\mathrm{S}_{6}$, absence of brown speckled pigmentation, and shallower fossa.

Material. - G-526; Alb-2326 (USNM 10146). - Types.
Types. - The holotype and paratypes are deposited at the USNM.
Type-Locality. $-26^{\circ} 01^{\prime} \mathrm{N}, 79^{\circ} 10^{\prime} \mathrm{W}$ (off Bimini, Straits of Florida); 143-210 m.
Distribution. - Straits of Florida (Map 40). 123-355 m.

## Genus Phacelocyathus, new genus

Diagnosis. - Quasicolonial, new corallites arising from encrusting coenosteum. Basal diameter increases by adding exothecal dissepiments over raised costae. Pali before all but last cycle. Columella papillose or lamellar. Sparse tabular endothecal dissepiments. Typespecies: Paracyathus flos Pourtalès, 1878, here designated.

Discussion. - A new genus is named for the single species Paracyathus flos Pourtalès, 1878, which previously had been uncomfortably forced into Paracyathus, Caryophyllia, and Trochocyathus. Additional characters of this heretofore poorly known species are now evident, as observed in many previously unexamined specimens. These characters include: endothecal dissepiments, method of basal reinforcement, and colonial structure. It is most similar to Rhizosmilia Cairns, 1978, particularly in its growth form and basal reinforcement, but differs primarily by having pali before all but the last cycle, not just the penultimate cycle as in Rhizosmilia.

Etymology. - The generic name refers to the phaceloid growth form. Gender: masculine.
59. Phacelocyathus flos (Pourtalès, 1878), new comb.

Plate XXVII, figures 1-4

Paracyathus flos Pourtalès, 1878: 201; 1880: 96, pl. 2, figs. 7-8.
Caryophyllia flos: Goreau \& Wells, 1967: 449. - Porter, 1972: 113. - Wells \& Lang, 1973: 58. - Land, Lang \& Barnes, 1977: 170.
"Trochocyathus" tlos: CAIRNS, 1978: 11.

Description. - Small corallites are ceratoid with narrow pedicels and greatly flared calices. The base and pedicel increase in diameter by repeatedly covering thin, raised costae with exothecal dissepiments, so as to produce partitioned concentric rings. The corallites arise from a thin basal coenosteum forming small phaceloid colonies. LaNG (pers. comm.) reported a colony approximately 30 cm in di-
ameter. Corallites are usually separated from one another by a distance equal to their own calicular diameter. The calice is elliptical; the largest corallum examined measures $13.7 \times 11.5 \mathrm{~mm}$ in calicular diameter and 17.0 mm tall. The upper quarter of the corallum, including all septa, is usually a dark brown or reddish-brown; however, some specimens and colonies are entirely white. The pali and columella are always white; the lower three-quarters of the corallum is also white or a lighter shade of brown. Costae are well distinguished only near the calicular edge, where they are broad and flat to slightly ridged, separated by narrow, shallow striae. Costal granules are large, low, and rounded.
Septa are arranged in six systems and four cycles; only in the larger coralla are $S_{5}$ present. $S_{1}$ and $S_{2}$ are equal in size, highly exsert, and usually quite thick, appearing inflated. $\mathrm{S}_{3}$ are smaller, less exsert, but also usually thick. $\mathrm{S}_{4}$ are considerably less exsert, but extend toward the columella equally as far as, or farther than, the $\mathrm{S}_{3}$. The inner edge of each septum is straight and entire; the upper edge forms a well-defined, round profile. The hemispherical septal granules are very large and randomly arranged on the lower half of the septum. Toward the upper septal edge, granules are often fused into vertical carinae.
Pali occur before all but the last cycle. $P_{1}$ and $P_{2}$ are tall and narrow. $\mathrm{P}_{3}$ are considerably larger (about three times as thick and four times as wide), extend farther toward the columella, and reach higher in the fossa than the $\mathrm{P}_{1-2}$. Their calicular edges are usually broader than their axial edges and consequently are closely adjacent to the inner edges of the $S_{4}$ as well as the $S_{3}$. Sometimes, even before the development of $S_{5}$, lobes will begin to form before the $S_{4}$ in the following manner: each $\mathrm{P}_{3}$, which is triangular in cross-section in its most developed state, is notched on top by two grooves that unite to form a $V$, the apex of which is directed toward the columella. Eventually, these grooves deepen, elongate, and finally separate the lateral components into two $\mathrm{P}_{4}$. The $\mathrm{P}_{3}$ is thereby reduced to a very small size (previously the triangular area bordered by the two original grooves). The two $\mathrm{P}_{4}$ are each about half as large as the original $P_{3}$ and recessed from the columella.

The columella is elongate, very deep-set, and surrounded by an
elliptical ring of pali. In small coralla it is composed of four-eight tall rods arranged in one or two parallel rows. With greater size, four or five of the largest rods fuse to produce a carinate, lamellar columella, which is flanked by a row of rods on either side. Tabular endothecal dissepiments are present.

[^17]Distribution. - Antillean distribution; western Caribbean; eastern Gulf of Mexico; off Recife, Brazil (Map 41). 22-560 m.

Superfamily Flabellicae Bourne, 1905
Family FLABELLIDAE Bourne, 1905
Genus Flabellum Lesson, 1831

Diagnosis. - Solitary, cuneiform to compressed-turbinate, free. Wall epithecal. Base not thickened by stereome; no roots. Calicular edge jagged or entire. Pali absent. Columella rudimentary or absent. Type-species: Flabellum pavoninum Lesson, 1831, by subsequent designation (Milne Edwards \& Haime, 1850).
60. Flabellum moseleyi Pourtalès, 1880

Plate XXVIII, figures 1-3

Flabellum moseleyi Pourtales, 1880: 96, 105-106, pl. 2, figs. 13-14. - Agassiz, 1888: 150, figs. 468, 468a. - Zibrowius, 1974c: 21; 1976: 217. - Cairns, 1977b: 5; 1978: 11.

Description. - The corallum is originally attached by a small
pedicel $2-3 \mathrm{~mm}$ in diameter, but at a very early stage it detaches and rests on its convex side. The adult corallum is regularly curved about $90^{\circ}$ from its original orientation. The corallum expands into a flared elliptical calice, measuring $72.0 \times 63.0 \mathrm{~mm}$ in the largest specimen examined. The calicular margin is scalloped, with its points corresponding to the exsert $\mathrm{S}_{1}$ and $\mathrm{S}_{2} . \mathrm{C}_{1}$ and $\mathrm{C}_{2}$ are very low and smooth, and extend to the pedicel. Faint intercostal striae delimit costae that correspond to the higher cycles. When the specimen measures $14-20 \mathrm{~mm}$ in calicular diameter, the principal $S_{1}$ and their corresponding costae become strongly produced, forming carinate costae on each end. At this stage, the corallum is compressed, with a greater to lesser calicular diameter ratio of $1.5: 1$. With an increase in size the calice becomes more elliptical and the principal costae less prominent, but there is always an indication of this growth stage in larger coralla. Very fine costal granulation is present and growth lines in irregular chevrons are particularly noticeable at the calicular edge. The color of the corallum, particularly the septa, is reddishbrown.

Septa are arranged in six systems and five complete cycles. $S_{1}$ and $\mathrm{S}_{2}$ are equal in size, highly exsert, and meet in the bottom of the fossa. The higher cycle septa are not exsert and are progressively smaller, except for those $S_{5}$ adjacent to $S_{1}$ and $S_{2}$, which are almost as exsert as the septa they flank but are narrower than the $\mathrm{S}_{4}$. All. septal margins are entire and straight; the lower margins of $\mathrm{S}_{1-3}$ thicken and fuse in the bottom of the fossa, forming a rudimentary columella. The septal granules are large and arranged in lines on low crests oriented parallel to the trabeculae.

Discussion. - This species was synonymized with $F$. alabastrum Moseley, 1873 by Squires (1959); however, F. moseleyi is quite distinct from $F$. alabastrum in many characters, including shape of corallum, septal granulation, costae, and geographic distribution.

```
Material. - P-374 (1) USNM 46585; P-478 (23) USNM 46582, (1) UMML 8: 261;
P-585 (6) USNM 46581 ; P-776 (1) USNM 46587; P-861 (24) USNM 46583, (4) UMML
8: 327; P-881 (1) USNM 46584; P-1225 (1) USNM 46588; G-861 (2) USNM 46586;
G-970 (1) USNM 46580; O-489 (8) USNM 53384; O-490 (12) USNM 45645; O-1887
(1); O-1982 (2); O-2771 (4); O-2774 (7); O-2775 (4); O-2776 (1); O-2777 (2); O-3252
```

(1); O-3560 (3); O-3601 (1); O-4412 (4); O-4413 (2); O-4841 (2); O-4882 (3); O-5028
(3) ; O-5925 (1); O-5929 (2); O-6703 (4); O-6705 (10); O-10170 (1); O-10491 (1);

O-10632 (1) ; O-10633 (10); O-10825 (1); O-10827 (3); O-10828 (1); O-10831 (1); O-10845 (3) ; O-10847 (1); O-11227 (1); O-11228 (1); O-11244 (1); O-11284 (1); O11302 (13); O-11303 (2) ; O-11307 (1); O-11310 (16); SB-3515 (5); Gos-112/76 (1) Cornell; 53 specimens from 11 Atlantis stations off the northern coast of Cuba (MCZ) ; TAMU 70A10-35 (1) TAMU; Hudson-3A (1) NMC. - Syntypes.

Types. - Five syntypes are deposited at the MCZ, collected from five Blake stations: BL-188, BL-274, BL-279, BL-281, and BL-288. The single specimen from BL-188 bears the number MCZ 5460.
Type-Locality. - Lesser Antilles; 216-871 m.
Distribution. - Widespread in Caribbean and eastern Gulf of Mexico, ranging from off northern Florida to off Trinidad (Map 42). $216-1097 \mathrm{~m} .6^{\circ}-18^{\circ} \mathrm{C}$, based on eight records.
61. Flabellum fragile Cairns, 1977 Plate XXIX, figures $1-3,7$

Flabellum fragile Cairns, 1977b: 14-15, pl. 2, figs. 1, 4-6, 9; 1978: 11.
Description. - The corallum is trochoid to turbinate, tending to become cylindrical with continued growth. The basal angle is about $50^{\circ}$. The pedicel is very narrow (often only one-tenth the calicular diameter), not reinforced by stereome, and often slightly bent. Adult coralla often are not firmly attached, in which case the base usually contains a small, hard object. The calice is elliptical; the holotype is $18.2 \times 16.6 \mathrm{~mm}$ in calicular diameter and 19.4 mm tall. The largest known specimen measures $20.0 \times 17.4 \mathrm{~mm}$ in calicular diameter and 17.2 mm tall. The epithecal wall is very thin, bearing chevron-shaped growth lines forming points at the upper, outer edge of every $S_{1-3}$. The epitheca is usually encrusted by foraminifera, polychaetes, and/or bryozoans. The calicular margin is smooth, continuous, and not jagged.

Septa are regularly arranged in six systems and four complete cycles. $S_{1}$ and $S_{2}$ are equal in size, slightly exsert, and extend to the rudimentary columella. Their inner edges are vertical and sinuous. $S_{3}$ are half as large as $S_{1}$ and $S_{2}$, not exsert, and do not reach the
columella. They also have less sinuous inner edges. $\mathrm{S}_{4}$ are small (rudimentary lower in the fossa) and have straight inner edges. Septal granulation is prominent on all septa, expressed as tall (onetwo times the septal thickness in height), pointed granules arranged in poorly-defined, widely spaced lines oriented parallel to the trabeculae.

The fossa is moderately deep, containing a rudimentary, elongate columella composed of a loosely fused mass of randomly arranged trabeculae. The columella extends to the lower, inner edges of the $S_{1}$ and $S_{2}$.

Material. - BL-36 (1) MCZ 5496; MAFLA-2212 (3); TAMU 65A9-20 (11) TAMU; Explorer-4 (5) ; southwest of Panama City, Florida, $183 \mathrm{~m}(1) \mathrm{MCZ}$. Types.

Types. - The holotype and three paratypes are at the USNM (45764-45767). One paratype is deposited at the FDNR (FSBC I 15286).
Type-Locality. $-27^{\circ} 37^{\prime} \mathrm{N}, 84^{\circ} 21^{\prime} \mathrm{W}$ (off Egmont Key, Florida); 91 m .
Distribution. - Eastern Gulf of Mexico; Florida Keys; Campeche Bank; ? off São Paulo, Brazil (Map 43). 80-366 m.

## 62. Flabellum pavoninum atlanticum, new subspecies

Plate XXVIII, figures 4-7

Flabellum sp. Cairns, 1977: 86, upper left fig.
Description. - The corallum is compressed and flabellate; the two faces are slightly convex. Initially the corallum is attached by a narrow, cylindrical pedicel about 3 mm in diameter but later detaches. The angle of the lateral edges varies from $75^{\circ}-128^{\circ}$, exclusive of crests (principal costae). The inclination of the lateral faces varies from $42^{\circ}-52^{\circ}$ (see Squires, 1964 for terminology). The calice is elliptical, entire, and very open. The dimensions of the holotype are $48.5 \times 39.8 \mathrm{~mm}$ in calicular diameter and 44.7 mm tall. The theca and septa are very thin and fragile. Inconspicuous costal striae correspond to all but the last cycle of septa; otherwise, epithecal growth-mark the theca. Some coralla are marked by reddishbrown stripes aligned with the primary septa. The principal costae
form distinctive crests, which begin to appear at a greater calicular diameter of about 10 mm . They may remain small or continue to grow (projecting up to 6 mm from the theca) as the corallum increases in size. When forming, the principal septa stand free, i.e. without an attachment to the theca.

In a large corallum there are 112 septa arranged in 28 groups of four. The 28 primaries are equal, not exsert, and descend vertically to the bottom of the fossa, where their inner edges fuse, forming an elongate, rudimentary columella. The secondaries are half as high and slope obliquely into the fossa. The tertiaries are smaller and often extend only a short distance into the fossa; often they are poorly developed or absent from the four penultimate (lateral) groupings. The septal granules are prominent, one-two times the septal thickness in height, and arranged in short lines parallel to the trabeculae.

Discussion. - There are over 100 nominal species of Flabellum, most described from the Indo-Pacific region. Only seven valid Recent species are known from the tropical-temperate Atlantic: F. macandrewi Gray, 1849; F. alabastrum Moseley, 1873; F. angulare Moseley, 1876; F. moseleyi Pourtalès, 1880; F. chunii Marenzeller, 1904; F. fragile Cairns, 1977; and F. pavoninum atlanticum, n. subsp. All are found in the western Atlantic except $F$. chunii. Most species of Flabellum are poorly known and many have complicated synonymies. In a preliminary revision of the genus Flabellum, Zibrowius (1974c) suggested that the genus could be divided into three groups. F. pavoninum atlanticum belongs to his "first group", Flabellum s. str.
$F$. $p$. atlanticum is designated as a subspecies of $F$. pavoninum because of its remarkable resemblance to $F$. p. paripavoninum Alcock, 1894 sensu Vaughan, 1907. Alcock's types were not examined by the author, but Vaughan's (1907) Hawaiian specimens were compared and found to be extremely similar. There are already at least six nominal subspecies of $F$. pavoninum: typical Lesson, 1831; distinctum Milne Edwards \& Haime, 1848; latum Studer, 1878; paripavoninum Alcock, 1898; lamellosum Alcock, 1902; and magnificum Marenzeller, 1904, all from the Indo-Pacific. They are distinguished
primarily by their shape (angle of lateral edges, angle of lateral faces, height: width) and presence or absence of crests on the lateral costal edges. The new subspecies is identical to $F$. $p$. paripavoninum sensu Vaughan, 1907 in shape, differing only in its larger lateral crests, more prominent septal granulation, and lesser number of septa for corresponding calicular diameter. (The Indo-Pacific subspecies has almost twice as many septa for the corresponding calicular diameter.) In the Atlantic, $F . p$. atlanticum is most similar to $F$. chunii Marenzeller, 1904, both having similar lateral crests. However, $F$. chunii is easily distinguished by the larger angle of its lateral edges (up to $180^{\circ}$ ), lesser inclination of lateral faces, and greater number of septa.

Material. - P-197 (1); G-256 (1); G-664 (6); G-667 (1); G-674 (1); G-678 (1); G-719 (1); G-720 (6) ; G-721 (2); G-915 (1); G-937 (1); SB-2443 (1); SB-3472 (1); Alb-2655 (10) USNM 14620; Combat-447 (18) USNM 53425; 88 specimens from 17 Atlantis stations from Old Bahama and Nicholas Channels off the northern coast of Cuba (MCZ). - Types.

Types. - Holotype: G-179 (USNM 46895). - Paratypes: G-179 (41) USNM 46896, (6) UMML 8: 286; G-254 (1) USNM 46898; G-405 (1) USNM 46897; G-666 (1) USNM 46899; G-927 (1) USNM 46900; G-938 (3) UMML 8: 299; SB-3514 (3) USNM 46901.

Type-Locality. $-27^{\circ} 41^{\prime} \mathrm{N}, 79^{\circ} 11^{\prime} \mathrm{W}$ (northern Straits of Florida); 549-567 m.
Distribution. - Off northern Cuba; Straits of Florida; Bahamas (Map 43). 357-618 m.

Genus Placotrochides Alcock, 1902
Diagnosis. - Solitary, compressed-cylindrical. Attached by base strengthened by stereome or truncated as the result of transverse division. Usually three cycles of septa. No pali. Columella rudimentary. Type-species: Placotrochides scaphula Alcock, 1902, by subsequent designation (Wells, 1936).

Placotrochides sp. A Zibrowius, 1976: 228-229, pl. 66, figs. E-M.
Description. - All specimens examined are unattached, having previously detached from their original bases by a transverse division. They are variable in shape, but are usually higher than broad, and round to slightly compressed in cross-section. The largest specimen examined measures $5.0 \times 4.2 \mathrm{~mm}$ in calicular diameter and 8.7 mm from calice to break. The basal, transverse fracture is usually completely closed over by deposits of stereome, which fill in between the septa and columella. The epitheca is very thin and fragile; only very shallow, longitudinal striae can be seen on the theca, which correspond to the septal insertions. Thin, scalloped growth lines, perpendicular to the costae, circle the theca. The calicular edge is entire, not scalloped.
Some calices bear 12 primary septa ( $\mathrm{S}_{1}$ and $\mathrm{S}_{2}$ ) and 12 much smaller septa ( $\mathrm{S}_{3}$ ); however, 8-13 primary septa may occur, depending on the size and shape of the corallum. No corallum examined has more than 26 septa. The $S_{1}$ and $S_{2}$ are equal in size, not exsert, and have entire, vertical, sinuous inner edges, which join with the columella. The $S_{3}$ are much smaller and extend only a short distance into the fossa. They usually appear as small ridges with serrate inner edges. A few widely spaced, pointed granules occur on the septal faces.

The fossa varies in depth: it can be either very deep or quite shallow. A large, elongate columella forms by the intermingling and/or fusion of the lower, inner edges of the $S_{1}$ and $S_{2}$.

Discussion. - Zibrowius (1974c) resurrected the genus Placotrochides to include those flabellids with transverse division and a massive, stereome-reinforced base. According to Zibrowius (1974c: 23; 1976: 227), there are three other valid species in this genus, all from the western Pacific: both P. alabastrum (Alcock, 1902) and $P$. scaphula Alcock, 1902 are larger with more septa, whereas $P$.
kikutii Yabe \& Eguchi, 1941 is much smaller and has a differently shaped columella.

Zibrowius (1976) described and figured the fixed form of $P$. frusta.

Etymology. - The specific name frusta (Latin, =a bit, a part) refers to the shape of the corallum. A frustrum, in geometry, is the part of a conical solid next to the base left by cutting off the top portion by a plane parallel to the base.

Material. - Alb-2756 (12) USNM 36347; Hudson-4B (9) NMC. - Types.
Types. - Holotype: Alb-2750 (USNM 36451). - Paratypes: Alb-2750 (5) USNM 36453.

Type-Locality. $-18^{\circ} 30^{\prime} \mathrm{N}, 63^{\circ} 31^{\prime} \mathrm{W}$ (northwest of Anguilla); 907 m .
Distribution. - Western Atlantic: Windward Group, Lesser Antilles; off Fortaleza, Brazil (Map 43). 497-907 m. - Eastern Atlantic: off Morocco. 1300 m .

## Genus Javania Duncan, 1876

Diagnosis. - Solitary, turbinate, fixed. Wall epithecal. Base reinforced by layers of stereome. No pali. Calicular edge jagged. Columella rudimentary. Type-species: Javania insignis Duncan, 1876, by monotypy.
64. Javania cailleti (Duchassaing \& Michelotti, 1864)

Plate XXVIII, figures 8-12; Plate XXX, figures 1, 4

Desmophyllum cailleti Duchassaing \& Michelotti, 1864: 66, pl. 8, fig. 11 (not fig. 2). - Duchassaing, 1870: 25. - Pourtalès, 1871: 16, pl. 1, figs. 17-18; 1874: 38; 1878: 203; 1880: 96, 106. - Moseley, 1881: 162.
?Galaxea eburnea Pourtales, 1871: 29, pl. 3, figs. 6-7.
Not Desmophyllum cailetti: Lindström, 1877: 12 ( = Desmophyllum striatum, n. sp.). Desmophyllum eburneum Moseley, 1881: 162, pl. 6, figs. 1, la-b. - Jourdan, 1895: 22-23.
Desmophyllum nobile Verrill, 1885: 150-151.
Desmophyllum vitreum Alcock, 1898: 20, pl. 2, figs. 2, 2a-b. - Gravier, 1920: 7677, pl. 8, figs. 136-137.
Flabellum sp. Marenzeller, 1904a: 81.

Desmophyllum galapagense Vaughan, 1906a: 63, pl. 1, figs. 1-1b.
Not Desmophyllum eburneum: Gravier, 1920: 77-78, pl. 7, fig. 120 (= Caryophyllia atlantica).
?Desmophyllum delicatum Yabe \& Eguchi, 1942: 115, 144, pl. 9, figs. 2a-b.
Flabellum alabastrum: SQuires, 1959: 27.
Javania eburnea: Zibrowivs, 1974c: 12-13, pl. 3, figs. 13-17; 1976: 225-227, pl. 65, figs. A-L.
Javania cf. eburnea: Zibrowius, 1974c: 13-16, pl. 4, figs. 22-29, pl. 5, figs. 31-34. Javania vitrea: Zibrowius, 1974c: 16-17, pl. 5, figs. 18-21.
Desmophyllum gailleti: Keller, 1975: 177.
Javania cailleti: CAIRNs, 1977b: 5; 1978: 11.
Description. - The corallum is ceratoid, expanding into a large, elliptical calice. The pedicel diameter, which measures one-fourth to one-half the calicular diameter, is reinforced by concentric layers of stereome. The pedicel re-expands basally into a large, thin, encrusting sheet, by which the corallum is attached. The largest specimen examined measures $45.0 \times 65.0 \mathrm{~mm}$ in calicular diameter, but $18 \times 14 \mathrm{~mm}$ is more typical. The theca and septa are initially very thin and fragile until they are secondarily thickened with stereome. The theca is very smooth and often porcelaneous, with scalloped growth lines, the peaks of which correspond to the $\mathrm{S}_{1-3}$. Costae rarely occur, but when expressed they are faint to well developed ridges in the upper one-third of the corallum, corresponding to $\mathrm{S}_{1-3}$.

Septa are usually arranged in six systems and four cycles but often four of the $S_{3}$ are enlarged, giving the appearance of eight regular systems with four cycles ( 64 septa). $S_{1}$ and $S_{2}$ are equal in size and highly exsert. $S_{3}$ are less exsert and much smaller; $S_{4}$ are not exsert and become rudimentary in the lower fossa. The inner edges of all septa are entire and usually straight, but sometimes those of the $S_{3}$ and $S_{4}$ are slightly sinuous; more rarely those of the $S_{1}$ and $S_{2}$ are also sinuous. Septal granules vary from low and rounded to narrow and pointed, and are arranged in lines parallel to the trabeculae, either on the crests of small septal undulations or over a flat septal face.

The fossa is elongate, deep, narrow, and bordered by the inner edges of the $S_{1}$ and $S_{2}$. A solid, rudimentary columella forms deep within the fossa by the fusion of the lower, inner edges of the $S_{1}$ and $S_{2}$.

Discussion. - Even though the holotype of D. cailleti is lost, the two figures and brief Latin description could refer to no other nominal West Indian species. The 64 - septa holotype is simply the common variation in which four of the $S_{3}$ are accelerated to form 16 half-systems.

The holotype of G. eburnea Pourtalès, 1871, is also lost, but the two figures and brief description strongly suggest that it is a young specimen of $J$. cailleti.

Vaughan's (1906a) D. galapagense is also a junior synonym. In the original description he remarked that it was very close to $D$. eburneum Moseley, differing only in the entire absence of costae and lack of septal exsertness outside the thecal margin. Both of these differences are well within the range of variation of $J$. cailleti. Marenzeller's (1904a) Flabellum sp., a small, broken, worn specimen (USNM 22084) is probably a junior synonym. Likewise, ZIBrowius (1976: 227) implied that Desmophyllum delicatum Yabe \& Eguchi, 1941, is also a junior synonym.


#### Abstract

Material. - P-587 (18) USNM 46770, (3) UMML 8: 321; P-610 (1) 46771; P-705 (1) USNM 46763; P-838 (1) USNM 46764 ; P-890 (1) USNM 46765 ; P-918 (3) USNM 46766; P-923 (1) UMML 8: 261; P-944 (2) USNM 46767; P-969 (2) USNM 46768; P-984 (1) USNM 46769; P-1187 (3); 40 specimens from 15 Gerda stations in the Straits of Florida; CI-2 (1) USNM 46772; CI-6 (2) USNM 46773; CI-46 (1) USNM 46774; CI-92 (1) USNM 46775; GS-31 (1) USNM 46776; O-1320 (1); O-1916 (1); O-2637 (1); O-4297 (25); O-4459 (1); O-4461 (1); O-4832 (4); O-4903 (1); O-5015 (8) ; O-5021 (1) ; O-5648 (2) ; O-5682 (1); O-5733 (1); O-5955 (1); O-5956 (3); O-6715 (2) ; O-10716 (1); O-10828 (1); O-10832 (3); SB-3471 (1); SB-3474 (10); BL-19 (2) MCZ; BL-36 (1) MCZ; BL-45 (1) MCZ; BL-101 (1) MCZ; 123 specimens from 15 additional Blake stations from the Windward Islands, Lesser Antilles; Bibb-141 (1) MCZ; Alb-2322 (1) USNM 16079; Alb-2327 (1) USNM 10151; Alb-2415 (2) USNM 10516; Alb-2662 (1) USNM 16091 ; Alb-2663 (2) USNM 14614; Alb-2666 (1) USNM 16074; Alb-2669 (1) USNM 16075; Alb-2750 (2) USNM 36351 ; Alb-2753 (1) USNM 36414 ; E-26017; E-26023; E-30176; WH-44/68 (5) SME; BLM-22 VI B (1) Alabama BLM; TAMU 65A9-20 (1) TAMU; Chain-36 (1); Chain-43 (3); Hummelinck-1443 (1). - Syntypes of D. eburneum; holotypes of D. nobile and D. galapagense; Lindström's (1877) specimens (NRM) ; Moseley's (1881) specimens (BM); Marenzeller's (1904a) Flabellum sp. (USNM 22084).


[^18]material of $D$. vitreum Alcock, 1898, is at the Indian Museum, Calcutta, but five syntypes are deposited at the MNHNP and two are at the ZMA (Coel. 1198). The type of D.galapagense Vaughan, 1906 is at the USNM. The type of $D$. delicatum was not traced.
Type-Locality. - Lesser Antilles (no specific location or depth was given).
Distribution. - Western Atlantic: off Nova Scotia: widespread in Caribbean and eastern Gulf of Mexico, ranging from off Georgia to off Surinam; off Uruguay (Map 44). 86-1682 m. $6^{\circ}-16^{\circ} \mathrm{C}$, based on 13 records. - Elsewhere: eastern Atlantic; Indian and Pacific Oceans. $400-2165 \mathrm{~m}$.
65. Javania pseudoalabastra Zibrowius, 1974

Plate XXX, figures 9-10

Flabellum alabastrum: Jourdan, 1895: 23-24 (in part: Hirondelle-203).
Javania pseudoalabastra Zibrowius, 1974c: 10-11, pl. 2, figs. 7-12; 1976: 224-225, pl. 66, figs. A-D. - Cairns, 1977: 85, 2 figs.

Description. - [The original description was based on three broken, worn specimens. The following description is based on one perfect specimen from the Tongue of the Ocean, Bahamas]. The corallum is attached by a thick pedicel, elliptical in cross-section, measuring $11.3 \times 9.1 \mathrm{~mm}$ in diameter. The pedicel is white, smooth, and thickened by concentric layers of stereome. At the height of 15 mm the pedicel changes color to reddish-brown and expands into a greatly flared calice, somewhat constricted at its center. The upper theca and septa are very thin and brittle. Prominent, ridged costae correspond to the first three cycles. $\mathrm{C}_{1}$ and $\mathrm{C}_{2}$ are larger than the other costae and extend to the top of the smooth pedicel. Scalloped growth lines peak at the costae. The calicular diameter is $43.8 \times$ 21.4 mm ; the height is 34.2 mm .

Septa are arranged in six systems and four cycles, with five supplementary septa of the fifth cycle ( 53 septa). $\mathrm{S}_{1}$ and $\mathrm{S}_{2}$ are equal in size, very exsert, and extend so far into the calice that several overlap. Exsert $S_{3}$ and nonexsert $S_{4}$ are progressively smaller. The septa of the fifth cycle are not arranged in pairs; instead they occur in five different half-systems and are as fully developed as the $\mathrm{S}_{4}$.

All septa are thin, very delicate, the same reddish-brown as the upper theca, and have straight, entire edges. The septal faces are smooth with few scattered granules. Growth lines are parallel to the septal edge. The fossa is deep but obscured by the great inward development of the $S_{1}$ and $S_{2}$.

Material. - P-1262 (1) USNM 46612; CI-46 (1) USNM 46611. - Types.
Types. - Holotype: deposited at the MOM; collected at Hirondelle-203.
Type-Locality. $-39^{\circ} 27^{\prime} 05^{\prime \prime} \mathrm{N}, 30^{\circ} 55^{\prime} 05^{\prime \prime} \mathrm{W}$ (Azores); 1557 m .
Distribution. - Western Atlantic; Bahamas; off Jamaica (Map
44). 1089-1234 m. - Eastern Atlantic: Azores. 784-1557 m.

## Genus Polymyces, new genus

Diagnosis. - Solitary, ceratoid to trochoid, fixed. Wall epithecal, reinforced basally by six regularly placed pairs of structures resembling rootlets, which never detach from the corallum. "Rootlets" communicate with polyp by 12 small pores located adjacent to every $S_{2}$. No pali; rudimentary columella formed by fusion of inner edges of lower cycle septa. Type-species: Rhizotrochus fragilis Pourtalès, 1871, here designated.

Discussion. - The genus Monomyces Ehrenberg, 1834 was originally created to include the species M. anthophyllum (= Caryophyllia pygmaea Risso, 1826), which has one lateral root in addition to its main attachment. The genera Coelocyathus M. Sars, 1857, and Biflabellum Döderlein, 1913, also are junior objective synonyms of Monomyces. The type-species of Rhizotrochus Milne Edwards \& Haime, 1848, R. typus Milne Edwards \& Haime, 1857, differs from Monomyces in that it has numerous randomly arranged lateral roots. The number of roots, one or several, was not considered of generic significance by either Wells (1956) or Zibrowius (1974c). The form typified by $P$. fragilis, however, is quite different in that the "rootlets" are regularly arranged, always 12 in number, and never detached from the corallum. For these reasons this genus is erected
to contain R. fragilis Pourtalès, 1868 and Flabellum (?) montereyense Durham, 1947.

Etymology. - The generic name refers to the 12 pairs of root-like structures on the base of the corallum. Gender: masculine.
66. Polymyces fragilis (Pourtalès, 1868), new comb. Plate XXX, figures 2-3, 5-8

Rhizotrochus fragilis Pourtalès, 1868: 134-135; 1871: 17-18, pl. 4, figs. 1-4; 1878: 203; 1880: 96. - Agassiz, 1888: 151, fig. 471. - Zibrowius, 1974c: 22. Cairns, 1977b: 5; 1978: 11.
Rhizotrochus tulipa Pourtalès, 1874:39, pl. 6, figs. 10-19; 1878: 203; 1880: 96, 106. - Zibrowius, 1974c: 22.

Not Rhizotrochus fragilis: Moseley, 1881: 175.
Not Monomyces fragilis: Wells, 1958: 261. - Sguires, 1961: 17.
Monomyces tulipa: Lewis, 1965: 1062.

Description. - The corallum is ceratoid to trochoid, slightly compressed, and attached by a narrow pedicel to a slightly expanded base. The pedicel is reinforced by six pairs of symmetrically arranged "rootlets," which extend $5-10 \mathrm{~mm}$ up the side of the corallum from the base. Each pair of rootlets has a common atrium basally, which bifurcates distally into two tapering extensions, each of which is in open communication with the interior of the corallum via a small pore. The pores penetrate the inner theca on either side of each $\mathrm{S}_{2}$. These pores cannot be seen in an intact specimen because of their depth within the fossa. A decalcified specimen reveals mesenterial extensions, corresponding to these rootlets, which communicate through the pores. The calice is elliptical; an average-size specimen of 25 mm height measures $18.0 \times 16.0 \mathrm{~mm}$ in calicular diameter. The theca is very thin, variable in color (see Discussion), and glossy in unworn specimens. No costae or striae occur, but inconspicuous, scalloped growth lines are present.

Septa are arranged in six systems and four complete cycles. $\mathrm{S}_{1}$ and $S_{2}$ are equal in size, slightly exsert, and extend to the bottom of the fossa, where their inner edges fuse into an elongate, rudimentary columella. $S_{3}$ are half as large, not exsert, and do not extend to the columella. $\mathrm{S}_{4}$ are much smaller and not exsert. All septa are very
thin and fragile, with entire and slightly sinuous inner edges. The septal granules are tall, pointed, and arranged on septal crests in widely spaced lines parallel to the trabeculae. The fossa is deep and elongate. The interior of the theca is sometimes greatly thickened with stereome.

Discussion. - Calrns (1976) maintained R. tulipa as a distinct species based on its distinctive color pattern, smaller size, and more exsert septa, but suggested that it may be synonymized with $R$. fragilis. Based on an examination of 66 additional intermediate specimens from 18 lots throughout the Caribbean, I now consider these differences to be insignificant and therefore synonymize $R$. tulipa. All intergrades in pigmentation between typical tulipa (with reddishbrown costal stripes) to typical fragilis (completely white) occur. Some specimens are uniformly reddish-brown with or without subdued stripes and one specimen (G-510) is white for the proximal $80 \%$ of the corallum but reddish-brown near the calice and upper septal margins. Other characters, such as size, shape, septal granulation, thickness or exsertness of septa, or structure of the rootlets do not differentiate the forms. Therefore all western Atlantic species of Polymyces are considered to be $P$. fragilis.

Moseley's (1881) erroneous record from the Cape of Good Hope led both Wells (1958) and SQuires (1961) to incorrectly list this species in their faunal accounts. Moseley's specimen does not have basal rootlets.

```
Material. - P-600 (2) ; P-876 (1); P-891 (1); G-190 (1) USNM 46741; }83\mathrm{ specimens
from 25 additional Gerda stations in the Straits of Florida and Northwest Provi-
dence Channel (USNM 46723-46740); CI-6 (1) ; CI-37 (1); GS(G)-5 (2) USNM 46743;
O-1320 (4); O-1321 (8) USNM 53404; O-1348 (2); O-3704 (3); O-4226 (1); O-4398
(10); O-4832 (5); O-4833 (1); O-4834 (5); O-4938 (1); O-4939 (27); O-5648 (4);
O-5733 (1); O-11716 (1); O-11725 (1); SB-2418 (8) ; SB-2427 (8) ; SB-3339 (1); SB-
3494 (18); SB-3704 (1); BL-32 (2) MCZ; BL-56 (1) MCZ; BL-272 (1) MCZ; BL-273
(7) MCZ; BL-277 (1) MCZ; BL-296 (3) MCZ; BL-317 (1) MCZ; Bibb-31 (1) MCZ;
Bibb-136 (1) MCZ; Alb-2323 (1);'Alb-2596 (5); Alb-2639 (1) USNM 16134; FH-7286
(6); FH-7296 (2) USNM 22020; Gos-1533 (2); Gos-1590 (3); Gos-1643 (2); Gos-1767
(1); Gos-1863 (1); WH-127/68 (1) SME; Hummelinck-1443 (3). - Syntypes of R.
fragilis and R. tulipa; Moseley's (1881) specimens (BM).
```

Types. - Seven lots of syntypes of $R$. fragilis, containing $100+, 60,37,11,6,3$, and 2 specimens are deposited at the MCZ (MCZ 5451 and 5628). Pourtales did not
designate specific localities in his original description nor are they present with the syntypes. Seventy-one syntypes of $R$. tulipa, all collected from a Hassler station off Barbados ( 183 m ), are deposited at the MCZ in four lots.
Type-Locality. - Off the Florida Reef; 172-592 m.
Distribution. - Throughout the Caribbean and eastern Gulf of Mexico, ranging from off North Carolina to off the Amazon, Brazil (rare off northern coast of South America); off southeastern Brazil (Map 45). $75-796 \mathrm{~m} .10^{\circ}-18^{\circ} \mathrm{C}$, based on eight records.

Genus Gardineria Vaughan, 1907
Diagnosis. - Solitary, turbinate to cylindrical, fixed. Wall epithecal but thickened internally by stereome. Septa not always arranged hexamerally. Paliform lobes opposite larger septa. Columella well developed, papillose. Type-species: Gardineria hawaiiensis Vaughan, 1907, by original designation.
67. Gardineria paradoxa (Pourtalès, 1868) Plate XXXI, figures 4-6,10

Haplophyllia paradoxa Pourtalès, 1868: 140-141; 1871: 52, pl. 2, figs. 11-13. Duncan, 1872: 34. - Pourtalès, 1880: 97. - Agassiz, 1888: 154-155, figs. 480-481. - Hickson, 1910: 5.
Duncania barbadensis Pourtalès, 1874: 45, pl. 9, figs. 5-7. - Lindström, 1877: 13. - Pourtales, 1880: 97, 112. - Duncan, 1883: 366. - Agassiz, 1888: 155.

Gardineria barbadensis: Lewis, 1965: 1063. - Wells, 1973: 50. - Zibrowius, 1974c: 24.

Not Gardineria cf. barbadensis: Goreau \& Wells, 1967: 449 (= G. minor). Gardineria paradoxa: Wells, 1973: 51.

Description. - The corallum is initially trochoid, becoming cylindrical with greater size. It is solidly attached to the substrate, either basally or laterally. The calice is round, with a diameter of up to 16 mm . The wall is epithecal, internally thickened bystereome. A long, cylindrical corallum is usually solidly filled in with stereome. The thin epitheca often rises above the level of the septa, producing a circular groove separating it from the outer, upper edges of the
septa. The epitheca is sometimes highly corrugated; a corallum measuring 41 mm in height has about 22 concentric ridges, or lips, corresponding to successive stages of rejuvenescence.

The septa are not arranged in distinct cycles or systems; instead, there are 19-22 (usually 20) widely spaced primary septa of equal size. In larger coralla, additional rudimentary septa are developed between the primary septa. The large septa are not exsert and each septum has one-three high, narrow paliform lobes on its inner edge. The uppermost lobe is separated from the septum by a broad, shallow notch. In some coralla, the paliform lobes alternate in size and position: one septum has larger and higher lobes, whereas adjacent septa have lobes that are narrower and closer to the columella. Both the lobes and the septa bear large, blunt, randomly arranged granules.

The paliform lobes are similar in size and shape to the columellar rods, from which they are often indistinguishable. The papillose columella is composed of $2-35$ slender pillars, forming a round field in the center of the calice. The fossa is shallow and often solidly filled by dense deposits of stereome.

Material. - P-948 (1); O-6699 (1) ; BL-247 (1) MCZ; BL-273 (12) MCZ; Bibb-187 (1) MCZ; Gos 112/78 (1) USNM 46617; E-43 (1) ; Hudson-3B (1) NMC; Hummelinck1443 (3). - Syntypes of D. barbadensis; Lindström's (1877) specimen (NRM) ; Lewis's (1965) specimens (Cornell).

[^19]Colangia simplex Pourtales, 1878: 206-207 (in part: Blake station off Havana, $146 \mathrm{~m})$.
Gardineria sp. cf. barbadensis: Goreau \& Wells, 1967: 449.
Gardineria minor Wells, 1973: 49-53, figs. 36a-g. - Wells \& Lang, 1973: 58. Zibrowius, 1974c: 24. - Scatterday, 1974: 86. - Land, Lang \& Barnes, 1977: 170.

Description. - The shape of the corallum is variable, ranging from short and cylindrical, with a base equal in diameter to the calice, to a long, irregularly tapered cylinder, attached by a narrow base. Young coralla are often attached by their sides. Dimensions of the largest corallum examined are $8.3 \times 7.9 \mathrm{~mm}$ in calicular diameter. The calice is round. The thin epitheca usually displays irregular, concentric banding and extends above the level of the upper septal margins.

Septa are arranged in six distinct systems and four cycles. Small coralla measuring $0.5-1.0 \mathrm{~mm}$ in calicular diameter have only one cycle of septa. The second cycle of septa is usually complete at a calicular diameter of $1-2 \mathrm{~mm}$; the third cycle at $2-7 \mathrm{~mm}$; and the fourth cycle between $5-8 \mathrm{~mm} . \mathrm{S}_{1}$ are exsert and by far the largest septa. They are also the only ones having an entire margin. $S_{2}$ are much smaller, not exsert, and have very irregular inner edges consisting of two-three wide, blunt paliform teeth projecting perpendicular to the septal edge. $S_{3}$ are smaller and bear four-five paliform teeth on their inner margins. $S_{4}$ are rudimentary, composed of fiveeight linearly arranged, low spines. The septal granules are large, blunt, and sparsely distributed.

A small, narrow paliform lobe sometimes is present on the inner edge of each $S_{1}$. A more distinct, larger, and wider lobe usually is present on the inner edge of each $\mathrm{S}_{2}$, separated from the septum by a narrow notch. The columella is composed of $1-20$ slender, irregularly shaped rods, which fuse proximally into a solid mass. The rods are sometimes indistinguishable from the paliform lobes.

Discussion, - G. minor is distinguished from G. barbadensis by its
hexameral symmetry, smaller size, and different habitat, found only in a cave environment or in heavily shaded sites. It is distinguished from G. simplex by its smaller size and greater number of septa at the same calicular diameter.

Material. - P-439 (3) USNM 46622; P-630 (1) USNM 46623; P-1311 (2) USNM 46624; P-1387 (3) USNM 46625; G-889 (1) USNM 46626; G-899 (1) USNM 46627; G-983 (1) USNM 46619; G-984 (2) USNM 46620; G-986 (2) USNM 46621 ; SB-3494 (4) ; BL station, off Havana, 146 m (2) MCZ; BL-156 (1) MCZ; Alb-2324 (2) USNM 10135; off Santa Marta, Colombia, 17-50 m (1) Cornell; off Cayman Island, 37 m (1) ; Daaibooi baai, Curaçao, 24 m (1) USNM 46629; off Andros, Bahamas, deep reef, 25 April 1970 (2) USNM 46632; $26^{\circ} 33^{\prime} \mathrm{N}, 78^{\circ} 34^{\prime} \mathrm{W}, 42.7 \mathrm{~m}$ (1) FDNR; Theodore Tissier (1), $15^{\circ} 15^{\prime} \mathrm{N}, 60^{\circ} 57^{\prime} \mathrm{W}, 90 \mathrm{~m}$. - Types of G. minor and C. simplex.

Types. - The holotype and paratypes of G. minor are deposited at the USNM (53503-53506).

Three syntypes of Colangia ( $=$ Gardineria) simplex Pourtalès, 1878 are deposited at the MCZ; two collected at a Blake station off Havana, $80 \mathrm{fm}(146 \mathrm{~m}$ ); and one from BL-22 (5566). The two specimens from the Havana station are Gardineria minor but because the original description primarily concerned the BL-22 specimen (Pl. XXXI $1-3$ ), which is different (both figures are of this specimen), it is designated lectotype for G. simplex, thus preserving Wells's (1973) name G. minor for the other two specimens.
Type-Locality. - Yallahs, Jamaica; 15 m .
Distribution. - Widespread in the Caribbean and Bahamas (Map 47). 2-241 m, most common between $10-100 \mathrm{~m}$.

Family GUYNIIDAE Hickson, 1910
Genus Guynia Duncan, 1872
Diagnosis. - Solitary, ceratoid to scolecoid, free or fixed laterally; sometimes producing chains of individuals by extratentacular budding. Wall epithecal; a row of mural "pores" (spots) present in every interseptal space. Pali absent. Columella composed of one twisted ribbon. Type-species: Guynia annulata Duncan, 1872, by monotypy.
69. Guynia annulata Duncan, 1872

Plate XXXII, figures $1 \mathbf{1 - 3}$

Guynia annulata Duncan, 1872: 32, pl. 1, figs. 1-8; 1873:335-336, pl. 47, figs. 9-16. - Pourtalès, 1874 : 44, pl. 9, figs. 3-4; 1878: 209; 1880: 97, 112. - Gardiner \& Waugh, 1938: 172. - Rossi, 1961: 34. - Zibrowius, 1969: 327-328. Wells, 1972: 6, figs. 11-14. - Wells \& Lang, 1973: 58. - Wells, 1973a: 59-63, figs. 1-3. - Bourcier \& Zibrowius, 1973: 827. - Zibrowius, 1976: 230-232, pl. 57, figs. A-Q. - Zibrowius \& Saldanha, 1976: 101-102. Zibrowius \& Grieshaber, 1976: 381. - Cairns, 1977b: 5; 1978: 11.
Guynia n. sp. Goreau \& Wells, 1967: 449.
Description. - The extremely small corallum is cylindrical and scolecoid in shape, rarely exceeding 10 mm in length and 1 mm in calicular diameter. It is usually attached by its side, sometimes growing free distally. Wells (1973a) reported that sometimes a new corallum buds extratentacularly from just below the calicular edge; successive budding forms a chain of individuals. Specimens from the northern Gulf of Mexico attach sand grains both basally and randomly along their coralla.

The epitheca is thin and particularly fragile at the calicular end. The theca is variable; it may be smooth for the entire length or interrupted by a series of annuli (e.g., 21 over a distance of 3.6 mm ) or even may bear six-eight ridged costae corresponding to the $\mathrm{S}_{1}$. In addition, there are small white spots on the theca arranged in six or eight pairs of longitudinal rows. The rows are in the interseptal spaces directly adjacent to the smaller septa. The spots are also arranged in rings around the corallum; when annuli are present, one ring of 12 or 16 spots occurs between each growth segment. I hesitate to call these spots mural pores, which are typical for the family, because no surface relief was seen with a scanning electron microscope. Rows of shallow, round depressions were seen, however, on the interior of the theca corresponding to the externally visible white spots (Pl. XXXII 2), but complete perforations of the theca probably do not occur.

There are 12 or 16 septa arranged in two groups, hexamerally or octamerally respectively. The six or eight primaries are thick, with very sinuous inner edges, and extend almost to the columella. The
six or eight secondaries are much smaller and thinner but also have sinuous inner edges. The septa are not exsert; the epitheca rises well above the level of the larger septa, and the smaller septa are so deep in the calice that they are sometimes hidden from view. The septal faces are smooth; there are no septal granules. The columella is a single massive, twisted or flanged ribbon, sometimes visibly attached to one or more of the larger septa deep in the fossa.

Discussion. - G. inflata (Hickson, 1910), from the Persian Gulf, is the only other Recent species belonging to this genus. It is differentiated by its possession of endotheca, a slightly bulbous proximal end, and by always being free, not laterally attached as G. annulata often is.

Material. - P-629 (4) ; P-630 (5) USNM 46637; P-1303 (1) USNM 46635; P-1354 (1) USNM 46636, (1) UMML 8: 265; G-725 (1) USNM 46634; SB-1125 (11); BL-22 (1) MCZ; BL-143 (1) MCZ; BL-154 (1) MCZ; BL-213 (1) MCZ; Hassler, Barbados, 183 m (9) MCZ; MAFLA 1974-18 (2) RSMAS; MAFLA 1974-33 (12) RSMAS; MAFLA-2645 (2) FDNR; $27^{\circ} 55^{\prime} \mathrm{N}, 93^{\circ} 27^{\prime} \mathrm{W}, 100 \mathrm{~m}(4) \mathrm{BLM}$, Texas; Hummelinck1443 (1). - Syntypes of $G$. annulata.

Types. - Eighteen syntypes, collected at a Porcupine station made in 1870, are deposited at the BM (1883.12.10.110-120).
Type-Locality. - Adventure Bank, Mediterranean; 168 m .

Distribution. - Western Atlantic: Antillean distribution; Gulf of Mexico; western Caribbean; off Bermuda (Map 48). 37-653 m. Eastern Atlantic: Mediterranean; Madeira; Azores. 28-200 m.

## Genus Schizocyathus Pourtalès, 1874

Diagnosis. - Solitary, ceratoid, fixed. Longitudinal parricidal budding common. Wall epithecal; a row of mural spots flanks each $\mathrm{S}_{2}$. Paliform lobes on $\mathrm{S}_{3}$. Columella absent. Type-species: Schizocyathus fissilis Pourtalès, 1874, by monotypy.

Schizocyathus fissilis Pourtalès, 1874: 36-37, pl. 6, figs. 12-13. - Lindström, 1877: 15-19, pl. 2, fig. 26, pl. 3, figs. 27-34, text-figs. 1-7-Pourtales, 1878: 203; 1880: 96, 104. - Duncan, 1883: 366-367. - Marenzeller, 1904: 300. Gravier, 1915: 2, 17-22, figs. 6-11; 1920: 81-86, pl. 9, figs. 144-152, pl. 14, fig. 208, pl. 15, figs. 213-214, pl. 16, figs. 216-221. - Gardiner \& Waugh, 1938: 171. - Lewis, 1965: 1063.-Zibrowius, 1976: 234-236, pl. 59, figs. A-O. - Cairns, 1977b: 5; 1978: 11.

Description. - The corallum is ceratoid to subcylindrical, straight, and invariably attached to a fragment (usually one-sixth or one-third) of a parent corallum. The longest corallum known measures 25.0 mm , but more typically they are $7-8 \mathrm{~mm}$ in length, with a calicular diameter rarely exceeding 3.5 mm . The epitheca varies: it is usually thin, smooth, and glossy but sometimes bears rough, hispid spines (e.g., Lindström's variety from Salt Island), or is marked with rugose thecal annuli. Six, thin, opaque, white lines, corresponding to the $\mathrm{S}_{2}$ occur on the theca extending from the base to the calice. Toward the calice, these lines bifurcate, closely paralleling the $S_{2}$ to the calice. These are the future lines of fracture in asexual reproduction; the theca between the double lines and the enclosed $\mathrm{S}_{\mathbf{2}}$ break away from the corallum, which leads to the eventual division of the corallum into sixths or thirds. In each of the three-six sectors defined by these lines are two rows of white spots. They correspond to the interseptal spaces adjacent to every $S_{1}$. Successive spots are located about 0.5 mm apart. Neither lines nor spots are seen in surface relief with the SEM, which implies that they are not surface features. The calice is round and the epitheca extends slightly higher than the upper septal edges.

Septa are arranged in six systems and three complete cycles. $\mathrm{S}_{1}$ are the thickest and widest septa, slightly exsert, and extend halfway to the center of the calice. They have sinuous inner edges and sometimes bear small paliform lobes. $\mathrm{S}_{2}$ are extremely small and rudimentary, expressed only as small, ragged ridges in the upper corallum. $S_{3}$ are half as thick as the $S_{1}$, slightly exsert, and extend only one-fourth of the distance to the center of the calice. Lower in
the fossa the $\mathrm{S}_{\mathbf{3}}$ bear paliform lobes that reach almost to the center of the calice, where the pair in each system unite in a $V$ before the $S_{1}$. Deep in the fossa these inner extensions of the $\mathrm{S}_{\mathbf{3}}$ form a platform, which is dissected by six narrow channels corresponding to the $S_{2}$. The lateral faces of the $S_{1}$ and $S_{3}$ bear large blunt granules arranged in lines or short carinae parallel to the trabeculae. One atypical specimen has a poorly-defined palar platform and a rudimentary columella. Ordinarily there is no columella.

Discussion. - There has been continuing disagreement as to whether the rudimentary septa are the $S_{1}$ and the large, thick septa the $S_{2}$ (Pourtalès, 1871; Vaughan \& Wells, 1943) or the converse (Marenzeller, 1904; Gravier, 1920; Zibrowius, 1976). Among the 180 specimens examined, only one (from Oregon-2772) was independently attached, i.e., not the result of asexual fragmentation. Its base clearly showed the original six septa, which, when traced to the calice, corresponded to the larger septa. For this reason I agree with Zibrowius, et al. in calling the six larger septa the $S_{1}$ and the six smaller septa the $\mathrm{S}_{2}$.

```
Material. - P-585 (1) USNM 46640; G-929 (1) USNM 46638; G-1011 (1) USNM
46639; O-1251 (2); O-1867 (8); O-2772 (31); O-3203 (1); SB-3483 (1); BL-51 (1)
MCZ; BL-206 (slides) MCZ; BL-220 (2) MCZ; BL-259 (1) MCZ; BL-272 (1) MCZ;
BL-290 (1) MCZ; BL-292 (1) MCZ; Gos-1632 (1); Caroline-13 (2); Caroline-84 (1);
Caroline-93 (3); MAFLA-2106 (1) FDNR; MAFLA-2645 (2); MAFLA-2746 (1);
Atl-2987D (22) MCZ; Atl-2989 (1) MCZ; Explorer-1a (10); Explorer-1b (1); Ex-
plorer-1c (25); Hummelinck-1443 (14). - Syntypes of S. fissilis; Lewis's (1965)
specimen (Cornell).
```

Types. - Forty-one syntypes, divided into three lots, are deposited at the MCZ (5470, 2791). All were collected at a Hassler station off Barbados.
Type-Locality. - Off Barbados; 183 m .
Distribution. - Western Atlantic: Antillean distribution; eastern Gulf of Mexico; off Honduras (Map 49). 88-640 m. - Eastern Atlantic: the area bounded by Portugal, the Azores, and Morocco. 410-1300 m.

## Genus Stenocyathus Pourtalès, 1871

Diagnosis. - Solitary, ceratoid to cylindrical, free or attached. Wall epithecal; rows of thecal spots flank each $\mathrm{S}_{3}$. Pali, when present, opposite $\mathrm{S}_{2}$. Columella formed of one-two twisted, crispate ribbons. Type-species: Coenocyathus vermiformis Pourtalès, 1868, by monotypy.

# 71. Stenocyathus vermiformis (Pourtalès, 1868) 

Plate XXXII, figures 8-10; Plate XXXIII, figures 1-2

Coenocyathus vermiformis Pourtales, 1868: 133-134.
Stenocyathus vermiformis: Pourtales, 1871: 10, pl. 1, figs. 1-2, pl. 3, figs. 11-13. Lindström, 1877: 19-21, pl. 3, figs. 35-36. - Pourtales, 1878: 202; 1880: 96, 101 (in part: not BL-210), pl. 1, figs. 15-16. - Duncan, 1883: 368. Agassiz, 1888: 148, fig. 483. - Marenzeller, 1904: 298-300, pl. 18, fig. 16. Gravier, 1915: 2; 1920: 30-32, pl. 3, figs. 35-37, pl. 13, 193-197. - Gardiner \& Waugh, 1938: 172. - Wells, 1947: 167, pl. 10, figs. 1-5; 1958: 262. - Rossi, 1958: 6, 11-12. - Squires, 1959: 23. - Rossi, 1961: 39-40. - ZIbrowius, 1969: 328. - Laborel, 1970: 153. - Zibrowius, 1971: 244; 1974a: 769-770; 1976: 232-234, pl. 58, figs. A-Q. - Cairns, 1977b: 5; 1978: 11.
Not Caryophyllia vermiformis Duncan, 1873:316, pl. 40, figs. 13-16 (= Caryophyllia abyssorum).
Caryophyllia simplex Duncan, 1878: 237, pl. 43, figs. 32-34.
Caryophyllia carpenteri Duncan, 1878: 237, pl. 43, figs. 28-31.
Stenocyathus washingtoni Cecchini, 1914: 151-152; 1917: 143-145, pl. 13, figs. 4-5.
Stenocyathus decamera Ralph \& Squires, 1962: 11-12, pl. 4, figs. 2-6. - Squires \& Keyes, 1967: 28, pl. 6, figs. 3-5.

Description. - The corallum is cylindrical, elongate, and vermiform, reaching lengths of over 50 mm but rarely exceeding 3 mm in calicular diameter. It is usually free, lying horizontally on the substrate; it is rarely basally attached. The epitheca is usually smooth and glossy, particularly delicate at the calicular end, but may also be rough as a result of the presence of numerous annuli corresponding to periodic stages of growth. Opaque, white spots are arranged in 24 longitudinal rows, which occur in all interseptal spaces but most closely adjacent to either side of the $\mathrm{S}_{3}$. The centers of the spots are longitudinally spaced $0.35-0.45 \mathrm{~mm}$ apart. The spots are
not visible as a surface structure with the SEM. The calice is round and one often occurs on each end of a recumbent specimen.

Septa are arranged in six systems and three cycles, but often the third cycle is not fully developed. The six $S_{1}$ are not exsert, extend only halfway to the columella, and have sinuous inner edges. $S_{2}$ are half as large and have even more sinuous inner edges. $S_{3}$ are almost as large as the $S_{2}$ but have reduced upper margins and virtually straight inner edges. Large, pointed septal granules are arranged either randomly or in short carinae oriented perpendicular to the trabeculae.

Six $\mathrm{P}_{2}$ are often present, forming a distinct palar ring in the fossa. They are tall and narrow, with sinuous inner edges and granules that are larger than those on the septa. $\mathrm{S}_{3}$ and $\mathrm{P}_{2}$ are often missing from a system, producing an asymmetrical palar ring. The columella is composed of one, rarely two or three, twisted ribbons. Sometimes the columella is absent.

Discussion. - Ralph \& SQuires's (1962) original description of S. decamera, the only other Recent species described in this genus, was poor and did not include a comparison to the type-species. Examination of 14 New Zealand specimens identified by Squires as $S$. decamera (USNM) reveals that they differ only by having slightly larger calicular diameters than $S$. vermiformis (up to 6 mm ) and are more often solidly attached to the substrate. All 14 specimens have a hexameral septal arrangement. I do not consider these differences of specific value. S. alabamiensis Wells, 1947 (Paleocene, Alabama) and S. hoffmeisteri Wells, 1976 (Eocene, Tonga) are the only other species described in the genus.

[^20]Types. - At the MCZ there are 38 coralla or fragments of $C$. vermiformis Pourtales, distributed in four lots, bearing the numbers 2790,5587 , and 5605 (one lot is unnumbered). Although not clearly stated in the text or with the specimens, these syntypes were probably collected from Bibb-10, 11, and 21. The holotypes of C. simplex and C. carpenteri are both deposited at the BM (1883.12.10.24 and 1883.12. 10.23). It is unknown if types of $S$. washingtoni exist. The holotype of $S$. decamera is deposited at the New Zealand Geological Survey, Wellington.
Type-Locality. - Off Florida Keys; 274-329 m.
Distribution. - Western Atlantic: off Georgia and Florida; off Havana, Cuba; Arrowsmith Bank, Yucatan; Windward Group, Lesser Antilles; off Brazil (Map 50). 128-835 m. - Elsewhere: Mediterranean; area bounded by Celtic Sea, Azores, and Madeira; Indian Ocean; off New Zealand. 110-1229 m.

## Genus Pourtalocyathus, new genus

Diagnosis. - Solitary, ceratoid, free. Wall epithecal, often bearing hispid spines. One row of mural spots present in every interseptal space. Paliform lobes sometimes present before $\mathrm{S}_{2}$. Columella papillose. Type-species: Ceratotrochus hispidus Pourtalès, 1878, here designated.

Discussion. - It is necessary to establish a new genus for Ceratotrochus hispidus because it possesses thecal spots identical to those found in the Guyniidae, but it does not belong to any of the described guyniid genera. Pourtalès either overlooked this character (it is not mentioned in his description but is found on the holotype) or did not realize its significance. Often the mural spots are not visible; only one-third of the specimens examined showed them clearly.

This genus is clearly different from all other genera in the Guyniidae. It differs from Guynia by its septal arrangement, numerous columellar elements, and larger size; from Stenocyathus by its differently shaped paliform lobes, columella, and corallum; and from Schizocyathus by the presence of a columella and its septal arrangement.

[^21]
# 72. Pourtalocyathus hispidus (Pourtalès, 1878), new comb. Plate XXXIII, figures 3-8 

Ceratotrochus hispidus Pourtalès, 1878: 202, pl. 1, figs. 19-20. - Zibrowius, 1974c: 25. - Keller, 1975: 179.
Conotrochus typus: Pourtalès, 1878: 202 (in part: BL-16).
Ceratotrochus typus: Pourtalès, 1880: 96, 105.
Stenocyathus vermiformis: Pourtalès, 1880: 101 (in part: BL-210).
Description. - The corallum is ceratoid and usually straight, if attached, or curved up to $90^{\circ}$, if free. It is originally attached by a thin, encrusting base but rarely remains attached in an upright position. The longest corallum examined measures 19.0 mm ; the calicular diameter rarely exceeds 5.5 mm . The theca is quite variable in appearance. Often there are flat, broad costae corresponding to all septa and separated from each other by narrow, intercostal furrows. Sometimes the costae bear prominent, projecting granules arranged uniserially, which unite to form short ridges. Other specimens have smaller costal granules arranged three-four across the width of a costa. Still other coralla have no costae or spines; instead they have rough, imbricated, epithecal bands. Some coralla have a perfectly smooth epitheca with no ornamentation. Rows of white mural spots corresponding to each interseptal space are obvious on one-third of the specimens examined. These spots are visible in specimens with prominent costal spines as well as in the completely smooth specimens. The spots are not visible as a surface structure with the SEM. The calice is round and the epitheca usually continues for a short distance above the upper septal margins.

Septa are arranged in six systems and three complete cycles. $\mathrm{S}_{1}$ have exsert, rounded upper edges, are sometimes quite thick, and extend to the columella. $S_{2}$ are half as large, less exsert, and also meet the columella. Small papillose $P_{2}$, similar in shape to the columellar elements, sometimes occur. $\mathrm{S}_{3}$ are small, have slightly dentate inner edges, and do not reach the columella. The septal granules are large and arranged in lines parallel to the trabeculae. The lower, inner edges of the $S_{1}$ and $S_{2}$ are thickened where they join the columella. The columella is composed of 5-25 close-set,
thin, tapered rods, which are usually swirled in a clockwise direction. The rods may remain individualized or fuse into a solid mass. There are no dissepiments or internal stereome.

```
Material. - P-889 (1) USNM 46662; P-984 (3) USNM 46663; P-1225 (2) USNM
46664; 18 specimens from 10 Gerda stations from the Straits of Florida (USNM
46652-46661); SB-3494 (5); BL-16 (1) MCZ; BL-100 (3) MCZ; BL-145 (3) MCZ;
BL-195 (1) MCZ; BL-210 (1) MCZ; Gos-1729 (1); Caroline-1 (1); Caroline-25 (3);
Caroline-67 (42); Atl-2999 (2) MCZ; Atl-3313 (1) MCZ; Atl-3332 (28) MCZ; Atl-
3336 (7) MCZ. - Holotype of C. hispidus.
```

Types. - The holotype, collected at BL-19, is deposited at the MCZ (5583).
Type-Locality. $-23^{\circ} 02^{\prime} \mathrm{N}, 83^{\circ} 10^{\prime} \mathrm{W}$ (western Straits of Florida); 567 m .

Distribution. - Antillean distribution; off northeastern Florida (Map 51). 349-1200 m.

Suborder Dendrophyllifna Vaughan \& Wells, 1943 Family DENDROPHYLLIIDAE Gray, 1847

Genus Balanophyllia Wood, 1844

Diagnosis. - Solitary, turbinate to trochoid, fixed or free. Costae well developed. Synapticulotheca porous, especially near calicular edge. Septa follow Pourtalès Plan. Pali present or absent. Columella spongy. Type-species: Balanophyllia calyculus Wood, 1844, by monotypy.

## 73. Balanophyllia cyathoides (Pourtalès, 1871) <br> Plate XXXIII, figures 9-10; Plate XXXIV, figures 1-2

Dendrophyllia cyathoides Pourtalès, 1871: 45-46, pl. 1, figs. 8-9; 1878: 208; 1880 97.

Balanophyllia palifera: Pourtales, 1880: 110 (in part: BL-300).
Balanophyllia cyathoides: Cairns, 1977a: 136-138, pl. 1, figs. 5-8.
Description. - The corallum is ceratoid and straight, narrowing to a thick pedicel of about one-half the calicular diameter and re-
expanding into a solid base of attachment. The holotype measures 27.1 mm tall and 9.6 mm in lesser calicular diameter. Costae are narrow, equal, rounded, and separated by deep, narrow furrows. Sometimes the $C_{1}$ and $C_{2}$ are raised slightly above the others. Every costa bears a row of tall, blunt granules.

Septa are arranged in six systems and four cycles, rarely with additional $S_{5} . S_{1}$ are highly exsert and extend to the columella. $S_{2}$ are much less exsert, extending almost to the columella. $S_{3}$ and $S_{4}$ follow the Pourtalès Plan; two $S_{4}$ join before each $S_{3}$ and extend to the columella. At the junction there is often a small, indistinct paliform lobe, compressed and aligned with the adjacent $S_{3}$. The inner edges of all septa are straight and entire. The septal faces bear numerous, large, pointed granules arranged in lines parallel to the trabeculae.

The fossa is fairly shallow. The columella is elongate and narrow, and often carinate. It varies from spongy to solidly fused. Sometimes it is swirled as in Balanophyllia dineta, with oblique, lateral ridges.

Discussion. - This species is described and discussed by Cairns (1977a).

Material. - P-919 (2) ; G-251 (1) USNM 46665; G-691 (9) USNM 46668; G-692 (1) 46666; G-701 (1) USNM 46667; BL-69 (4) MCZ; BL-300 (2) MCZ; Alb-2157 (4) USNM 16102; Alb-2322 (11) USNM 16101; Alb-2327 (7) USNM 16104; Alb-2354 (3) USNM 16103. - Holotype.

Types. - The holotype (MCZ-2774) has been cut in half (vertically) along its lesser calicular diameter; only one-half is present at the MCZ. It was probably collected from Corwin-2 or 4 in 1867.
Type-Locality. - Off Havana, Cuba; 494 m.
Distribution. - Antillean distribution; Arrowsmith Bank, Yucatan (Map 52). 53-494 m.
74. Balanophyllia palifera Pourtalès, 1878

Plate XXXIV, figures 3-7

Balanophyllia floridana: Pourtaless, 1874: 43, pl. 6, fig. 20.
Balanophyllia palifera Pourtalès, 1878: 207 (in part: BL-68); 1880: 97, 110 (in part: BL-273). - Cairns, 1977a: 140-141, pl. 1, fig. 4, pl. 2, figs. 4, 5, 7; 1978: 11.

Description. - The corallum is subcylindrical to ceratoid, usually straight but sometimes slightly curved, and firmly attached to the substrate. The lectotype measures $6.6 \times 6.0 \mathrm{~mm}$ in calicular diameter and is 16.0 mm tall. There are usually thin epithecal bands covering all or part of the synapticulotheca, most common towards the base, where they may completely obscure the costae. The costae are equal, narrow, compact, slightly ridged, and separated by narrow, deeply incised furrows. The costal granules are large and pointed.

Septa are arranged in six systems and four complete cycles; however, one large specimen ( $c \mathrm{c}=10.5 \mathrm{~mm}$ ) has 14 complete half -systems or 56 septa. $S_{1}$ are the largest septa, with slightly exsert, thick, porous upper margins. $S_{2}$ are slightly smaller, less exsert, and do not extend as far toward the columella as the $S_{1}$. $S_{3}$ are very small and always flanked by two much larger $\mathrm{S}_{4}$, which unite before each $\mathrm{S}_{3}$. At the junction there is a large palus, almost as large as the $\mathrm{S}_{4}$, which extends to the columella. The inner edges of $S_{1-3}$ are straight and entire, whereas those of the $S_{4}$ are sometimes laciniate, especially deeper in the fossa. Numerous randomly arranged, pointed granules, sometimes measuring higher than the septal thickness, cover the septal faces. The palar granules are even larger but more blunt. The calicular edges of two of the pali of the paralectotype are bifurcated; the split ends are directed toward the flanking $S_{4}$.

The fossa may be deep or shallow and is sometimes bridged by endothecal dissepiments. The columella is composed of numerous, slender, twisted ribbons, which sometimes fuse together in an elongate mass aligned with the principal septa.

Discussion. - B. palifera is easily distinguished from other
western Atlantic Balanophyllia by its distinct pali and long, slender corallum.

Material. - P-584 (2) USNM 46674 ; P-595 (1) ; P-596 (3); G-1275 (1) USNM 46673; BL-273 (1) MCZ; undetermined Hassler station off Barbados, 183 m (1) MCZ; Alb2152 (10) USNM 16098; Alb-2157 (1) USNM 16105; Alb-2338 (1) USNM 10223A; Alb-2346 (2) USNM 16100. - Syntypes of $B$. palifera.

Types. - Two syntypes collected at BL-68 are deposited at the MCZ (5438). One of these (Pl. XXXIV 4-6) is designated lectotype, the other (Pl. XXXIV 3) paralectotype. The other syntype, from BL-12 (MCZ-5571), is B. floridana. Type-Locality. - Off Havana; 444-838 m.

Distribution. - Off Havana, Cuba; Arrowsmith Bank, Yucatan; off Barbados (Map 53). 53-444 m.
75.

Balanophyllia wellsi Cairns, 1977
Plate XXXIV, figures 8-9; Plate XXXV, figures 1-3
Balanophyllia wellsi Cairns, 1977a: 142-144, pl. 3, figs. 6-7, pl. 4, figs. 1-4.
Description. - The corallum has a slightly flared calice, which tapers to a thick pedicel measuring about one-half the calicular diameter. The pedicel enlarges basally to form a large, firm attachment. The calice and pedicel are elliptical in cross-section; the holotype measures $20.0 \times 15.2 \mathrm{~mm}$ in calicular diameter, $9.3 \times 8.5 \mathrm{~mm}$ at the narrowest pedicel diameter, and 30.0 mm tall. Costae are equal, compact, slightly ridged or rounded, and separated by very deep; narrow striae. The costae bear coarse, blunt granules on their outer surfaces and finer, more pointed granules laterally.
Septa are arranged in six systems and five cycles; however, the last cycle is never complete. The largest specimen examined (the holotype) contains 62 septa. $S_{1}$ and $S_{2}$ are equal in size, only slightly exsert, and extend to the columella. The remaining septa are arranged according to the Pourtalès Plan: septa of the last cycle (usually $S_{4}$ ) join in front of the $S_{3}$ where, (1) they may fuse and extend to the columella as one septum, (2) one of the septa may remain prominent whereas the other joins it but appears subsidiary, or (3)
both septa may remain separate and extend almost to the columella closely parallel to each other (as in the holotype). A wide paliform lobe, not separated by a notch from its septum, sometimes occurs on the combined septa, or at their junction, or on each individual septum. The inner edges of all septa are straight and entire. The granulation on the upper, outer septal faces of the $S_{1}$ and $S_{2}$ fuses with that of adjacent septa, filling in the interseptal space with a porous network. The granules on the lower, outer septal faces are large and pointed, whereas on the inner edges the granules are low and rounded.
The fossa is deep and elongate. The columella of the holotype consists of four linearly arranged, twisted rods, which are aligned in the plane of the greater axis. The columellas of the paratypes are composed of more numerous rods fused into a narrow, elongate mass.

Discussion. - B. wellsi can be distinguished from all other species of Balanophyllia in the western Atlantic by its massive pedicel, flared calice, and distinctive septal arrangement.

Material. - SB-3472 (1); Gos-112/27 (1) Cornell. - Types.
Types. - The holotype and two paratypes are deposited at the USNM, four paratypes at the MCZ, and one paratype at the UMML.
Type-Locality. $-26^{\circ} 38^{\prime} \mathrm{N}, 79^{\circ} 02^{\prime} \mathrm{W}$ (northern Straits of Florida); 505-527 m.
Distribution. - Antillean distribution (Map 53). 412-505 m.

Description. - The corallum is turbinate and slightly compressed, producing an elliptical calice. The largest specimen measures $30.9 \times$ 24.8 mm in calicular diameter and 31.0 mm tall. The corallum rapidly tapers to a thick pedicel measuring one-third of the calicular diameter and re-expands slightly at the substrate to form a firm attachment. The costae are broad, equal, and separated by very narrow, deep striae. They are porous only near the calicular edge; lower on the corallum very low, rounded granules occur such that two-
three can be counted across the width of each costa. Often higher cycle costae merge with lower cycle costae toward the base.

Septa are arranged in six systems and five incomplete cycles. There is a direct relationship between calicular diameter and number of septa: the largest specimen examined has 15 pairs of $S_{5}$ for a total of 78 septa, and the smallest specimen of 19.3 mm greater calicular diameter has nine pairs of $S_{5}$, or 66 septa. $S_{1}$ and $S_{2}$ are equal in size and have straight, vertical, entire inner edges, which reach the columella. $S_{3}$ are slightly smaller and do not reach the columella. The higher cycle septa are arranged in a Pourtalès Plan. It is not unusual for an incomplete half-system to have one of its $S_{4}$ flanked by two $S_{5}$ and the other $S_{4}$ standing alone. If unflanked, the $S_{4}$ is almost as large as an $S_{3}$ and bears a prominent paliform lobe, which extends to the columella. If flanked by $S_{5}$, the $S_{4}$ is small and two $S_{5}$ meet before each $S_{4}$ in a large palus, which extends to the columella. None of the septa are exsert. Both septa and pali are covered by randomly arranged, low, pointed granules.

The fossa is moderately deep and contains an elongate columella composed of a compact, discrete, clockwise-swirling mass of ribbons.

Discussion. - Among the ten Recent species of western Atlantic Balanophyllia, this species most closely resembles $B$. wellsi, particularly in size and shape. It is differentiated from $B$. wellsi by its distinctive columella, larger and more distinct pali, and nonexsert septa.

Etymology. - The specific name hadros (Greek, =stout, strong) refers to the robust nature of the corallum.

Material. - Types.
Types. - Holotype: 0-4834 (USNM 46906). - Paratypes: O-4834 (15) USNM 46907; O-4832 (2) USNM 46908.
Type-Locality. - $14^{\circ} 14.2^{\prime} \mathrm{N}, 80^{\circ} 28.5^{\prime} \mathrm{W}$ (off Serrana Bank, Nicaragua); 274293 m .

Distribution. - Known only from off Serrana Bank, Nicaragua (Map 52). 238-274 m.
77. Balanophyllia bayeri, new species

Plate XXXV, figures 7-9
Description. - The corallum is ceratoid, straight to slightly bent, and firmly attached by a thick pedicel. The holotype measures $11.4 \times 10.3 \mathrm{~mm}$ in calicular diameter, 29.9 mm tall, and has a pedicel diameter of 4.8 mm . The pedicel diameter is usually about one-half that of the calicular diameter, and the height of the corallum is typically two-three times the calicular diameter. The theca is porous near the calice, becoming solid and granular toward the base. Costae are equal, broad, flat, and separated by thin, sometimes obscure striae, which diminish toward the base. Pairs of higher cycle costae (the $\mathrm{C}_{4}$ ) join halfway to the base (where septal substitution occurs) and continue as one costa toward the base. There is no evidence of epithecal deposits and the costae are always free of attached organisms, implying that the edge zone must cover the corallum almost to the base.

Septa are arranged in six systems and usually four complete cycles, sometimes with several pairs of $S_{5} . S_{1}$ and $S_{2}$ are equal in size, very slightly exsert, and have straight, entire, vertical inner edges, which join the columella low in the fossa. The $\mathrm{S}_{3}$ are small and flanked by pairs of larger $S_{4}$, each of which bears a small palus; in some cases the two $\mathrm{P}_{4}$ fuse into a single, large lobe positioned before the $\mathrm{S}_{3}$. The lobes extend to and sometimes into the columella. $\mathrm{S}_{5}$, if present, are arranged in a Pourtalès Plan. There are randomly arranged, prominent, pointed granules on both the septal and palar faces.

The columella is a discrete, elongated structure aligned in the greater calicular axis. Like the columella of $B$. dineta and of $B$. hadros, it is composed of a clockwise-swirling mass of ribbons.

Discussion. $-B$. bayeri is most similar to $B$. dineta and $B$. hadros based on their very similar columellas and arrangement of septa and pali. It is distinguished from $B$. hadros by its smaller size and narrower (ceratoid) corallum. However, it is extremely similar to some specimens of $B$. dineta and could easily be confused with it. Distinctive characters of $B$. bayeri are: (1) a consistently larger
pedicel diameter, (2) a longer, straighter corallum, (3) fewer $S_{5}$, (4) a more laterally compressed columella, and (5) absence of an epitheca.

Etymology. - This species is named in honor of Frederick M. Bayer, noted invertebrate zoologist and octocoral systematist.

Material. - Types.
Types. - Holotype: O-4940 (USNM 46909). - Paratypes: O-4940 (17) USNM 46910; O-4939 (5) USNM 46911 ; P-596 (16) USNM 46912.
Type-Locality. $-20^{\circ} 30^{\prime} \mathrm{N}, 86^{\circ} 14^{\prime} \mathrm{W}$ (off Isla Cozumel, Mexico); 311-329 m.
Distribution. - Known only from off Isla Cozumel, Mexico (Map 54). 274-311 m.

Genus Dendrophyllia Blainville, 1830
Diagnosis. - Colonial, dendroid or bushy colonies formed by extratentacular budding. Costae well-defined. Septa arranged according to Pourtalès Plan. Columella spongy. Tabular endothecal dissepiments may be present. Type-species: Madrepora ramea Linnaeus, 1758, by subsequent designation (Milne Edwards \& Haime, 1850).
78. Dendrophyllia cornucopia Pourtalès, 1871

Plate XXXVI, figures 1-4

Dendrophyllia cornucopia Pourtalès, 1871: 45, pl. 5, figs. 7-8; 1880: 97, 111. Marenzeller, 1907a: 14. - Zibrowius, Southward \& Day, 1975: 97, pl. 5, fig. F. - Zibrowius, 1976: 245-246, pl. 93, figs. A-L. - Cairns, 1978: 11. Not Balanophyllia cornucopia: Horst, 1922: 59, pl. 8, fig. 13.

Description. - The corallum is cylindrical and elongate (up to 15 cm ), tapering gradually to a narrow base, which is invariably broken at the tip. The recumbent corallum may be straight, curved, or greatly contorted. Numerous buds project at right angles to the parent corallum. The buds are rarely large and break off at a young
stage, which accounts for the numerous scars on the theca. The calice is elliptical; Pourtalès's figured syntype measures $17.4 \times 15.0$ mm in calicular diameter. The corallum wall is thick and porous. Costae are flat, equal, porous, and set apart by narrow, poorlydefined striae. The costal granules are small and sharp. Epithecal bands are often present over most of the corallum.

Septa are arranged in six systems and five cycles, the fifth always incomplete. The figured syntype has 64 septa, including $16 \mathrm{~S}_{5} . \mathrm{S}_{1}$ and $S_{2}$ are equal in size, not exsert, and extend to the columella. Higher cycle septa follow the Pourtales Plan, sometimes joining before the $\mathrm{S}_{3}$ and extending to the columella. $\mathrm{S}_{4}$ margins are irregular to laciniate. The septal granules vary from inconspicuous to large and pointed, twice the septal thickness in height.

The fossa is moderately deep, enclosing a massive, convex columella, oval to elliptical in outline. The fused columellar elements often form a clockwise-swirling vortex with obliquely ridged sides. Tabular endothecal dissepiments are abundant, occurring every $1.5-4.0 \mathrm{~mm}$.

Discussion. - D. cornucopia does not fall within the definition of Dendrophyllia sensu Vaughan \& Wells, 1943, nor does it resemble the type-species, D. ramea. Instead of a dendroid colony, it produces solitary coralla with randomly arranged buds, which usually detach long before a third generation bud can form from the second. The genus Dendrophyllia is in need of a revision in which a subgeneric category might usefully be employed to distinguish the diverse growth forms now included in the genus.
D. cornucopia is most similar to an undescribed species designated as Dendrophyllia A by Cairns (1976). The growth forms are identical, but Dendrophyllia A has much thinner thecae and septa and more widely spaced dissepiments, producing a much lighter corallum. Furthermore, Dendrophyllia A is known from shallower water (4660 m ).

[^22]253 (1) MCZ; BL-254 (1) MCZ; BL-281 (2) MCZ; BL-290 (2) MCZ; FH-7283 (6) USNM 22024; FH-7286 (19) USNM 22023; TAMU 65A9-20 (2) TAMU. - Syntypes of $D$. cornucopia.

Types. - Three lots of syntypes are deposited at the MCZ: (1) two worn fragments (5442, 2752) from Bibb-135 and Bibb-173, (2) the illustrated specimen (1871: pl. 5, figs. 7-8) (2752) from Bibb-173, and (3) six pieces with soft parts in alcohol from Bibb-173. There is also a specimen from Bibb-173 at the BM. Type-Locality. - Off Key West, Florida; 220-229 m.

Distribution. - Western Atlantic: Straits of Florida; off northern Cuba; Windward Group, Lesser Antilles (Map 54). 132-604 m. - Eastern Atlantic: Celtic Sea; Gulf of Gascony. 330-960 m.

## 79. Dendrophyllia gaditana (Duncan, 1873)

Plate XXXVI, figures 5-10

Balanophyllia gaditana Duncan, 1873: 333.
Balanophyllia fistula: Horst, 1922: 59 (in part: Siboga-310).
Balanophyllia praecipua Gardiner \& Waugh, 1939: 240, pl. 1, fig. 2.
Dendrophyllia praecipua: Wells, 1964: 116, pl. 2, figs. 6-7.- Zibrowius, 1973: 52; 1974a: 758.
Dendrophyllia gaditana: Zibrowius, 1976: 246-248, pl. 94, figs A-N.
Description. - This species forms small, sparsely branched, delicate colonies. The largest known branch measures less than 75 mm in length. Few colonies, if any, have been collected that show a basal attachment. Branching occurs both intra- and extratentacularly; the latter predominates and is responsible for the colonial form. In extratentacular division, the bud originates from the edge zone not far from the calice. The bud usually grows perpendicular to the parent branch but sometimes curves upward, paralleling it. In intratentacular division the calice elongates and adds septa; often the branch increases in length several centimeters before the bud becomes separate. Frequently, however, the bud aborts and the elongated calice resumes its original shape. The branch, however, always retains the flattened shapeecaused by the aborted bud.
The calice is round to slightly elliptical; an average calice measures $5.5 \times 4.2 \mathrm{~mm}$ in diameter, whereas a flattened calice in the
process of intratentacular division may measure $8.8 \times 3.5 \mathrm{~mm}$. The branches are about the same diameter as the terminal calices. Usually the $\mathrm{C}_{1}$ and $\mathrm{C}_{2}$ are distinctly ridged and bear a single row of low, rounded granules. The higher cycle costae are low, equal, and also bear a single row of granules. The costae are covered by a thin, glistening epitheca, which usually extends to within $1-2 \mathrm{~mm}$ of the calice.

A mature corallite typically contains 48 septa arranged in six systems and four cycles; however, a calice in the process of intratentacular division may contain up to 17 or more half-systems, including $S_{5}$, for a total of 70-80 septa. Septa are arranged in a Pourtalès Plan. The $S_{1}$ are slightly larger and more exsert than the $S_{2}$; both have vertical, slightly serrate, lower inner edges as a result of perpendicularly projecting paliform teeth. Each $S_{3}$ is small and flanked by a pair of larger $S_{4}$, which join in front of the $S_{3}$ as a large paliform lobe. The septal and palar granulation is prominent and pointed, sometimes higher than the septal thickness. The large, spongy columella is bordered by the paliform teeth of the $\mathrm{S}_{1-2}$ and the $\mathrm{P}_{4}$.

Discussion. - D. gaditana is easily distinguished from the other three western Atlantic Dendrophyllia by its much smaller branch diameter and peculiar intratentacular budding.

```
Material. - P-596 (1); O-4954 (1); Alb-2354 (11); Alb-2416 (1); Chain-15 (24
``` fragments) ; Chain-16 (3 fragments).

Types. - The very worn holotype of \(D\). gaditana was collected at Porcupine station 29 in 1870, and is deposited at the BM (1883.12.10-97). Also deposited at the BM (1939.7.13.28) are the three types of D. praecipua collected at John Murray station 111 ( \(5^{\circ} 04^{\prime} 18^{\prime \prime} \mathrm{S}, 39^{\circ} 14^{\prime} 12^{\prime} \mathrm{E}, 73-165 \mathrm{~m}\) ).
Type-Locality. - Iberian-Morocco Gulf ( \(36^{\circ} 20^{\prime} \mathrm{N}, 6^{\circ} 47^{\prime} \mathrm{W}\) ); 417 m .
Distribution. - Western Atlantic: off North Carolina and Georgia; Arrowsmith Bank, Yucatan; St. Peter and Paul Rocks (first records for the western Atlantic) (Map 55). 146-505 m. - Elsewhere: Iberian-Morocco Gulf; Madeira; Great Meteor Bank; Gulf of Guinea. 73-417 m. Off Queensland, Australia; off Indonesia; off Pemba, Tanzania.
80. Dendrophyllia alternata Pourtalès, 1880

Plate XXXVII, figures 1, 4, 8
Dendrophyllia alternata Pourtalès, 1880: 97, 111, pl. 2, figs. 3-4. - Zibrowius, 1974: 572; 1976: 248-249, pl. 95, figs. A-J. - Cairns, 1978: 11.

Description. - The colony is dendroid with uniplanar, dichotomous branching. The size of a mature colony is probably about 1 m . The diameter of the widest syntype branch is 13.0 mm , whereas the terminal branches measure \(4-5 \mathrm{~mm}\) in diameter. Calices occur laterally in the plane of branching in an alternating fashion. Intercalicular distances range between \(9-14 \mathrm{~mm}\). Calices project \(2-3 \mathrm{~mm}\) above the branch and are directed perpendicular to a large, basal branch but obliquely on a small, terminal branch. Coenosteal costae are prominent and rounded, separated by deep, narrow furrows. Costal granulation is fine, consisting of distinct, pointed spines particularly well developed on terminal branches. Calices are round and measure \(4.5-5.5 \mathrm{~mm}\) in diameter.

Septa are arranged in six systems and four cycles; however, \(\mathrm{S}_{3}\) and \(\mathrm{S}_{4}\) are incompletely and irregularly developed, making the systems difficult to distinguish. There are usually 32, 34, or 36 septa in a poorly-defined Pourtalès Plan. \(S_{1}\) and \(S_{2}\) are equal, not exsert, and extend to the columella. Each pair of \(S_{4}\) joins before a smaller \(S_{3}\) and extends to the columella as one septum. There is usually a prominent paliform lobe \(\left(\mathrm{P}_{3}\right)\) at the junction of the two \(\mathrm{S}_{4}\). The inner edges of \(S_{4}\) are laciniate, particularly deep within the fossa. Sharp granules, equal to the septal thickness in height, are scattered over the septal faces.

The elongate columella is aligned in the direction of the branch and is composed of several granulated, individualized rods or a fused mass of rods.

\footnotetext{
Material. - P-901 (USNM 46690); G-169 (USNM 46688); G-386 (USNM 46689); G-661 (UMML 8: 369) ; G-663 (UMML 8: 270); G-664 (UMML 8: 370); O-1408; O-1991; O-4605; Gos-112/26 (Cornell); E-26017; E-30175; Atl-2980 B. (MCZ). Syntypes.
}

Types - Eight branches (syntypes) are deposited at the MCZ: one from BL-209, one from BL-164, and six from BL-218. All bear the number 5440. Another branch from BL-209 is at the BM (1939.7.20.422).
Type-Locality. - Lesser Antilles; 274-346 m.
Distribution. - Western Atlantic: Antillean distribution; northern Gulf of Mexico (Map 55). 276-900 m. - Eastern Atlantic: northwest of Spain ; Azores. 450-688 m.

Genus Enallopsammia Michelotti, 1871
Diagnosis. - Colonial, dendroid (often uniplanar) colonies formed by extratentacular budding. Coenosteum compact, synapticulothecate, porous only near calices. Septa arranged normally. Columella small. Type-species: Coenopsammia scillae Seguenza, 1864, by monotypy.
81. Enallopsammia profunda (Pourtalès, 1867)

Plate XXXVII, figures 5, 7
Diplohelia profunda Pourtalès, 1867: 114; 1868: 135; 1871: 25, pl. 6, figs. 6-7.
Dendrophyllia profunda: Pourtalès, 1878: 208, pl. 1, figs. 6-8. - SQuires, 1959: 28-30, figs. 13-14. - Stetson, Squires \& Pratt, 1962: 21, figs. 8-10, 12-13. - Squires, 1963: 22, fig.

Stereopsammia profunda: Pourtalès, 1880: 97, 111.
Not Dendrophyllia profunda: Alcock, 1902: 43 (=E. marenzelleri).
Not Coenopsammia profunda: Marenzeller, 1904: 313 (=E. marenzelleri).
Enallopsammia profunda: Zibrowius, 1973: 43-44, pl. 3, figs. 21-23. - Cairns, 1977b: 5; 1978:11."

Description. - The corallum is dendroid, forming massive colonies over 1 m high and equally broad. Subterminal branches are about 1 cm in diameter and bear prominent corallites shaped like truncated cones and projecting up to 1 cm perpendicularly from the main branch. Toward the branch tips the corallites are oriented obliquely. The calices are round to slightly elliptical (measuring \(3-4 \mathrm{~mm}\) in diameter), and arranged alternately on opposite sides of a branch, sometimes producing a spiral along the branch. Their
centers are between \(9-14 \mathrm{~mm}\) apart. The coenosteum is very compact, almost solid, even on fresh specimens; it is noticeably porous only around the calicular edges.

Septa are arranged in six systems and three cycles, the last cycle rarely complete. \(S_{1}\) are not exsert, narrow, and reach the columella deep in the fossa; \(S_{2}\) and \(S_{3}\) are progressively smaller. In a small calice, each pair of \(S_{3}\) joins in front of an \(S_{2}\); with greater size the Pourtalès Plan is lost and all septa are arranged in normal fashion. Scattered septal granules are tall and blunt, two-three times the septal thickness in height.

The fossa is very deep in young corallites on thin branches but shorter in older corallites on thickened branches as a result of infilling of stereome. The columella is usually small, consisting of a spongy mass of trabeculae.

Discussion. - The five Recent species of Enallopsammia have been reviewed by Zibrowius (1973), who provides a generic discussion and detailed synonymies.

Remarks. - Ahermatypic deep-water banks have known since 1865 (Sars) from the eastern Atlantic. They were reported for the first time in the western Atlantic by Moore \& Bullis (1960) from off the Mississippi Delta and later by Stetson, et al. (1962) and Squires (1963) from the Blake Plateau. E. profunda and L. prolifera are the primary constituents of the deep-water coral banks in the western Atlantic, whereas L. prolifera and M. oculata are the framework species of the eastern Atlantic banks (Stetson, et al., 1962). In the western Atlantic, \(E\). profunda therefore seems to fill the role of M. oculata. Great quantities of E. profunda and L. prolifera were dredged from CI-140 and CI-246 ( \(26^{\circ} 22^{\prime}-24^{\prime} \mathrm{N}, 79^{\circ} 35^{\prime}-37^{\prime} \mathrm{W}, 738-\) 761 m ), which strongly indicates another such bank in the Straits of Florida. Solenosmilia variabilis, a similar branching form, also was reported from these stations. Associated solitary species often found attached to these branching forms are: Bathypsammia fallosocialis, Tethocyathus variabilis, Cyathoceras squiresi, and Desmophyllum cristagalli.

Material. - P-105 (USNM 46596); P-120 (USNM 46595) ; colonies from 17 Gerda stations from the Straits of Florida (USNM 46598-46610); CI-140 (USNM 46591, UMML 8: 361) ; CI-246 (USNM 46590); GS(G)-13 (USNM 46592); O-6690; O-11705; O-11716; O-11718; O-11725; SB-453; SB-2484; BL-44 (MCZ); Bibb-22 (MCZ); Alb-2415 (USNM 10497); Alb-2416 (USNM 10529); Alb-2529 (USNM 11974, YPM 8381) ; Alb-2530 (USNM 11975); Alb-2661 (USNM 15914); Alb-2662 (USNM 36526); Alb-2663 (USNM 16162) ; Alb-2668 (USNM 36925) ; Alb-2671 (USNM 36927); Alb2678 (USNM 19089); colonies from 22 Gosnold stations from the eastern slopes of Florida and Georgia; E-26004 (USNM 46593); E-26019; E-26028; E-26037; E26052; TAMU 65A9-4 (TAMU). - Syntypes of D. profunda; Squires's (1959) specimens (AMNH 3343).

Types. - At the MCZ there are two lots of syntypes of E. profunda: one contains two worn fragments (MCZ 2782) and the second contains nine fragments (no number). Both were collected from Bibb-3. Another syntype from this Bibb station is at the YPM (4773). The syntype from \(28^{\circ} 24^{\prime} \mathrm{N}, 79^{\circ} 15^{\prime} \mathrm{W}\) was not found.
Type-Locality. - Straits of Florida; 640 m .
Distribution. - Northern temperate distribution from off Massachusetts through the Straits of Florida; one record off St. Lucia, Lesser Antilles (Map 56). 403-1748 m, records below 1000 m rare. \(3^{\circ}-12^{\circ} \mathrm{C}\), based on 15 records.
82. Enallopsammia rostrata (Pourtalès, 1878)

Plate XXXVII, figures 2-3, 6

Amphihelia rostrata Pourtalès, 1878: 204, pl. 1, figs. 4-5. - Agassiz, 1888: 152, fig. 473. - Gourret, 1906: 122, pl. 12, figs. 11, 11A-B.
Stereopsammia rostrata: Pourtalès, 1880: 97, 110-111.
Not Anisopsammia rostrata: Marenzeller, 1904: 314 ( \(=\) E. amphelioides).
Anisopsammia rostrata: Gravier, 1915: 3; 1920: 102-104, pl. 12, figs. 181-185.
Enallopsammia rostrata: Squires, 1959: 40. - Zibrowius, 1973: 44-45, pl. 2, figs. 14-15; 1976: 253-254, pl. 87, figs. A-K, pl. 88, figs. A-C.
Not Enallopsammia rostrata: Laborel, 1970: 156 ( \(=\) E. amphelioides).
Description. - The corallum is massive, forming dendroid, flabellate colonies with a base up to 3 cm in diameter. The colony is densely branched, especially near the smaller end branches where extratentacular budding occurs at the level of every, or every other, calice. Calices occur on only one side of the colony and are elliptical to teardrop-shaped, measuring \(3-5 \mathrm{~mm}\) in diameter. The average dislance between calicular centers is \(6-8 \mathrm{~mm}\). The calices project
upward and are bordered beneath by a prominent, costoseptal rostrum. The costrum is usually aligned with the branch axis but is occasionally perpendicular to it. It is sometimes so produced as to almost enclose the calice. The coenosteum on the calicular side of the branches is usually porous, whereas, on rhe reverse side, it is solid and striate. A faint to well marked spiny costa corresponds to each septum; some costae are continuous with the striae on the reverse side of the branch.

Septa are arranged in six systems and three complete cycles. Five of the six \(\mathrm{S}_{1}\) are small, not exsert, and extend to the columella. The enlarged \(\mathrm{S}_{1}\) is very exsert and, along with the three-four adjacent septa on either side, form the rostrum, which gives the calice its elongated or teardrop shape. The \(S_{2}\) and \(S_{3}\) are progressively smaller. The \(S_{2}\) extend to the columella whereas the \(S_{3}\) are sometimes loosely connected by trabeculae to the \(\mathrm{S}_{2}\) halfway to the columella. The septal granules are spiny, like those of the costae, and randomly arranged. The lower, inner edges of the \(S_{1}\) and \(S_{2}\) bear small lobes intimately connected with the rudimentary, trabecular columella.

Discussion. - A third species of Enallopsammia, E. amphelioides (Alcock, 1902), (Pl. XL 4-5) also occurs in the tropical western Atlantic. Previously known only from the Indo-Pacific, it was recently collected from the Azores and off Brazil ( \(24^{\circ} 49^{\prime} \mathrm{S}\), \(44^{\circ} 31^{\prime} \mathrm{W}, 535 \mathrm{~m}\) ). The Brazilian record was reported incorrectly as E. rostrata by Laborel (1969). A large colony of this species was found in a display case at the BM labelled "Barbadoes" [sic]; no additional data could be ascertained. It is not unlikely that this species also exists in the Caribbean. It is distinguished from the two other western Atlantic species in this genus by the combination of having calices on only one side of the branch and a very weakly developed calicular rostrum, if present at all.

\footnotetext{
Material. - P-881 (USNM 46695) ; P-1187 (USNM 46694) ; P-1262 (USNM 46693, UMML 8: 272) ; G-190 (USNM 46692) ; O-11225; O-11226; O-11722; BL-124 (MCZ); BL-218 (MCZ, USNM) ; BL-266 (MCZ, USNM) ; BL-271 (MCZ); Gos-1 12/78 (Cornell) ; E-30176; Atl-2980 B (MCZ); Atl-3469 (MCZ); Atl-3472 (MCZ); Atl-3474 (MCZ); Atl-280-3; Atl-280-16. - Syntypes of A. rostrata; Squires's (1959) specimen (AMNH 3444).
}

Types. - Two lots of syntypes are deposited at the MCZ: one contains two branches including the illustrated type and the other lot contains one large branch and 28 fragments. Both lots are from BL-2.
Type-Locality. \(-23^{\circ} 14^{\prime} \mathrm{N}, 82^{\circ} 25^{\prime} \mathrm{W}\) (western Straits of Florida); 1472 m .
Distribution. - Western Atlantic: Kelvin and San Pablo Seamounts; off Georgia; Antillean distribution; off Nicaragua; off São Paulo, Brazil (Map 57). 300-1646 m. Squires's (1959) record of 3383 m is questioned. \(5^{\circ}-13^{\circ} \mathrm{C}\), based on three records. - Eastern Atlantic: the area bounded by the Celtic Sea, Azores, and the Gulf of Guinea. 732-2165 m.

Genus Thecopsammia Pourtalès, 1868

Diagnosis. - Solitary, turbinate to trochoid, fixed. Costae absent, epitheca sometimes covers basal synapticulotheca. Septa follow Pourtalès Plan. No pali. Columella small, spongy. Type-species: Thecopsammia socialis Pourtalès, 1868, by subsequent designation (Marenzeller, 1907).
83. Thecopsammia socialis Pourtalès, 1868

Plate XXXVIII, figures 7-9

Thecopsammia socialis Pourtalès, 1868: 138; 1871: 44, pl. 2, figs. 9-10; 1880: 97. Verrill, 1883: 63. - Agassiz, 1888: 152, fig. 475. - Marenzeller, 1907: 8; 1907a: 16. - Squires, 1959: 38, figs. 21, 24. - Zibrowius, 1976: 269.
Not Balanophyllia (Thecopsammia) socialis: Duncan, 1870: 295 ( \(=\) L. britannica). Not Balanophyllia socialis: Duncan, 1873: 333-334, pl. 43, figs. 14-19 (=Leptopsammia britannica).

Description. - The corallum is trochoid to turbinate, straight, and attached by an expanded base. The pedicel measures one-fourth to one-half the calicular diameter. The calice is round to elliptical; the largest specimen examined measures \(20.4 \times 17.9 \mathrm{~mm}\) in calicular diameter and 20.0 mm tall. A smooth epitheca, which overlays a thick, non-costate synapticulotheca, is usually present around the base but sometimes extends almost to the calice.

Septa are arranged in six systems and five cycles, the last cycle never complete even in the largest specimen. Coralla measuring 611 mm in calicular diameter have four complete cycles. Above 11 \(\mathrm{mm}, \mathrm{S}_{5}\) begin to appear by septal substitution. Pourtalès's illustrated syntype, measuring 15.5 mm in calicular diameter, has 64 septa. \(S_{1}\) are larger than the \(S_{2}\), slightly exsert, and extend to the columella. Each pair of \(\mathrm{S}_{4}\) joins in front of an \(\mathrm{S}_{3}\) and extends to the columella (Pourtalès Plan). The first \(24 \mathrm{~S}_{5}\) are equally distributed in all twelve half-systems before any one half-system is completed with four \(\mathrm{S}_{5}\). The upper edges of all septa are rounded and their inner edges descend almost vertically into a deep fossa. Smaller specimens have more open (turbinate) calices with sloping septal edges. The septa bear low, close-set, blunt granules arranged in poorly-defined lines parallel to the trabeculae.

The columella is small and spongy, composed of individualized elements or a solid fusion of several elements into a compact mass.

Discussion. \(-T\). socialis is most similar to, and often found with, Bathypsammia fallosocialis and B. tintinnabulum, but can easily be distinguished by its arrangement of septa according to the Pourtalès Plan. SQuires (1959) gives a detailed comparison.
```

Material. - G-298 (1) USNM 46696; G-672 (2) USNM 46697, (1) UMML 8: 367;
G-849 (10) USNM 46698, (1) UMML 8: 273; G-1029 (6) USNM 46699; GS(G)-13 (2)
USNM 46701; GS(G)-40 (7) USNM 46700; O-5755 (2); O-11716 (1); SB-450 (14);
SB-453 (4); BL-316 (1) MCZ; Bibb-203 (1) MCZ; Alb-2662 (1) USNM 14611; Alb-
2663 (9) USNM 16111; Alb-2669 (4); 29 specimens from 11 Gosnold stations from
the eastern slopes of Florida and Georgia; E-26017 (2) USNM 46702; E-26019 (1)
USNM 46703; E-26028 (1) USNM 46704; Atl-266-4 (2); Atl-266-6 (1); Atl-266-7 (8).

- Syntypes of T. socialis.

```

Types. - Thirty-nine syntypes in four lots are deposited at the MCZ: (1) 20 specimens (5601), including the figured type, (2) 14 specimens (5601), (3) three specimens (2773) labelled "Florida, \(100-300 \mathrm{fms}\). ", and (4) two specimens (2773). Another syntype is at the YPM (4764). Five more specimens at the BM labelled "100-300 fms." are probably also syntypes. Pourtalès did not specify localities in his original description or with the type-material, therefore all that is certain is that the syntypes were collected by the Bibb in 1868 off the Florida Keys.
Type-Locality. - Florida Keys; 183-549 m (by implication).
Distribution. - Northern temperate distribution from off

Georgia to the Florida Keys (Map 57). 214-878 m. \(6^{\circ}-11^{\circ} \mathrm{C}\), based on four records.

Genus Bathypsammia Marenzeller, 1907
Diagnosis. - Like Thecopsammia but septa arranged normally and columella usually larger. Type-species: Thecopsammia tintinnabulum Pourtalès, 1868, by original designation.
84. Bathypsammia tintinnabulum (Pourtalès, 1868)

Plate XXXVIII, figures \(1-3\); Plate XXXIX, figure 1
Thecopsammia tintinnabulum Pourtales, 1868: 138; 1871: 43, pl. 1, figs. 10-11; 1878: 207; 1880: 97. - Agassiz, 1888: 152.
Bathypsammia tintinnabulum: Marenzeller, 1907; 8; 1907a: 16. - Sguires, 1959 32-37, figs. 15-16, 20, 22-24. - Cairns, 1977b: 5; 1978: 11.

Description. - The corallum is bell-shaped, straight or slightly curved, and attached by a narrow, nipple-shaped pedicel usually measuring less than one-fourth the calicular diameter. The calice is elliptical; the largest specimen examined measures \(17.5 \times 15.6 \mathrm{~mm}\) in calicular diameter and 25.0 mm tall. An epitheca is usually present and can cover up to \(95 \%\) of the thick synapticulotheca. No costae are present.

Septa are arranged in six systems and four cycles; the fourth cycle is complete only in the largest coralla. SQuires (1959) reported a specimen with 52 septa, including septa of the fifth cycle, but \(S_{5}\) are uncommon. \(S_{1}\) are slightly larger than \(S_{2}\), not exsert, and extend into the columella, sometimes constricting it into three lobes. \(\mathrm{S}_{2}\) extend to the columella, \(\mathrm{S}_{3}\) only three-fourths of the distance. \(\mathrm{S}_{4}\) are rudimentary in large coralla and absent or barely distinguishable in average-size specimens. The number of \(S_{4}\) is closely related to corallum size: they develop first in the end half-systems and later in the lateral ones. The inner edges of all septa are entire, straight, and unattached to other septa. Those of the \(S_{1}\) and \(S_{2}\) descend vertically into a moderately deep fossa, forming almost a right angle
at their upper, inner edges. Septal granules are large and blunt, arranged in widely spaced, curved rows oriented perpendicular to the trabeculae.

The spongy columella is large, elongate, and, as noted by Pourtalès (1871), sometimes constricted by the inner edges of the \(S_{1}\).

> Material. - 691 specimens from 36 Gerda stations in the Straits of Florida (USNM \(46511-46546) ;\) CI-246 (1) USNM \(46547 ;\) GS(G)-15 (3) USNM 46549; O-6690 (8); O-11718 (1); SB-450 (3); SB-2420 (1); SB-2427 (4); BL-5 (4) MCZ, USNM; BL-44 (3) MCZ; Bibb-135 (100) MCZ; Bibb-215 (8) MCZ; Alb-2660 (2) USNM \(14622 ;\) Alb2664 (3) USNM \(14499 ;\) Alb-2676 (47) USNM \(14569 ;\) Combat-452 (1); 59 specimens from 10 Gosnold stations from the eastern coast of Florida; E-26004 (1); E-26017 (1); E-26052 (1); 360 km southwest of Egmont Key, Florida, 366 m (7) AMNH. - Squires's (1959) specimens (AMNH 3437); Syntypes.

Types. - At the MCZ there are seven lots of syntypes containing \(129,50,40,21\), 10, 7, and 3 specimens (MCZ 5604 and 2768). The illustrated specimen (1871: pl. 1, figs. 10-11) is in the lot of three and is chosen as lectotype. Eleven additional syntypes are at the BM, four of which are numbered 69.10.25.15, 91.9.28.16, and 1939.7.20.426-427. Another syntype is at the YPM (4763). Pourtales did not specify where the syntypes were collected, but they undoubtedly resulted from the 1868 cruise of the Bibb. Only two of the seven lots had definite station data: Bibb18 and Bibb-66.
Type-Locality. - Off Florida reefs; 183-549 m.
Distribution. - Northern temperate distribution from off South Carolina through Florida Keys; off southwestern Florida (Map 58). \(210-1079 \mathrm{~m} .6^{\circ}-10^{\circ} \mathrm{C}\), based on seven records.
85. Bathypsammia fallosocialis Squires, 1959

Plate XXXVIII, figures 4-6
Bathypsammia fallosocialis SQuires, 1959: 37-39, figs. 17-19, 21, 24.
Description. - The corallum is trochoid, usually straight, and attached by a thick pedicel measuring \(25-55 \%\) of the calicular diameter. It is often found attached to branches of Enallopsammia profunda. The calice is elliptical; the largest corallum examined measures \(19.7 \times 17.5 \mathrm{~mm}\) in calicular diameter and 33.0 mm tall. An epitheca is almost always present, usually covering half of the corallum but varying from \(10-90 \%\). Costae are not present ; instead
there is a uniform, highly porous synapticulotheca, which is very thick in large specimens, especially at the calicular edge.

Septa are arranged in six systems and usually four cycles, but SQuires (1959) reported a specimen with eight \(S_{5}\). \(S_{1}\) are slightly larger than the \(\mathrm{S}_{2}\); both are exsert and extend to the columella. \(\mathrm{S}_{3}\) are half as large as the \(S_{1}\) and very narrow deeper in the fossa. \(S_{4}\) are rudimentary and often have laciniate lower inner edges. Septal granulation consists of crowded, prominent, blunt spines, which are most highly developed near the inner edges of the \(S_{1}\) and \(S_{2}\) adjacent to the columella. The granules are arranged in rows oriented perpendicular to the trabeculae.

The fossa is moderately deep. The columella is very small and sometimes absent. When present it is elongate or elliptical, composed of a fused mass of twisted, spongy trabeculae.

Discussion. - B. fallosocialis closely resembles B. tintinnabulum but can be differentiated by the following: (1) its basal attachment is larger and not nipple-shaped, (2) its columella is smaller, (3) its theca is often much thicker, and (4) its septa are more crowded. No one character will always distinguish the two species since the range of variation overlaps in all parameters, but, taken together, these four characters will serve to differentiate the two.
```

Material. - P-105 (3) USNM 46705; P-901 (2) USNM 46717; 53 specimens from
8 Gerda stations in the northern Straits of Florida (USNM 46706-46713); CI-140 (2)
USNM 46714; CI-246 (5) USNM 46715, (1) UMML 8: 275; O-11725 (2); SB-450 (6);
BL-21 (2) MCZ; Alb-2416 (9) USNM 10544; Alb-2663 (7); Alb-2668 (6) USNM
14495; Gos-1749 (1); Gos-1766 (5); Gos-1767 (2); Gos-1784 (1); E-26004 (7) USNM
46716; At1-266-4 (3) USNM 53411; Atl-266-6 (4) USNM 53412. - Paratypes.

```

Types. - Holotype: AMNH 3344. - Paratypes: sixty specimens (AMNH 3438). All specimens were collected at Vema-3-23.
Type-Locality. \(-27^{\circ} 10^{\prime} \mathrm{N}, 79^{\circ} 34.9^{\prime} \mathrm{W}\) (northern Straits of Florida); 686 m .

Distribution. - Primarily a northern temperate distribution from off Georgia to off Havana, Cuba; one record off St. Lucia, Lesser Antilles (Map 59). 244-805 m. \(6^{\circ}-12^{\circ} \mathrm{C}\), based on five records.

\section*{Genus Rhizopsammia Verrill, 1869}

Diagnosis. - Reptoid colonies formed by extratentacular, stoloniferous budding, the corallites sometimes losing their interconnection. Corallites trochoid to cylindrical. Costae present. Pali present. Columella prominent, spongy. Type-species: Rhizopsammia pulchra Verrill, 1869, by monotypy.
86. "Rhizopsammia" manuelensis Chevalier, 1966

Plate XXXIX, figures 2-6
Rhizopsammia manuelensis Chevalier, 1966: 1382, pl. 6, figs. 1-3, pl. 7, fig. 5. Zibrowius, 1976: 251-252, pl. 89, figs. A-M. - Cairns, 1977b: 5; 1978: 11. Dendrophyllia n. sp. Allen \& Wells, 1962: 390, pl. 4, figs. 2-4.

Description. - The colony forms phaceloid clumps composed of corallites of varying lengths and diameters, originating from an encrusting base. Small colonies are sometimes reptoid, as in the holotypic colony. Larger, phaceloid colonies from the western Atlantic commonly encrust the base of Madrepora carolina. Cylindrical to ceratoid corallites project up to 40 mm above the base, but rarely exceed 10 mm in height. An epitheca (holotheca) covers all of the basal encrustation and the lower coralla. The calices are elliptical, averaging \(9.5 \times 8.5 \mathrm{~mm}\) in diameter; however, the largest calice examined measures 18 mm in diameter. Costae are well-defined, equal, and bear one row of coarse, pointed granules.

Septa are arranged in six systems and five cycles; the last cycle is very irregularly developed. In a calice of 9.6 mm in diameter there are 56 septa. \(S_{1}\) and \(S_{2}\) are equal in size, slightly exsert, and extend to the columella. \(S_{4}\) meet before the \(S_{3}\) and extend to the columella. At their junction there is usually a distinct, high paliform lobe, separated from the \(S_{3}\) by a notch. The inner edges of the \(S_{1}\) and \(S_{2}\) are entire; those of the \(S_{3}\) are dentate or irregular. \(S_{4-5}\) are very porous, with laciniate paliform teeth. Septal granulation is variable, ranging from low and rounded to tall and pointed granules, and may be arranged randomly or in lines parallel to the trabeculae.

The fossa is deep. The columella of larger calices is massive, rounded, and elliptical, composed of individualized ribbons arranged in a clockwise-swirling mass.

Discussion. - Chevalier (1966) placed this species in Rhizopsammia Verrill, because the small, holotypic colony shows reptoid budding. However, larger colonies show a distinctly phaceloid growth form with corallites growing from a basal coenosteum as in Cladopsammia Lacaze-Duthiers, 1897. The type-species of Rhizopsammia produces corallites of uniformly low height and stolons, with subsequent loss of connection of individual corallites. The corallites of \(R\). manuelensis, however, never form stolons, never lose their interconnection, and may be 40 mm tall. Although similar in growth form, \(R\). manuelensis also does not appear to belong to Cladopsammia because of its prominent paliform lobes, which are not present in C. rolandi (type-species of Cladopsammia). In a general revision of the dendrophylliids, \(R\). manuelensis could form the basis of a new generic or subgeneric category of Cladopsammia or Rhizopsammia.

> Material. - P-595 (USNM 46720, UMML 8: 276); G-134; G-135 (USNM 46719); GS(G)-44 (USNM 46718); O-3953; SB-332; Alb-2354 (USNM 16103A); E-26538; WH-44/68 (SME); off Cat Cay, Bahamas, 366 m. - Types of R. manuelensis at MNHNP.
> Types. - Holotype: a small colony of three corallites collected by the GerardTreca (23-3-1954) is deposited at the MNHNP, Institute of Paleontology. - Paratypes: one other colony at the MNHNP and others at IFAN, Dakar. Type-Locality. - Off Cape Manuel, Dakar; 135 m .
> Distribution. - Western Atlantic: Straits of Florida; northern Gulf of Mexico; Arrowsmith Bank, Yucatan; off Uruguay (Map 59). 78-366 m. - Eastern Atlantic; off Senegal; Cape Verde Islands; Gulf of Guinea. 55-135 m.

Genus Trochopsammia Pourtales, 1878
Diagnosis. - Solitary, turbinate, fixed. Costae thick and porous. Septa arranged normally, showing no trace of the Pourtalès Plan.

Columella rudimentary or absent. Type-species: Trochopsammia infundibulum Pourtalès, 1878, by monotypy.
87. Trochopsammia infundibulum Pourtalès, 1878

Plate XL, figures 1-3
Trochopsammia infundibulum Pourtalès, 1878: 208, pl. 1, figs. 16-17; 1880: 97, 110. - Vaughan \& Wells, 1943: 239, pl. 50, figs. 7-7a. - Cairns, 1978: 11.

Description. - The corallum is trochoid, tapering to a thick pedicel, and attached by an expanded base. The calice is round. An average-size specimen measures 10 mm in calicular diameter and about 13 mm tall. A solid, smooth epitheca covers the basal \(10-20 \%\) of the corallum; otherwise broad, equal, finely granulated costae extend from the calice to the epitheca. The costae are separated by narrow, deeply incised grooves. Small, blunt costal granules are arrangcd over the entire surface of each costa such that, on the average, five-seven occur across a costa near the calicular edge.

The thickened costae merge into thick septa, which are arranged in six systems and three cycles. Several \(\mathrm{S}_{4}\) are present in only one of the specimens examined. The lower edges of the \(S_{1}\) and \(S_{3}\) extend to the center of the fossa; the \(S_{2}\) do not quite reach the center. All septa are slightly exsert ; the upper edges of the \(S_{1}\) and \(S_{2}\) are slightly ridged whereas the \(S_{3}\) are rounded. The inner edges of the \(S_{1}\) and \(S_{2}\) are entire; those of the \(S_{3}\) are irregularly dentate. Blunt granules cover most of each septal face except near the lower inner edge, where the granules are higher and usually fused into short carinae oriented perpendicular to the trabeculae.

The fossa is deep and narrow. There is usually no columella or, if present, only a very small one composed of several short trabeculae attached to the lower inner edges of the septa.

\footnotetext{
Material. - G-114 (2) USNM 46722; BL-226 (1) MCZ; BL-260 (2) MCZ; Alb-2351 (3) USNM 10276; Rosaura-34 (1) BM; 72 km south of Dry Tortugas, Florida, 1065 m (2). - Syntypes.

Types. - Two syntypes from BL-25 are deposited at the MCZ (5607). Two additional syntypes from BL-2 are at the BM (1939.7.20.430-431).
Type-Locality. - Off northwestern Cuba; 1161-1472 m.
}

Distribution. - Off northwestern Cuba; Windward Group,
Lesser Antilles (Map 60). 532-1372 m. Lesser Antilles (Map 60). 532-1372 m.

\section*{Incertae sedis}
88.
"Cylicia" inflata Pourtalès, 1878
Plate XL, figures 6-7
Cylicia inflata Pourtalès, 1878: 207, pl. 1, figs. 10-11; 1880: 96.
Description. - The corallites form loose clusters or small phaceloid colonies by reptoid budding. The corallites are roughly cylindrical in shape but usually slightly tapered at the calice and swollen toward the base. The largest corallite measures 3.8 mm tall, 1.4 mm in calicular diameter, and 2.4 mm in basal diameter. The theca is smooth and finely granulated, with only a slight trace of costae.

Septa are arranged in six systems and three complete cycles. The \(S_{1}\) are slightly exsert and much larger than the \(S_{2}\), which in turn, are larger than the \(S_{3}\). Before the \(S_{2}\), small pali occur. Their inner edges are often bifurcated, seeming to mold themselves around the inner edge of the \(\mathrm{S}_{\mathbf{2}}\). A small, papillose columella of one-three elements lies deep in the fossa.

Discussion. - No material of this species has been discovered subsequent to its original description. It clearly does not belong to Culicia Dana, 1846. Because of the presence of pali before the second group of septa, it has affinities with Caryophyllia. "C." inflata could also be a young stage of a larger adult, but more material is needed to resolve its taxonomic position.
```

Material. - Types.

```

Types. - Two lots of syntypes are deposited at the MCZ. One lot (5573) from a Blake station off Havana at \(242 \mathrm{fm}(443 \mathrm{~m})\), contains several attached specimens in very poor condition. The lot from BL-69 (5577) contains 21 small specimens, 13 of which are the species described and/or illustrated by Pourtalès. The eight other specimens are young dendrophylliids. One of the 13 (Pl. XL 7) is designated lectotype; the remaining 12 are designated paralectotypes.
Type-Locality. - Off Havana, Cuba; 183 m .
Distribution. - Known only from off Havana, Cuba (Map 60). \(183-443 \mathrm{~m}\).

\section*{ZOOGEOGRAPHY}

The rich, deep-water Scleractinian fauna of the Caribbean Sea has a strong influence on the tropical and temperate areas to the north and south. Consequently, the following zoogeographic analysis deals not only with the Caribbean but with the deep-water Scleractinian fauna of both the tropical and warm temperate regions of the western Atlantic.

Although corals have been examined from over 1150 deep-water stations, a thorough sampling of the Caribbean and adjacent waters is far from complete. There are still large, poorly sampled areas, notably off the southern coasts of Cuba and Hispaniola, off Costa Rica, the western Gulf of Mexico, and off Brazil between \(5^{\circ} \mathrm{N}-20^{\circ} \mathrm{S}\). Other areas have been intensively collected and are well known: the Straits of Florida, the northeastern Gulf of Mexico, the Lesser Antilles, and off the northwestern coast of Cuba. Some species are still known from only one or two records, others from over 150 . Because of these limitations, the following analysis is considered preliminary.

\section*{Patterns of Distribution}

Among the 88 deep-water species considered in this review, four patterns of distribution (Table 1, column 21) occur in the Caribbean and adjacent waters.

Firstly, an entirely insular distribution, extending from Grenada
to western Cuba, including the Bahamas and sometimes the Florida Keys, is shared by 15 species. This pattern is similar to Ekman's (1953: 53) and Bayer's (1961:343) Antillean region and Briggs's (1974: 63) West Indian province, based on shelf organisms. This distribution will subsequently be referred to as Antillean.

Secondly, another 20 species are found throughout the Antillean distribution but also with at least one record in the western Caribbean. The western Caribbean component may be a unique record or occur along the entire coast, but the avoidance of the northern coast of South America is absolute. This pattern does not have a shallow-water analog.

Thirdly, seven species are endemic to the temperate region off the eastern coast of the United States, with a southern boundary often extending to the Florida Keys, the northern Bahamas, or sometimes as far south as Cuba. Five of these species have a primarily warm temperate distribution (Concentrothecalaevigata, Cyathoceras squiresi, Thecopsammia socialis, Bathypsammia tintinnabulum, and B. fallosocialis), whereas the other two (Enallopsammia profunda and Dasmosmilia lymani) are found well into the cold temperate region.

Finally, three species (Deltocyathus pourtalesi, Rhizosmilia gerdae, and Flabellum pavoninum atlanticum) are endemic to the insular side of the Straits of Florida and Old Bahama Channel.

Of the remaining species, 26 do not fall into a pattern of distribution within the Caribbean, either because of a paucity of records or because of an atypical distribution.

Another 17 species are widely distributed throughout the Caribbean off virtually every sector of the coast. These species are also usually common in the Gulf of Mexico, Bahamas, off the eastern coast of the United States, and off tropical Brazil. Of these 17 species, nine are endemic to the western Atlantic, six are amphiAtlantic, and two are cosmopolitan.

\section*{Faunistic Relationships in the Western Atlantic}

Table 1 indicates the generalized distribution of the 88 species treated in this review. Seventy-six of the 88 species occur in the

Caribbean. Reference to Table 1 indicates that the area of highest species diversity is off Cuba ( 61 species), followed by the Windward Group of the Lesser Antilles ( 60 species). However, other areas of the Caribbean, such as Hispaniola, Puerto Rico, and off the northern coast of South America have low species diversities, on the order of 20-25.

Areas adjacent to the Caribbean have many fewer species. For instance, there are only 40 species of deep-water corals known from the Gulf of Mexico: 19 in the western Gulf and 36 in the eastern Gulf ( 15 occur throughout the Gulf). Of these 40 , four are cosmopolitan species, four are primarily temperate region species (Distributional pattern 4 of Table 1), one (Flabellum fragile) is endemic to the Gulf except for records in the upper Florida Keys, and the remaining 31 species are tropical or eurythermal tropical (Caribbean) species (Briggs, 1974: 366). None of the four temperate species shows a disjunct distribution around Florida. The deep-water ahermatypes of the Gulf of Mexico, therefore, are a depauperate extension of the Caribbean fauna with a minor temperate component.

The deep-water coral faunas of the Bahamas and the eastern coast of Florida have 54 and 55 species respectively, reflecting, in part, their proximity to the Caribbean fauna, especially Cuba.

To the north of Florida the influence of the Caribbean fauna decreases. There are 28 species of deep-water Scleractinia in the warm temperate northwest Atlantic. Half of these species are eurythermal tropical species, extending into the warm temperate region but not north of Cape Hatteras. Seven species are primarily endemic to the temperate region with southern ranges extending to Florida or Cuba (Table 1, column 21, pattern 4). The remaining seven species are cosmopolitan or widely distributed. North of Cape Hatteras, twelve deep-water species have been reported: six species characteristic of cold temperate waters that do not occur in the Caribbean (TABLE 2), two species common to the temperate region (Enallopsammia profunda and Dasmosmilia lymani), and four cosmopolitan or widely distributed species. No Caribbean tropical species extends into this cold temperate region. Therefore the fauna off the eastern coast of the United States can be divided into a

\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
（0） \\
s！łuelfv uxəzsom u！ \\

\end{tabular} &  \\
\hline \begin{tabular}{l}
（s．əәәәu） \\
 \\

\end{tabular} &  \\
\hline  & ○○NOMーNーFーMルーーツーONNONmOOーー \\
\hline פ！̣uent unatseg & \(\times \times \cdot \cdot \times \times \times \cdot \cdots \cdot \cdot \cdot \cdot \times \times \times \cdot \cdots \times \times \times\) \\
\hline sproy Ined \％repad＇7S & －\(\times\) \\
\hline IIzexg & ．．．．\(\times\) ．\(\times \times \times\) ．\(\times \times \times\) ．\(\times\) ．\(\times \times\) ．\(\cdot \times\) \\
\hline meutins＇seurenn &  \\
\hline  ＇osieqol z8 prpiu！la &  \\
\hline （sueәqq！rej fsəmufion & ．\(\times \cdot \times \times \times \cdot \times \times \times \times \cdot \times \times \cdot \times \cdot \cdot \cdot \cdot \cdot \times \cdot \times \times\) \\
\hline  &  \\
\hline  & ．．．．\(\times \cdot \times \times \times \cdot \cdot \times \times \cdot \times \cdot . \cdot . \cdot . \cdot \times \times \times\) \\
\hline （2dnos ргемәәт & \(\cdot \cdot x \cdot \cdot x \cdot \cdot \cdot x \times \cdot x \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot x \times\) \\
\hline （\％dnors рrempu！ & \(\times \cdot \times \cdot \times \times \times \times \times \times \times \cdot \times \times \times \times \cdot \times \times \times \times \times \cdot \times \times \times\) \\
\hline еэп¢ure 1 & －\(\times \times \cdot \times \cdot \times \times \times \cdot \cdot x \times \cdot x \cdot \cdot \cdot \times \times \cdot \times \times \cdot\) \\
\hline  &  \\
\hline romueds！ &  \\
\hline suruxej＇rqn & ．．\(\cdot \times \times\) ．\(\times \times\) \\
\hline （sIn⿹ unaseg &  \\
\hline （\％Ing uәдsə \(M\) & \(\cdot x \cdot \cdot x \times \cdot \cdot \cdot x \cdot \cdot \cdot \cdot . \cdot . \cdot . \cdot x \times\) \\
\hline semeyeg & \(\times \cdot \times \times \times \times \cdot \times \times \times \times \times \times \times \times \times \cdot \cdot \times \times \times \cdot \times \cdot \times\) \\
\hline  & \(\times \cdot \times \cdot \times \times \times \cdot \times \times \times \times\) \\
\hline  & \(x \cdot x \sim x \cdot x \times \cdot \cdots \cdot n \times x \cdot \cdots \cdot x\) \\
\hline epnuigg & －\(\times\) ．\(\times \times \times \times\) \\
\hline \(\cdots\) & \\
\hline & Ẽy \\
\hline &  \\
\hline  &  \\
\hline &  \\
\hline &  \\
\hline &  \\
\hline
\end{tabular}



\footnotetext{
\({ }^{1}\) ) North of Florida.
2) Boundary between eastern and western Gulf of Mexico considered as the line from the Mississippi Delta to the northeast tip of the Yucatán
Peninsula.
3) Southeastern border of eastern Gulf of Mexico considered as the line of longitude \(83^{\circ} 30^{\prime} \mathbf{W}\) between Cuba and the Florida Keys.
4) Southwestern Caribbean includes coasts of Panama, Costa Rica, Nicaragua, and all offshore islands.
5) Northwestern Caribbean includes coasts from Honduras to the shortest line connecting the Yucatan Peninsula to Cuba and all offshore
islands.
6) Distributional patterns: 0 . No distributional pattern; 1. Widespread throughout Caribbean; 2. Antillean distribution; 3. Antillean distri-
bution plus western Caribbean; 4. Northern temperate distribution; 5. Insular side of Straits of Florida and Old Bahama Channel.
7) The geographic subdivisions of the Antilles proposed by WAGENAAR HUmmelinck (1953, 1977) are used throughout this paper.
}
warm temperate component of 28 species, which is strongly influenced by the Caribbean tropical fauna, and a cold temperate component of 12 species north of Cape Hatteras, strongly influenced by temperate species common to the North Atlantic. There is an overlap of six species between the warm and cold temperate regions.

The nine species of deep-water ahermatypes known from Bermuda are all species that also occur in the Caribbean. No cosmopolitan, temperate, or endemic species have been reported, although two species of endemic shallow-water ahermatypes have been described. Five of the nine species have amphi-Atlantic distributions.

Thirty-four species of deep-water Scleractinia (including Enallopsammia amphelioides and Stephanocyathus (Odontocyathus) sp. cf. S. (O.) nobilis) are known from the Guianas to Cabo Frio, Brazil. Thirty-two are common in the Caribbean including six cosmopolitan species. Stephanocyathus sp. cf. S. (O.) nobilis is known from off Brazil and the eastern Atlantic and Enallopsammia amphelioides is known from off Brazil, the Azores, and the Indo-Pacific; neither has been reported from the Caribbean. No deep-water species are endemic to this region (southwestern and west equatorial tropical Atlantic), and \(94 \%\) of the known species also occur in the Caribbean, implying that this region is simply a depauperate extension of the Caribbean fauna.

The Scleractinian fauna of the poorly known southwestern temperate Atlantic has been reviewed by Squires (1961). Of the 17 ahermatypic species known from this region, six are cosmopolitan and the remaining 11 (Table 3) are characteristic of the South Atlantic temperate region, with no overlap with the Caribbean.

For reference, a list of the shallow-water tropical western Atlantic ahermatypes is provided (Table 4). Combining the tropical and temperate areas, both shallow and deep water (Tables 1-4), results in 134 species of ahermatypic Scleractinia known from the western Atlantic.

In summary, of the 90 species of deep-water Scleractinia known from the tropical western Atlantic (including Enallopsammia amphelioides and Stephanocyathus (O.) nobilis), the center of species diversity is the Caribbean ( 76 species), specifically the Antilles. Away from the Caribbean, both north and south, there is a sharp
decrease in the number of species. The Brazilian coast, Bermuda, Gulf of Mexico, and the warm temperate coast of the United States are considered to be depauperate extensions of the Caribbean fauna. Only the warm temperate coast of the United States from Florida to Cape Hatteras is characterized by an endemic slope fauna (5 of 28 species). Otherwise endemism does not mark these areas as zoogeographic subregions.

\section*{Worldwide Faunistic Relationships}

The tropical western Atlantic Scleractinia found below 200 meters form a highly endemic ( 54 species \(=60 \%\) ), independent unit (Table 5). Of the remaining 36 species, 35 are found on both sides of the Atlantic: 11 ( \(12 \%\) ) are cosmopolitan/circumtropical and 24 ( \(27 \%\) ) are exclusively amphi-Atlantic. The cosmopolitan species are: Fungiacyathus marenzelleri, Leptopenus discus, Madrepora oculata, Desmophyllum cristagalli, Lophelia prolifera, and Javania cailleti. The following species are circumtropical or widespread, except for the eastern Pacific: Solenosmilia variabilis, Stenocyathus vermiformis, Dendrophyllia gaditana, Enallopsammia amphelioides, and ?Stephanocyathus (Odontocyathus) nobilis. Analyzed at the generic level, this fauna shows a strong cosmopolitan/circumtropical (Tethyan) influence ( \(53 \%\) ), and a lesser amphi-Atlantic ( \(14 \%\) ) and endemic ( \(12 \%\) ) component. Polymyces and Oxysmilia have an amphiAmerican distribution. Seven genera do not fall into any of the categories of Table 5 (see footnote c).
The shallow-water ahermatypic fauna is less well known, but when analyzed in the same manner (Table 5), a higher degree of species endemism ( \(74 \%\) ) and a lower amphi-Atlantic component ( \(19 \%\) ) are apparant. There are at least an additional 10 undescribed shallow-water species, most of which are endemic to the tropical western Atlantic, which would further increase the endemic percentage. Only one species is circumtropical, Tubastraea coccinea, and one, Cladocora debilis, is amphi-Atlantic and eastern Pacific. The generic analysis reveals a pattern similar to that of the deep-water corals : a highly cosmopolitan/circumtropical ( \(59 \%\) ) and low endemic

\section*{Table 2}

Temperate \(\left(30^{\circ}-55^{\circ} \mathrm{N}\right)\), Northwestern Atlantic Ahermatypes not found in the Tropical Western Atlantic

Flabellum alabastrum Moseley, 1873
Flabellum angulare Moseley, 1876
Flabellum macandrewi Gray, 1849
Fungiacyathus fragilis Sars, 1872
Vaughanella margaritata Jourdan, 1895
Caryophyllia ambrosia ambrosia Alcock, 1898

6Species

Table 3
Temperate ( \(25^{\circ}-57^{\circ}\) S), Southwestern Atlantic Ahermatypes not found in the Tropical Western Atlantic

Flabellum curvatum Moseley, 1881
Flabellum thouarsii Milne Edwards \& Haime, 1848
Flabellum patagonichum Moseley, 1881
Caryophyllia profunda Moseley, 1881
Caryophyllia antarctica Marenzeller, 1904
Caryophyllia A Squires, 1969
Bathelia candida Moseley, 1881
Sphenotrochus gardineri Squires, 1961
Balanophyllia malouinensis Squires, 1961
Desmophyllum capense Gardiner, 1904
Oculina patagonica (Squires, 1963)
11 Species

\section*{Table 4}

\title{
Shallow-water (exclusively 0-200 m) Ahermatypes of the Tropical Western Atlantic
}

\footnotetext{
Madracis sp. cf. M. asperula Milne Edwards \& Haime, 1849
Madracis pharensis pharensis (Heller, 1868)
Madracis brueggemanni (Ridley, 1881)
Madracis formosa Wells, 1973
Agaricia cailleti (Duchassaing \& Michelotti, 1864)
Cladocora debilis Milne Edwards \& Haime, 1849
Astrangia danae Milne Edwards \& Haime, 1849
Astrangia vathbuni Vaughan, 1906
Astrangia solitaria (Lesueur, 1817)
Phyllangia americana Milne Edwards \& Haime, 1849
Colangia immersa Pourtalès, 1871
Oculina tenella Pourtalès, 1871
Caryophyllia horologium Cairns, 1977
Rhizosmilia maculata (Pourtalès, 1874)
"Coenocyathus" goreaui Wells, 1972
Pourtalosmilia conferta Cairns, 1978
Trochocyathus halianthus Lindström, 1877
Polycyathus senegalensis Chevalier, 1966
Sphenotrochus auritus Pourtalès, 1874
Gardineria simplex (Pourtalès, 1868)
Balanophyllia floridana Pourtalès, 1868
Balanophyllia goesi (Lindström, 1877)
Balanophyllia caribbeana Cairns, 1977
Balanophyllia grandis Cairns, 1977
Balanophyllia dineta Cairns, 1977
"Rhizopsammia" bermudensis Wells, 1972
Tubastraea coccinea Lesson, 1831
}
( \(18 \%\) ) and amphi-Atlantic ( \(6 \%\) ) components. Astrangia is Atlantoeast Pacific.

For the sake of comparison, the western Atlantic hermatypic corals were similarly analyzed (Table 5). This analysis reveals a very high specific ( \(87 \%\) ) and generic ( \(58 \%\) ) endemism and a small amphi-Atlantic component ( \(13 \%\) of the species).

In summary, all three western Atlantic Scleractinian faunas (ahermatypic, \(200+\mathrm{m}\); ahermatypic, 0-200 m; hermatypic, 0-90 m ), are highly endemic with small cosmopolitan and amphi-Atlantic components. However, there is a definite trend toward increase in endemism and decrease in cosmopolitan and amphi-Atlantic components of both species and genera when the faunas are ordered from greater to lesser depths, testifying to the greater effectiveness of the Atlantic Ocean as a barrier to dispersal of shallow-water species.

\section*{Bathymetry of the Tropical Western Atlantic Caribbean Ahermatypes}

In the Caribbean and adjacent waters the greatest number of ahermatypic species are found at depths of approximately 300 m ; 59 species have bathymetric ranges that include 300 m . Thirty-five species have ranges extending to both 50 and 100 m , and 51 species occur at 200 m . (Twenty-two and 10 species occurring at 50 and 100 m , respectively, belong to the shallow-water ahermatypic fauna.) Deeper than 300 m , species diversity gradually decreases: 53 occur at \(500 \mathrm{~m}, 22\) at 1000 m , and 10 at 1500 m . Twelve species have ranges extending deeper than 1500 m . Two species, Fungiacyathus marenzelleri and Leptopenus discus, occur only at lower slope and upper abyssal depths. In summary, the greatest species diversity of ahermatypes is found on the upper slope, particularly between 200500 m .

Table 5
Faunal Affinities of the Tropical Western Atlantic Scleractinia
\begin{tabular}{l|cccccc}
\hline & \multicolumn{2}{c}{ Tropical } \\
western Atlantic \\
Ahermatypes \\
\((200+\mathrm{m})\)
\end{tabular}\(\left.\quad \begin{array}{c}\text { Tropical } \\
\text { western Atlantic } \\
\text { Ahermatypes } \\
(0-200 \mathrm{~m})\end{array} \quad \begin{array}{c}\text { Western Atlantic } \\
\text { Hermatypes }\end{array}\right]\)

\footnotetext{
\({ }^{1}\) ) Cyathoceras sp. cf. C. cornu, known from western Atlantic and western Pacific, not included.
\({ }^{2}\) ) Flabellum ? montereyense Durham, 1947 considered as Polymyces; Ceratotrochus franciscana Durham \& Barnard, 1952 as Oxysmilia; Thecopsammia pourtalesi Durham \& Barnard, 1952 as Endopsammia; and Kionotrochus ? avis Durham \& Barnard, 1952 as Cyathoceras.
\({ }^{\text {8 }}\) ) Anthemiphyllia, Trematotrochus, and Gardineria known from western Atlantic and western Pacific; Placotrochides and Labyrinthocyathus from both sides of the Atlantic and western Pacific; Cyathoceras from both sides of the Pacific and western Atlantic; Tethocyathus not considered.
\({ }^{4}\) ) Oculina and Gardineria known from western Atlantic and western Pacific.
\({ }^{5}\) ) Oculina known from western Atlantic and western Pacific.
}

\section*{Distributional Maps}

All records, both from the literature and new, are plotted on 60 distributional maps; however, sometimes only a part of the distribution of a species is shown. Records north of Cape Hatteras and south of Surinam, or in other parts of the world oceans, are recorded in the material examined or distribution sections of the individual species accounts. Because of the geographic proximity of many of the stations, one dot may symbolize more than one station.


Map 1: Distribution of Madracis myriaster.


Map 2: Distribution of Fungiacyathus pusillus (triangles) and F. symmetricus (circles).


Map 3: Distribution of Fungiacyathus crispus (circles) and F. marenzelleri (triangles).


Map 4: Distribution of Leptopenus discus (triangle) and Madrepora oculata (circles).


Map 5: Distribution of Madrepora carolina.


Map 6: Distribution of Anthemiphyllia patera (triangles) and Caryophyllia polygona (circles).


Map 7: Distribution of Caryophyllia berteriana.


Map 8: Distribution of Caryophyllia cornuformis.


Map 9: Distribution of Caryophyllia antillarum (circles) and C. paucipalata (triangles).


Map 10: Distribution of Caryophyllia ambrosia caribbeana.


Map 11: Distribution of Caryophyllia barbadensis (triangle) and C. corrugata (circles).


Map 12: Distribution of Caryophyllia parvula.


Map 13: Distribution of Caryophyllia zopyros (triangles) and Concentrotheca laevigata (circles).


Map 14: Distribution of Cyathoceras sp. cf. C. cornu (triangle) and Cyathoceras squiresi (circles).


Map 15: Distribution of Labyrinthocyathus langi (circles) and L. facetus (triangles).


Map 16: Distribution of Oxysmilia rotundifolia.


Map 17: Distribution of Trochocyathus rawsonii (circles) and T. fossulus (triangles).


Map 18: Distribution of Trochocyathus fasciatus (triangle) and Tethocyathus cylindraceus (circles).


Map 19: Distribution of Tethocyathus recurvatus (triangles) and T. variabilis (circles).


Map 20: Distribution of Paracyathus pulchellus.


Map 21 : Distribution of Deltocyathus agassizii (triangles) and D. moseleyi (circles).


Map 22: Distribution of Deltocyathus calcar.


Map 23: Distribution of Deltocyalhus sp. cf. D. italicus.


Map 24: Distribution of Deltocyathus eccentricus.


Map 25: Distribution of Deltocyathus pourtalesi.


Map 26: Distribution of Siephanocyathus (S.) diadema.


Map 27: Distribution of Stephanocyathus (S.) paliferus.


Map 28: Distribution of Stephanocyathus (S). laevifundus.


Map 29: Distribution of Stephanocyathus (O.) coronatus.


Map 30: Distribution of Trematotrochus corbicula (triangles) and Peponocyathus folliculus (circles).


Map 31: Distribution of Peponocyathus stimpsonii.


Map 32: Distribution of Desmophyllum cristagalli (circles) and D. striatum (triangles).


Map 33: Distribution of Thalamophyllia riisei (circles) and T.gombergi (triangles).


Map.34: Distribution of Lophelia prolifera.


Map 35: Distribution of Anomocora fecunda.


Map 36: Distribution of Cvenosmilia arbuscula.


Map 37: Distribution of Dasmosmilia lymani.


Map 38: Distribution of Dasmosmilia variegata (triangles) and Solenosmilia variabilis (circles).


Map 39: Distribution of Asterosmilia prolitera.


Map 40: Distribution of Asterosmilia marchadi (circles) and Rhizosmilia gerdae (triangles).


Map 41: Distribution of Phacelocyathus flos.


Map 42: Distribution of Flabellum moseleyi.


Map 43: Distribution of Flabellum fragile (squares), F. pavoninum atlanticum (circles), and Placotrochides frusta (triangles).


Map 44: Distribution of Javania cailleti (circles) and J. pseudoalabastra (squares).


Map 45: Distribution of Polymyces fragilis.


Map 46: Distribution of Gardineria paradoxa.


Map 47: Distribution of Gardineria minor.


Map 48: Distribution of Guynia annulata.


Map 49: Distribution of Schizocyathus fissilis.


Map 50: Distribution of Stenocyathus vermiformis.


Map 51: Distribution of Pourtalocyathus hispidus.


Map 52: Distribution of Balanophyllia cyathoides (circles) and B. hadros (square).


Map 53: Distribution of Balanophyllia palifera (squares) and B. wellsi (circles).


Map 54: Distribution of Balanophyllia bayeri (squares) and Dendrophyllia cornucopia (circles).


Map 55: Distribution of Dendrophyllia gaditana (squares) and D. alternata (circles).


Map 56: Distribution of Enallopsammia profunda.


Map 57: Distribution of Enallopsammia rostrata (squares) and Thecopsammia socialis (circles).


Map 58: Distribution of Bathypsammia tintinnabulum.


Map 59: Distribution of Bathypsammia fallosocialis (circles) and Rhizopsammia manuelensis (squares).


Map 60: Distribution of Trochopsammia infundibulum (circles) and "Cylicia" inflata (square).

\section*{REFERENCES}

Agassiz, A. 1888. Three cruises of the . . . Steamer Blake. Bull. Mus. comp. Zool. 15 : 148-156, text-figs. 462-481.
Alcock, A. 1898. An account of the deep-sea Madreporaria collected by the royal Indian marine survey ship Investigator. Calcutta: Trustees Indian Museum, 29 pp., 3 pls.
- 1902. Report on the deep-sea Madreporaria of the Siboga-expedition. Monogr. Siboga Exped. r6a: 52 pp., 5 pls.
Allen, J. R. L. \& Wells, J. W. 1962. Holocene coral banks and subsidence in the Niger Delta. J. Geol. 70 (4) : 381-397, pls. 1-4.
Alloiteau, J. 1958. Monographie des Madréporaires fossiles de Madagascar. Ann. Gél. Madagascar 25: viii +218 pp., 38 pls., 37 text-figs.
Arango y Molina, R. 1877. Radiados de la Isla de Cuba. Pólipos Calcáreos. An. R. Acad. Cienc. Medicas, Fisicas y Naturales de la Habana 14: 272-284.

Bayer, F. M. 1961. The shallow-water Octocorallia of the West Indian region. Stud. Fauna Curaçao 12 (55) : 373 pp., 28 pls., 101 text-figs.
- [1973]. Marine Invertebrate postage stamps. République d'Haiti, set of eight colored illustrations.
Best, M. B. 1969. F́tude systématique et écologique des Madréporaires de la région de Banyuls-sur-Mer (Pyrénees-Orientales). Vie et Milieu (A) 20 (2A): 293-326, 18 figs.
- 1970. A new species of Polycyathus Duncan, 1876 from New Caledonia and a new record of Polycyathus senegalensis Chevalier, 1966 (Madreporaria). Beaufortia \(I 7\) (227): 79-84, 4 figs.
Boone, L. 1928. Coelenterata from the tropical east American seas. Scientific results of the first oeceanographic expedition of the Pawnee 1925. Bull. Bingham oceanogr. Coll. \(I\) (5): 1-8, pls. 1-3.
Bourcier, M. \& Zibrowius, H. 1973. Les "bouges rouges" déversées dans le Canyon de la Cassidaigne. Observations en soucoups plongeante SP 350 (juin 1975) et résultats de dragages. Tethys 4 (4): 811-841, 3 pls.

Bourne, G. C. 1905. Report on the solitary corals collected by Professor Herdman, at Ceylon, in 1902. Pp. 187-242, 4 pls., 5 text-figs. in W. A. Herdman, ed. Report to the government of Ceylon on the pearl oyster fisheries in the Gulf of Manaar. London, Ray Society 4 (Suppl. 29).

Briggs, J. C. 1974. Marine Zoogeography. McGraw-Hill Book Co., New York, 475 pp.
Bright, T. J. \& Tunnell, J. W. \& Pequegnat, L. H. \& Burke, T. E. \& Cashman, C. W. \& Cropper, D. A. \& Ray, J. P. \& Tresslar, R. C. \& Teerling, J. \& Wills, J. B. 1974. Biotic zonation of the West Flower Garden Bank. Pp. 3-54, 48 figs. in Bright \& Pequegnat eds. Biota of the West Flower Gayden Bank. Gulf Publ. Co., Houston.
Broderip, W. J. 1828. Description of Caryophyllia smithii n. sp. Zool. Jour. 3:485486, pl. 13, figs. 1-6.
Cairns, S. D. 1976. A revision of the deep-water ahermatypic corals (Scleractinia) of the tropical western Atlantic. Ph.D. dissertation. Univ. Miami, 244 pp., 35 pls. (Unpublished).
- 1977. Deep-water corals. Sea Front. 23 (2): 84-89, 9 figs.
- 1977a. A revision of the Recent species of Balanophyllia (Anthozoa: Scleractinia) in the western Atlantic, with descriptions of four new species. Proc. Biol. Soc. Wash. 90 (1): 132-148, 4 pls.
- 1977b. Story corals. I. Caryophylliina and Dendrophylliina (Anthozoa: Scleractinia). Mem. Hourglass Cruises 3 (4): 1-27, 2 pls.
- 1977c. A revision of the Recent species of Stephanocyathus (Anthozoa: Scleractinia) in the western Atlantic, with descriptions of two new species. Bull. mar. Sci. 27 (4): 729-739, 2 pls.
- 1978. A checklist of ahermatypic Scleractinia of the Gulf of Mexico, with the description of a new species. Gulf Res. Rep. 6 (1) : 9-15, 1 pl.
- 1978a. New genus and species of ahermatypic coral (Scleractinia) from the western Atlantic. Proc. Biol. Soc. Wash. 9 I (1): 216-221, 1 pl., 1 text-fig.
Carlgren, O. 1945. Polypdyr (Coelenterata) 3. Koraldyr. Danmarks Fauna. Kabenhavn 5I: 1-168.
Cecchini, C. 1914. Su due nuovi Turbinolidae del Mediterraneo. Mon. zool. Ital. 25 : 151-152.
- 1917. Gli Alcionari ei Madreporari racolti nel Mediterraneo dalla R. N. Washington (1881-1883). Arch. zool. Ital. 9 (2) : 123-157, pl. 13, text-figs. 1-2.
Chevalier, J. P. 1961. Recherches sur les Madréporaires et les formations récifales du Miocène de la Méditerranée occidentale. Mem. Soc. geol. Fr. (N.S.) 40 (93): 562 pp., 26 pls.
- 1966. Contributions à l'étude des Madréporaires des côtes occidentales de l'Afrique tropicale, pts. 1 and 2. Bull. I.F.A.N. (A) 28 (3A): 912-975, pls. 1-5; 28 (4A): 1356-1405, pls. 6-8.
- 1971. Les Scléractiniaires de la Mélanésie Française, 1re pt. Expédit. Fr. sur les récifs coralliens de la Nouvelle-Calédonie 5: 307 pp., 38 pls., 182 text-figs.
Dana, J. D. 1846-1849. Zoophytes. United States Exploring Expedition (1838-1842), 7: vi +740 pp., 45 text-figs., 61 pls.
Defenbaugh, R. E. 1976. A study of the benthic macroinvertebrates of the continental shelf of the northern Gulf of Mexico. Ph.D. dissertation. Texas A \& M Univ., 476 pp., including 50 pls. (Unpublished).
Dennant, J. 1899. Descriptions of new species of corals from the Australian Tertiaries. Part 1. Trans. roy. Soc. South Australia 23 (1): 112-122, pls. 2-3.
- 1906. Madreporaria from the Australian and New Zealand coasts. Trans. roy. Soc. South Australia 30: 151-165, pls. 5-6.
Dons, C. 1944. Norges korallrev. Kongl. norske Vidensk. Selsk. forh. 16: 37-82.

Duchassaing, P. 1850. Animaux radiaires des Antilles. Paris, \(33 \mathrm{pp}, 2\) pls.
- 1870. Revue des Zoophytes et des Spongiaires des Antilles. Paris, 52 pp., 2 pls.

Duchassaing, P. \& Michelotti, J. 1860. Mémoire sur les coralliaires des Antilles. Mem. Acad. Sci. Torino (2) 19 : 279-365 [reprint numbered 1-89], 10 pls.
- 1864. Supplément au mémoire sur les coralliaires des Antilles. Mem. Acad. Sci. Torino (2) 23: 97-206 [reprint numbered 1-112], 11 pls.
Duncan, P. M. 1870. On the Madreporaria dredged up in the expedition of the H.M.S. Porcupine. Proc. roy. Soc. London 18: 289-301.
- 1872. On the structure and affinities of Guynia annulata Duncan, with remarks on the persistence of Paleozoic types of Madreporaria. Phil. Trans. roy. Soc. London 162: 29-40, 1 pl.
- 1873. A description of the Madreporaria dredged up during the expedition of the H.M.S. Porcupine in 1869 and 1870. Part 1. Trans. zool. Soc. London 8 (5): 303-344, pls. 39-49.
- 1876. Notice of some deep-sea and littoral corals from the Atlantic Ocean, Caribbean, Indian, New Zealand, Persian Gulf, and Japan \&c Seas. Proc. zool. Soc. London r876: 428-442, pls. 38-41.
- 1877. On the rapidity of growth and variability of some Madreporaria on an Atlantic cable, with remarks on the rate of accumulation of foraminiferal deposits. Ann. Mag. nat. Hist. (4) 20: 361-365 (Also: Proc. roy. Soc. London 26: 133-137).
- 1878. A description of the Madreporaria dredged up during the expedition of the H.M.S. Porcupine in 1869 and 1870. Part 2. Trans. zool. Soc. London 10 (1): 235-249, pls. 43-45.
- 1882. On some Recent corals from Madeira. Proc. zool. Soc. London 1882: 213221, pl. 8.
- 1883. Remarks on an essay by Prof. G. Lindström, entitled "Contributions to the Actinology of the Atlantic Ocean", and a reply to some of his criticisms. Ann. Mag. nat. Hist. (5) 12: 361-369.
Durham, J. W. 1947. Corals from the Gulf of California and the North Pacific coast of America. Mem. Geol. Soc. Amer. 2o: 68 pp., 14 pls.
- 1949. Ontogenetic stages of some simple corals. Univ. Calif. Publ. (Geol. Sci.) 28 (6): 137-172, pls. 4-5.

Durham, J. W. \& Barnard, J. L. 1952. Stony corals of the eastern Pacific collected by the Velero III and Velero IV. Allan Hancock Pacific Exped. 16 (1) : 110 pp., 16 pls.
Eguchi, M. 1968. The Hydrocorals and Scleractinian corals of Sagami Bay collected by His Majesty the Emperor of Japan. Mazuren Co., Tokyo, xv +221 pp., 70 pls.
Ekman, S. 1953. Zoogeography of the sea. Sidgwick \& Jackson, London, xiv +417 pp., 121 figs.
Ellis, J. \& Solander, D. 1786. The natural history of many curious and uncommon Zoophytes, collected ... by the late John Ellis, systematically arranged and described by the late Daniel Solander. London, xii +208 pp., 63 pls.
Erhardt, H. 1976. La existencia del coral Stephanocyathus nobilis (Moseley, 1881) en la costa de la península Guajira. Una demostración primaria para la costa atlántica de Colombia. Mitt. Inst. Colombo-Alemán Invest. Cient. 8: 59-62, 1 pl.
Esper, E. J. C. 1788-1830. Die Pflanzenthiere. Nürnberg. 3 vol. text, 2 vol. pls.
Faustino, L. A. 1927. Recent Madreporaria of the Philippine Islands. Monogr. Philipp. Bur. Sci. 22: 310 pp., 100 pls.

Gardiner, J. S. 1904. The turbinolid corals of South Africa, with notes on their anatomy and variation. Mar. Invest. South Africa 3 (4): 93-129, pls. 1-3.
- 1913. The corals of the Scottish National Antarctic Expedition. Trans. roy. Soc. Edinburgh 49 (3): 687-689.
Gardiner, J. S. \& Waugh, P. 1938. The flabellid and turbinolid corals. John Murray Exped. Sci. Rep. 5 (7): 167-202, pls. 1-7, 6 text-figs.
- 1939. Madreporaria excluding the Flabellidae and Turbinolidae. John Murray Exped. Sci. Rep. 6 (5) : 225-242, pls. 1-2, 3 text-figs.
Goreau, T. F. \& Wells, J. W. 1967. The shallow-water Scleractinia of Jamaica: revised list of species and their vertical distribution range. Bull. mar. Sci. 17 (2) : 442-453, 3 figs.

Gourret, P. 1906. Lophohelia prolifera, Amphihelia rostrata, Amphihelia oculata. Pp. 121-122 in A. F. Marion, Etudes des Coelentérés Atlantique recueillis par la commission de dragages de l'aviso le Travailleur durant des campagnes 1880 et 188土. Exped. Sci. Travailleur et Talisman. Paris.
Gravier, C. 1915. Note préliminaire sur les Madréporaires recueillis au cours des croisières de la Princesse Alice et de l'Hirondelle II, de 1893 à 1913 inclusivement. Bull. Inst. océanogr. 304 : 22 pp., 11 figs.
- 1920. Madréporaires provenant des campagnes des yachts Princesse Alice et Hirondelle II (1893-1913). Rés. Camp. sci. Prince de Monaco 55: 123 pp., 16 pls.
Hickson, S. J. 1910. On a new octoradiate coral, Pyrophyllia inflata (new genus and species). Mem. Proc. Manchester Lit. Phil. Soc. 54 (3) 12: 1-7, 4 figs.
Hoffmeister, J. E. 1933. Report on the deep-sea corals obtained by the F.I.S. Endeavour on the coasts of New South Wales, Victoria, South Australia, and Tasmania. Biol. Res. F.I.S. Endeavour 1909-14, 6 (1): 1-16, 4 pls.
Horst, C. J. van der 1922. The Madreporaria of the Siboga Expedition. Part 3. Eupsammidae. Monogr. Siboga Exped. 16c: 99-127, pls. 7-8.
International Code of Zoological Nomenclature adopted by the XV International Congress of Zoology. International Trust for Zoological Nomenclature, London 1964: xix +176 pp .
Joubin, L. 1928. Note sur un coralliaire du genre Desmophyllum. Bull. Mus. Hist. nat. Paris 34: 212-218, 6 figs.
Jourdan, E. 1895. Zoanthaires provenant des campagnes du yacht l'Hirondelle. Rés. Camp. sci. Prince de Monaco 8: 36 pp., 2 pls.
Keller, N. B. 1975. Ahermatypic Madreporarian corals of the Caribbean Sea and the Gulf of Mexico. Trudy Inst. Okeanol. 100: 174-187, 2 pls:
- 1976. The deep-sea Madreporarian corals of the genus Fungiacyathus from the Kurile-Kamchatka, Aleutian trenches and other regions of world ocean. Trudy Inst. Okeanol. 99: 31-44, 3 pls.
Kent, W. S. 1870. Observations on the Madreporaria or "Stony Corals" taken in the late expedition on the yacht Norma off the coasts of Spain and Portugal. Ann. Mag. nat. Hist. (4) 6: 459-461.
Kikuchi, T. 1968. Fauna and flora of the sea around the Amakusa Marine Biological Laboratory. Part 7. Zoantharia, Coelenterata. Contrib. Amakusa mar. Biol. Lab. 207: 1-16, 5 pls.
Laborel, J. 1970. Les peuplements de madréporaires des côtes tropicales du Brésil. Ann. Univ. Abidjan (E) 2 (3): 261 pp., 71 figs.
- 1971. Madréporaires et Hydrocoralliaires récifaux des côtes brésiliennes. Rés. Sci.

Camp. Calypso 9, 36 (25) : 171-229, 8 pls., 6 text-figs. (Also: Ann. Inst. oceanogr., Paris 47).
Lamarck, J. B. P. A. de 1816. Histoire naturelle des animaux sans vertebres ... II. Histoire des Polypes. Paris, 568 pp.

Land, S. L. \& Lang, J. C. \& Barnes, D. J. 1977. On the stable carbon and oxygen isotopic composition of some shallow water ahermatypic scleractinian coral skeletons. Geochim. Cosmochim. Acta 4I: 169-172.
Lang, J. C. 1974. Biological zonation at the base of a reef. Am. Sci. 62 (3) : 272-281, 9 figs.
Lesueur, C. A. 1817. Observations on several species of the genus Actinia; illustrated by figures. J. Acad. Nat. Sci. Philadelphia I: 149-154, 169-189, pl. 8.
Lewis, J. B. 1960 . Sleractinia of Barbados. J. Barbados Mus. Nat. Hist. Soc. 28 (1): 11-12.
- 1965. A preliminary description of some marine benthic communities from Barbados, West Indies. Can. J. Zool. 43: 1049-1074, 5 figs.
Lindström, G. 1877. Contributions to the Actinology of the Atlantic Ocean. Kungl. svenska Vetensk. Acad. Handl. 14 (6): 1-26, 3 pls., 9 text-figs.
- 1884. A reply to the remarks of Prof. Duncan on a paper entitled "Contribution to the Actinology of the Atlantic Ocean". Ann. Mag. nat. Hist. (5) 13: 192-107.
Linnaeus, C. 1758 . Systema naturae ... I. Ed. 10, 824 pp.
- 1767. Systema naturae . . I I, 2. Ed. 12, pp. 533-1327.

Livingsion, H. D. \& Thompson, G. 1971. Trace element concentrations in some modern corals. Limnol. Oceanogr. I6 (5): 786-796.
Macintyre, I. G. 1970. New data on the occurrence of tropical reef corals on the North Carolina continental shelf. J. Elisha Mitchell sci. Soc. 86 (4): 178.
Marenzeller, E. von 1904. Steinkorallen. Wiss. Ergebn. deut. Tiefsee-Exped. Valdivia 1898-1899, 7: 261-318, pls. 14-18.
- 1904a. Stein- und Hydrokorallen. Bull. Mus. comp. Zool. 43 (2): 75-87, 3 pls.
- 1907. Uber den Septennachwuchs der Eupsamminen E.H. Expeditionen S.M. Schiff 'Pola" in das Rote Meer. Zoologische Ergebnisse 24: Denkschr. Kais. Wiss. 80: 1-12, 7 figs.
- 1907a. Tiefseekorallen. Exped. Pola in das Rote Meer. Zool. Ergebn. 25: Denkschr. Akad. Wiss. 8o: 13-25, 2 pls.
Michelotti, G. 1838. Specimen zoophytologiae diluvianae. Turin, 222 pp., 7 pls.
Milne Edwards, H. \& Haime, J. 1848. Recherches sur les polypiers. Mémoire 2. Monographie des Turbinolides. Ann. Sci. nat. Paris (3) 9: 211-344, pls. 7-10.
- 1848a. Recherches sur les polypiers. Mémoire 3. Monographie des Eupsammides. Ann. Sci. nat., Paris (3) 1o: 65-114, 1 pl.
- 1848b. Recherches sur les polypiers. Mémoire 4. Monographie des Astréides. Ann. Sci. nat., Paris (3) ro: 209-320, pls. 5-9.
- 1849. Mémoire sur les polypiers appartenant à la famille des Oculinides, au groupe intermédiaire des pseudastréides et à la famille des Fongides. Acad. Sci. Paris C. R. 29: 67-73.
- 1850. A monograph of the British fossil corals. Part r. Introduction: Corals of the Tertiary and Cretaceous formations. Paleontolographical Society, London, lxxxv +71 pp., 11 pls.
- 1850a. Recherches sur les polypiers. Mémoire 5. Monographie des Oculinides. Ann. Sci. nat., Paris (3) 13: 63-110, pls. 3-4.
- 1857-1860. Histoire naturelle des Coralliaires ou polypes proprement dits. Roret,

Paris. \(I\) (1857), viii +326 pp.; 2 (1857), 633 pp.; 3 (1860), 560 pp. ; atlas (1857), 31 pls.
Moore, D. R. \& Bullis, H. R. 1960. A deep-water coral reef in the Gulf of Mexico. Bull. mar. Sci. Io (1): 125-128, 2 figs.
Moseley, H. N. 1876. Preliminary report to Professor Wyville Thomson ... on the true corals dredged by the H.M.S. Challenger in deep water between the dates Dec. 30th, 1870, and August 31st, 1875. Proc. roy. Soc. London 24: 544-569, 1 fig.
- 1881. Report on certain Hydroid, Alcyonarian, and Madreporarian corals procured during the voyage of the H.M.S. Challenger, in the years 1873-1876. Part 3. On the deep-sea Madreporaria. Rep. sci. Res. Challenger (Zool.) 2:127208, 16 pls., 21 text-figs.
Nobre, A. 1931. Contribuiç̃̃es para o estudo dos Coelenterados de Portugal. Porto, 82 pp., 20 pls.
Packard, A. S. 1873. Occurrence of a deep-sea Floridian coral near Cape Cod. Amer. Nat. 7: 744-745.
Pallas, P. S. 1766. Elenchus Zoophytorum. Hague-Comitum, xvi \(+28+451\) pp.
Philippi, R. A. 1842. Zoologische Beobachtungen. 6. Verzeichniss der im Mittelmeer von mir beobachteten Arten Cyathina Ehrenberg. Arch. Naturgesch. 8 (1): 40-45.
Porter, J. W. 1972. Ecology and species diversity of coral reefs on opposite sides of the Isthmus of Panama. Pp. 89-116 in M. L. Jones, ed. The Panamic Biota: some observations prior to a sea-level canal. Bull. Biol. Soc. Wash. 2.
Pourtales, L. F. 1867. Contributions to the fauna of the Gulf Stream at great depths. Bull. Mus. comp. Zool. I (6): 103-120.
- 1868. Contributions to the fauna of the Gulf Stream at great depths. (second series). Bull. Mus. comp. Zool. I (7): 121-141.
- 1871. Deep-Sea corals. Illustr. Cat. Mus. comp. Zool. 4: 93 pp., 8 pls. (Mem. Mus. comp. Zool. 2).
- 1874. Zoological results of the Hassler expedition. Crinoids and Corals. Illustr. Cat. Mus. comp. Zool. 8: 33-50, pls. 6-9. (Mem. Mus. comp. Zool. 4).
- 1878. Reports on the results of dredging ... by the Blake. Corals. Bull. Mus. comp. Zool. 5 (9): 197-212, 1 pl.
- 1880. Reports on the results of dredging ... by the Blake. Report on the corals and Antipatharia. Bull. Mus. comp. Zool. 6 (4): 95-120, 3 pls.
Ralph, P. M. \& Sguires, D. F. 1962. The extant Scleractinian corals of New Zealand. Zool. Publ. Victoria Univ. Wellington 29: 1-19, 8 pls., 1 text-fig.
Rathbun, R. 1888. Catalogue of the specimens of corals belonging to the genus Madrepora, contained in the United States National Museum. Proc. U.S. Nat. Mus. 1o: 10-19.
Ridley, S. O. 1881. Account of the zoological collections made during the surevy of H.M.S. Alert in the Straits of Magellan and on the coast of Patagonia. X. Coelenterata. Proc. Zool. Soc. London, r881: 101-107, pl. 6.

Roos, P. J. 1971. The shallow-water stony corals of the Netherlands Antilles. Stud. Fauna Curafao 37 (103): 108 pp., 53 pls.
Rossi, L. 1958. Contributo allo studio della fauna di profundita vivente presso la reviera Ligure di Levante. Doriana 2 (92): 1-13, 2 figs.
- 1960. Madréporaires. Rés. sci. Camp. Faial Portugal 1957. Gab. Est. Pesc. 3: 1-13, 3 pls.
- 1961. Etudes sur le seuil Siculo-Tunisien. 6. Madréporaires. Ann. Inst. océanogr. 39: 33-48.
Roule, L. 1896. Coelentérés. Rés. sci. Camp. Caudan 2: 299-323. (Ann. Univ. Lyon 26).

Scatterday, J. W. 1974. Reefs and associated coral assemblages off Bonaire, Netherlands Antilles, and their bearing on Pleistocene and Recent reef models. Pp. 85-106 in A. M. Cameron et al., eds. Second Intern. Sympos. Coral Reefs. Great Barrier Reef Committee, Brisbane.
Sclater, W. L. 1886. On a new Madreporarian coral of the genus Stephanocyathus from the British seas, with notes on its anatomy. Proc. zool. Soc. London, 1886 : 128-136, pls. 12-14.
Seguenza, G. 1864. Disquisizioni paleontologiche intorno ai Corallarii fossili delle rocce terziarie del distretto di Messina. Mem. real. Acad. Sci. Torino (2) 21 : 399-560, 15 pls.
Semper, C. 1872. Ueber Generationswechsel bei Steinkorallen und über das M.Edwards'sche Wachstumsgesetz der Polypen. Zeitschr. wiss. Zool. 22: 235-280, pls. 16-21.
Sorauf, J. E. \& Jell, J. S. 1977. Structure and incremental growth in the ahermatypic coral Desmophyllum cristagalli from the North Atlantic. Paleontology 20 (1): 1-19, pls. 1-8.

Sornuf, J. E. \& Podoff, N. 1977. Skeletal structure in deep water ahermatypic corals. Pp. 2-11, pls. 1-4 in J. P. Chevalier, ed., Proc. Second Intern. Sympos. Corals and fossil coral reefs. Paris.
Squires, D. F. 1958. Stony corals from the vicinity of Bimini, Bahamas, British West Indies. Bull. amer. Mus. nat. Hist. 115 (4) : 221-262, pls. 28-43.
- 1959. Deep sea corals collected by the Lamont Geological Observatory. 1. Atlantic corals. Amer. Mus. Novit. 1965: 1-42, 24 figs.
- 1961. Deep sea corals collected by the Lamont Geological Observatory. 2. Scotia Sea corals. Amer. Mus. Novit. 2046: 1-48, 31 figs.
- 1963. Modern tools probe deep water. Nat. Hist. \(7^{2}\) (6) : 22-29, 11 figs.
- 1964. Biological results of the Chatham Islands 1954 expedition. Part 6. Scleractinia. Bull. N. Z. Dep. sci. ind. Res. 139 (6): 1-31.
- 1964a. New stony corals (Scleractinia) from Northeastern New Zealand. Rec. Auckland Inst. Mus. 6 (1): 1-9, 2 pls.
- 1965. A new record for Leptopenus, a rare deep-water coral. Nature 207 (4999) : 878-879, 1 fig.
- 1967. The evolution of the deep-sea family Micrabaciidae. Stud. trop. Oceanogr. 5: 502-510.
- 1969. Distribution of selected groups of marine invertebrates in waters south of \(35^{\circ}\) latitude: Scleractinia. Antarctic Map Folio Series, Amer. Geog. Soc. New York II: 15-18, pl. 6.
Squires, D, F. \& Keyes, I. W. 1967. The marine fauna of New Zealand: Scleractinian corals. Bull. N. Z. Dep. sci. ind. Res. 185: 1-46, 6 pls., 7 text-figs.
Sterhens, J. 1909. Alcyonarian and Madreporarian corals of the Irish coasts. Fisheries Ireland, sci. Invest. 1907, 5: 1-28, 1 pl.
Stetson, T. R. \& Squires, D. F. \& Pratt, R. M. 1962. Coral banks occurring in deep water on the Blake Plateau. Amer. Mus. Novit. 2r14: 1-39, 15 figs.
Studer, T. 1878. Ubersicht der Steinkorallen aus der Familie der Madreporaria aporosa, Eupsammina und Turbinarina, welche auf der Reise S.M.S. Gazelle
um die Erde gesammelt wurden. Monatber. kōn. preuss. Akad. Wiss. Berlin 1877: 625-655, 4 pls.
- 1879. Neue Trochosmilia von Westafrika. Abhandl. Mitth. naturf. Ges. Bern 1 (1878) : 176.
- 1879a. Ubersicht der Anthozoa Alcyonaria, welche während der Reise S.M.S. Gazelle um die Erde gesammelt wurden. Monatber. kön. preuss. Akad. Wiss. Berlin 1878: 632-688, 5 pls.
Teichert, C. 1958. Cold- and deep-water coral banks. Bull. Amer. Assoc. Pet. Geol. 42 (5) : 1064-1082, 3 figs.
Tenison-Woods, J. E. 1878. On some Australian Tertiary corals. J. Proc. roy. Soc. New South Wales 1x: 183-195, 2 pls.
- 1879. On some Australian Tertiary fossil corals and Polyzoa. J. Proc. roy. Soc. New South Wales 12:57-61, 1 pl.
Thompson, J. A. 1931. Alcyonarians and solitary corals. Rep. sci. Res. Michael Sars North Atlantic Deep-Sea Exped. rgio, 5: 1-10, 2 pls.
Thomson, C. W. 1878. The voyage of the Challenger. Volume 2. The Atlantic. New York. 340 pp., pls. 15-42, 62 figs.
Tizard, R.N. \& Moseley, H. N. \& Buchanan, J. Y. \& Murray, J. 1885. Narrative. Report on the scientific results of the voyage of the H.M.S. Challenger during the years 1873-76. Volume \(I\), part 2: 510-1100, pls. F-O, XX-XXXV, text-figs. 179-340.
Tommasi, L. R. 1970. Nota sôbre os fundos detríticos do circalitoral inferior da plataforma continental Brasileira ao sul do Cabo Frio (RJ). Bolm. Inst. oceanogr. S. Paulo 18 (1): 55-62, 8 figs.

Utinomi, H. 1965. A revised catalogue of Scleractinian corals from the southwest coast of Sikoku in the collections of the Ehime University and the Ehime Prefectural Museum, Matuyama. Publ. Seto mar. biol. Lab. 13 (3) : 243-261.
Vaughan, T. W. 1901. The stony corals of the Porto Rican waters. Bull. U.S. Fish Comm., 1900, 20 (2): 290-320, 38 pls.
- 1906. A new species of Coenocyathus from California and the Brazilian astrangid corals. Proc. U.S. nat. Mus. 30 (1477) : 847-850, pls. 77-78.
- 1906a. Reports on the scientific results of the expedition to the eastern tropical Pacific ... by the U.S. Fish Commission Steamer Albatross from October, 1904, to March, 1905. 6. Madreporaria. Bull. Mus. comp. Zool. 50 (3): 61-72, pls. 1-10.
- 1907. Recent Madreporaria of the Hawaiian Islands and Laysan. Bull. U.S. nat. Mus. 59: 427 pp., 96 pls.
- 1919. Fossil corals from Central America, Cuba, and Porto Rico, with an account of the American Tertiary, Pleistocene, and Recent coral reefs. Bull. U.S. nat. Mus. 103: vi + 189-524 pp., pls. 68-152.
Vaughan, T. W. \& Wells, J. W. 1943. Revision of the suborders, families, and genera of the Scleractinia. Geol. Soc. Amer., Spec. Pap. 44: 363 pp., 51 pls., 39 text-figs.
Verrill, A. E. 1870. Contributions to zoology from the museum of Yale College. Number 7. Descriptions of new corals. Amer. J. Arts Sci. (2) 49: 370-375, 4 figs.
- 1878. Brief contributions to zoology from the museum of Yale College. Number 39. Notice of recent additions to the marine fauna of the eastern coast of North America, no. 2. Amer. J. Ayts Sci. (3) 16: 371-378.
- 1882. Notice of the remarkable marine fauna occupying the outer banks off the southern coast of New England, no. 5. Amer. J. Arts Sci (3) 23: 309-316.
- 1882a. Notice of the remarkable marine fauna occupying the outher banks off the southern coast of New England, no. 6. Amer. J. Arts Sci. (3) 23: 406-408.
- 1883. Reports on the results of dredging ... by the U.S. Coast Survey Steamer Blake. Report on the Anthozoa, and on some additional species dredged by the Blake in 1877-79, and by the U.S. Fish Commission Steamer Fish Hawk in 1880-82, number 21. Bull. Mus. comp. Zool. 11 (1): 1-72, 8 pls.
- 1885. Notice of the remarkable marine fauna occupying the outer banks off the southern coast of New England, no. 11. Amer. J. Arts Sci. (3) 29: 149-157.
- 1885a. Results of the explorations made by the Steamer Albatross, off the northern coast of the United States, in 1883. Ann. Rep. U.S. Comm. Fish Fisheries, 1883: 503-699, 44 pls.
- 1901. Variations and nomenclature of Bermudian, West Indian, and Brazilian coral reefs, with notes on various Indo-Pacific corals. Trans. Connecticut Acad. Arts Sci. II: 63-168, pls. 10-35.
- 1908. Some singular cases of regeneration and increase in a deep-sea coral by agamic endogenesis. Science 27: 449.
- 1908a. Distribution and variations of the deep-sea stony corals from off the coast of the United States. Science 27: 494.
Wagenafr Hummelinck, P. 1953. Description of new localities. Stud. Fauna Curacao 4 (17): 1-108, 8 pls., 26 figs.
- 1977. Marine localities. Stud. Fauna Curafao 5 (167): 1-68, 55 pls., 14 figs.

Weisbord, N. E. 1968. Some late Cenozoic stony corals from northern Venezuela. Bull. amer. Paleont. 55 (246): 281 pp., 12 pls.
Wells, J. W. 1933. Corals of the Cretaceous of the Atlantic and Gulf coastal plain and western interior of the United States. Bull. amer. Paleont. 18 (67): 85-288, pls. 1-16.
- 1936. The nomeclature and type species of some genera of Recent and fossil corals. Amer. J. Arts Sci. (5) 3r: 97-134.
- 1937. Coral studies. Part 1. Two new species of fossil corals. Bull. amer. Paleont. 23 (79): 237-241, 1 pl.
- 1947. Coral studies. Part 3. Three new Cretaceous corals from Texas and Alabama. Bull. amer. Paleont. 3 (123) : 165-168, pl. 10.
- 1947a. Coral studies. Part 5. A new Coenocyathus from Florida. Bull. amer. Paleont. 3 (123): 170-171, pl. 11.
- 1956. Scleractinia. Pp. 328-444, figs. 222-339 in R. C. Moore, ed. Treatise on Invertebrate Paleontology, Part F, Coelenterata. Lawrence, Kansas.
- 1958. Scleractinian corals. Rep. B.A.N.Z. Antarctic Res. Exped. 1929-193I, (B) 6 (11): 257-275, 2 pls.
- 1964. Ahermatypic corals from Queensland. Univ. Queensland Pap. Dep. Zool. 2 (6): 107-121, 3 pls.
- 1972. Some shallow-water ahermatypic corals from Bermuda. Postilla 156: 10 pp., 3 pls.
- 1973. New and old Scleractinian corals from Jamaica. Bull. mar. Sci. 23 (1): 16-55, 36 figs.
- 1973a. Guynia annulata (Scleractinia) in Jamaica. Bull. mar. Sci. 23 (1): 59-63, 3 figs.
- 1976. Eocene corals from Eua, Tonga. Geol. Survey prof. Pap. 640-G: 1-13, 3 pls., 2 text-figs.

Wells, J. W. \& Lang, J. C. 1973. Systematic list of Jamaican shallow-water Scleractinia. Bull. mar. Sci. 23 (1): 55-58.
Yabe, H. \& Eguchi, M. 1932. Deep-water corals from the Riukiu Limestone of Kikai-jima, Riukiu Islands. Proc. imp. Acad. Japan 8 (9): 442-445, 1 fig.
- 1937. Notes on Deltocyathus and Discocyathus from Japan. Sci. Rep. Tohoku imp. Univ. (2) Geol., 19: 127-147, pl. 20.
- 1942. Fossil and Recent simple corals from Japan. Sci. Rep. Tôoku imp. Univ. (2) Geol., 22 (2): 105-178, pls. 9-12.

Zibrowius, H. 1968. Note préliminaire sur la présence à Marseille de quatre Madréporaires peu connus: Desmophyllum fasciculatum (Risso, 1826), Guynia annulata (Duncan, 1872), Stenocyathus vermiformis (Pourtalès, 1868), et Conotrochus magnaghii (Cecchini, 1914). Bull. Soc. zool. Fr. 93 (2) : 325-330.
- 1971. Remarques sur la faune sessile des grottes sous-marines et de l'étage bathyal en Méditerranée. Rapp. Comm. int. Mer Médit. 20 (3): 243-245, 1 fig.
- 1973. Révision des espèces actuelles du genre Enallopsammia Michelotti, 1871 et description de E. marenzelleri, nouvelle espèce bathyale à large distribution: Océan Indien et Atlantique Central (Madréporaires, Dendrophylliidae). Beaufortia 2 I (276): 37-54, 3 pls.
- 1974. Redescription of Sclerhelia hirtella from Saint Helena, South Atlantic, and remarks on the Indo-Pacific species erroneously referred to the same genus (Scleractinia). J. nat. Hist. 8(5) : 563-575, 3 pls.
- 1974a. Scléractiniaires des îles Saint Paul et Amsterdam (sud de l'Océan Indien). Tethys 5 (4): 747-778, 3 pls.
- 1974b. Caryophyllia sarsiae n. sp., and other Recent deep-water Caryophyllia (Scleractinia) previously referred to little-known fossil species (C. arcuata, C. cylindracea). J. mar. biol. A ssoc. U.K. 54 (4): 769-784, 3 pls.
- 1974c. Révision du genre Javania et considérations générales sur les Flabellidae (Scléractiniaires). Bull. Inst. océanogr. 7 II (1429): 1-48, 5 pls.
- 1976. Les Scléractiniaires de la Méditerranée et de l'Atlantique nord-oriental. Thèse Univ. Aix-Marseille, CNRS Archives originales 11. 515, 302 pp., 106 pls., supplement of 29 maps, 20 pp . (Unpublished).
Zibrowius, H. \& Grieshaber, A. 1977. Scléractiniaires de l'Adriatique. Tethys 4: 375-384.
Zibrowius, H. \& Saldanha, L. 1976. Scléractiniaires récoltés en plongée au Portugal et dans les archipels de Madère et les Açores. Bolm. Soc. port. Cién. nat. 16: 91-114, 25 figs.
Zibrowius, H. \& Southward, E. C. \& Day, J. H. 1975. New observations on a little-known species of Lumbrineris (Polychaeta) living on various Cnidarians, with notes on its Recent and fossil Scleractinian hosts. J. mar. biol. Assoc. U.K. 55 (1): 83-108, 4 pls., 1 text-fig.

PLATES

Figs. 1-2, 4-5. Madracis myriaster (Milne Edwards \& Haime). 1. BM 1884.6.30.56, location and depth unknown; 2. USNM 45776, P-1140, 12 cm across; 4. Syntype of Stylophora mirabilis Duchassaing \& Michelotti, MIZS type 358, St. Thomas, Virgin Islands, basal diameter \(10.7 \mathrm{~mm} ; 5\). Syntypes of Axohelia schrammii Pourtalès, MCZ 2765, off Guadeloupe, base of larger branch 5.2 mm in diameter.
Figs. 3, 6. Fungiacyathus crispus (Pourtalès). Lectotype of D. crispa, MCZ 5618, 8.7 mm long.

Figs. 7-8. Fungiacyathus symmetricus (Pourtalès). USNM 45825, P-861, cd \(=10.6\) mm , stereo pair.


\section*{PLATE II}

Fig. 1. Fungiacyathus symmetricus (Pourtalès). USNM 45827, P-943, cd \(=6.8 \mathrm{~mm}\), SEM of base.
Figs. 2-3, 5. Fungiacyathus pusillus (Pourtalès). 2-3. USNM 45833, P-587, cd \(=\) 11.2 mm , stereo pair; 5. Syntype of Diaseris pusilla Pourtalès, MCZ 5596, one septum.
Figs. 4, 7. Fungiacyathus crispus (Pourtalès). 4. Paralectotype, MCZ 5593, "Boschma 5', cd \(=5.4 \mathrm{~mm}\); 7. Paralectotype, MCZ 5618, 5.5 mm long.
Figs. 6, 8-9. Fungiacyathus marenzelleri (Vaughan). 6. USNM 45839, P-1429, cd \(=\) \(17.4 \mathrm{~mm} ; 8\)-9. Same specimen, stereo pair.


Fig. 1. Fungiacyathus symmetricus (Pourtalès). USNM 45827, P-943, \(\times 54\), SEM of base at calicular edge.
Fig. 2. Madrepora oculata L. USNM 45892, P-747, \(\times 92\), SEM of an incipient \(\mathrm{S}_{3}\) flanked by an \(S_{1}\) and an \(S_{2}\).
Figs. 3, 8. Fungiacyathus marenzelleri (Vaughan). 3. Holotype, USNM (no number), Alb-4721, cd \(=23.5 \mathrm{~mm}\); 8. USNM (no number), Alb-4397, cd \(=26.0 \mathrm{~mm}\).
Figs. 4-7. Leptopenus discus Moseley. 4-5. Syntype, BM 1880.11.25.159, Chall-147, \(\mathrm{cd}=18.9 \mathrm{~mm}\), stereo pair; 6. Syntype, BM (number unknown), Chall-323, original \(\mathrm{cd}=28.0 \mathrm{~mm}\), calicular view; 7. Same specimen, base.


Figs. 1-4. Madrepora carolina (Pourtalès). 1. USNM 45909, G-692, 36 cm tall; 2. Syntype of Lophohelia exigua Pourtalès, MCZ 2778; 3. USNM 45908, G-691, base 25 mm in diameter; 4. Holotype of Lophohelia carolina Pourtalès, MCZ 2764, 17.7 cm long.
Fig. 5. Madrepora oculata L. USNM 45901, GS(G)-13, 65 mm across.
\(\square\)


\section*{PLATE V}

Figs. 1-3. Madrepora oculata L. 1. USNM 45892, P-747, cd \(=2.6 \mathrm{~mm}, \mathrm{SEM} ; 2\). USNM 45878, G-936, cd \(=3.6 \mathrm{~mm}\), SEM; 3. Syntype of Lophohelia candida Moseley, BM 1880.11.25.95, Chall-23, basal diameter 5.6 mm .
Fig. 4. Caryophyllia ambrosia caribbeana n. subsp. Holotype, USNM 45972, P-388 \(\mathrm{cd}=33.8 \mathrm{~mm}\).
Figs. 5-7. Anthemiphyllia patera Pourtalès. 5. USNM 45916, P-861, cd \(=12.9 \mathrm{~mm}\); 6-7. Same specimen, stereo pair.
Figs. 8-10. Caryophyllia antillarum Pourtalès. 8. MCZ 5477i, BL-157, 12 mm tall; 9-10. Same specimen, cd \(=8.6 \mathrm{~mm}\), stereo pair.


8


Figs. 1-3, 9. Caryophyllia ambrosia caribbeana n. subsp. USNM 45981, P-741, cd \(=\) 35.1 mm ; 2-3. Holotype, USNM 45972, P-388, cd \(=33.8 \mathrm{~mm}\), stereo pair; 9. UMML 8: 349, P-682, close-up of costal granulation.
Figs. 4-8. Caryophyllia berteriana Duchassaing. 4, 7. Syntype of Cormosa Pourtalès, MCZ 2756, Corwin station, \(\mathrm{cd}=13.8 \times 12.5 \mathrm{~mm}, 24.4 \mathrm{~mm}\) tall; 5-6. USNM 45998, P-209, cd \(=16.3 \mathrm{~mm}\), stereo pair; 8. USNM 45995, G-1329, cd \(=17.2 \mathrm{~mm}\).


\section*{PLATE VII}

Fig. 1. Caryophyllia berteriana Duchassaing. USNM 45995, G-1329, pedicel diameter 6.4 mm .
Figs. 2-5. Caryophyllia cornuformis Pourtalès. 2. USNM 46030, G-299, 15 mm tall; 3. Lindström's (1877) C. pourtalesi, NKM (\# 101), cd \(=5.5 \mathrm{~mm}\); 4. USNM 46029, G-289, cd \(=7.5 \mathrm{~mm}\); 5. Syntype of C. pourtalesi Duncan, BM 1883. 12.10.22, cd \(=\) 6.8 mm .

Figs. 6-9. Caryophyllia polygona Pourtalès. 6, 9. Syntype, MCZ 5476, BL-41, cd = \(14.1 \times 12.2 \mathrm{~mm}, 20.6 \mathrm{~mm}\) tall; 7-8. USNM 46050, P-634, \(\mathrm{cd}=8.8 \mathrm{~mm}, 27.2 \mathrm{~mm}\) tall.


\section*{PLATE VIII}

Figs. 1-6. Caryophyllia paucipalata Moseley. 1. Lectotype, BM 1880.11.25.34, Chall24, 17.4 mm tall; 2-3. Same specimen, stereo pair; 4. MCZ 5477f, BL-266, 13.9 mm tall; 5-6. BM 1938.3.1.83-91, Rosaura-34, 12.6 mm tall, \(\mathrm{cd}=11.2 \mathrm{~mm}\).
Figs. 7-9. Caryophyllia barbadensis n. sp. 7. Holotype, MCZ 5432, Hassler station off Barbados, 12.9 mm tall; 8-9. Same specimen, \(\mathrm{cd}=6.0 \times 5.5 \mathrm{~mm}\), stereo pair.


\section*{PLATE IX}

Fig. 1. Caryophyllia barbadensis n. sp. Paratype, MCZ 5477, Hassler station off Barbados, \(\mathrm{cd}=5.1 \mathrm{~mm}\).
Figs. 2-5. Caryophyllia corrugata n. sp. 2-3. Holotype, MCZ (no number), BL-69, \(\mathrm{cd}=9.0 \times 7.8 \mathrm{~mm}\), stereo pair; 4. Paratype, USNM 46859, P-991, \(\mathrm{cd}=9.8 \times\) 8.6 mm ; 5. Paratype, USNM 46860, SB-3494, cd \(=6.7 \times 5.8 \mathrm{~mm}\).

Figs. 6-8. Caryophyllia parvula n. sp. 6, 8. Holotype, USNM 46865, P-1140, cd \(=\) \(6.1 \times 5.0 \mathrm{~mm}, 5.8 \mathrm{~mm}\) tall; 7. Paratype, MCZ (no number), BL-139, cd \(=4.9 \times\) 4.7 mm .


Figs. 1-4. Caryophyllia zopyros n. sp. 1-2. Holotype, MCZ 5577, BL-273, cd \(=10.4\) mm; 3-4. Same specimen, stereo pair.
Figs. 5-6. Caryophyllia parvula n. sp. Holotype, USNM 46865, P-1140, cd \(=6.1 \times\) 5.0 mm .

Figs. 7-9. Oxysmilia rotundifolia (Milne Edwards \& Haime). 7. USNM 46057, G-725, \(\mathbf{c d}=30.3 \mathrm{~mm} ; 8-9\). ?Type, MNHNP, \(\mathbf{c d}=23.1 \times 19.7 \mathrm{~mm} ; 38.0 \mathrm{~mm}\) tall.


\section*{PLATE XI}

Figs. 1-4. Oxysmilia rotundifolia (Milne Edwards \& Haime). 1. BM 1921.11.23.2, off Barbados, 121 m, close-up of columella; 2-3. Holotype of Desmophyllum incertum Duchassaing \& Michelotti, MIZS 318, off Guadeloupe, cd \(=24.1 \times 20.0 \mathrm{~mm}\), stereo pair; 4. Holotype of Parasmilia ? punctata Lindström, NRM 114, off Anguilla, \(\mathrm{cd}=8.2 \times 7.2 \mathrm{~mm}\).
Figs. 5-9. Cyathoceras squiresi n. sp. 5. Holotype, USNM 46874, CI-246, 14.5 mm tall; 6. Paratype, USNM 46882, G-44, 12.7 mm tall; 7-8. Holotype, \(\mathrm{cd}=10.7 \mathrm{~mm}\), stereo pair; 9. Paratype, USNM 46882, G-44, cd \(=9.6 \mathrm{~mm}\).
Figs. 10-11. Labyrinthocyathus sp. BM (no number), \(30^{\circ} 47^{\prime} \mathrm{S}, 30^{\circ} 40^{\prime} \mathrm{E}, 457 \mathrm{~m}, \mathrm{~cd}=\) \(9.7 \times 9.3 \mathrm{~mm}\).


\section*{PLATE XII}

Figs. 1, 3. Cyathoceras cornu Moseley. Lectotype, BM 1880.11.25.59, Chall-320, \(\mathrm{cd}=11.2 \mathrm{~mm}, 22.7 \mathrm{~mm}\) tall.
Figs. 2, 4. Cyathoceras sp. cf. C. cornu. 2. USNM (no number), G-889, \(\mathrm{cd}=8.1 \times\) 7.3 mm ; 4. USNM (no number), G-893, \(\mathrm{cd}=7.5 \times 6.7 \mathrm{~mm}\).

Fig. 5. Crispatotrochus inornatus T.-Woods. Holotype, Macleay Museum, Sydney, \(\mathrm{cd}=8.8 \times 7.0 \mathrm{~mm}\).
Figs. 6-9. Labyrinthocyathus facetus n. sp. 6. Paratype, USNM 46880, O-11722, \(\mathrm{cd}=8.1 \times 7.7 \mathrm{~mm} ; 7\). Holotype, USNM 46879, GS(G)-16, 21.1 mm tall; 8-9. Same specimen, \(\mathrm{cd}=10.2 \times 10.0 \mathrm{~mm}\), stereo pair.


\section*{PLATE XIII}

Figs. 1-4. Labyrinthocyathus langi n. sp. 1. Holotype, USNM 46871, E-26017, 14.6 mm tall; 2-3. Same specimen, \(\mathrm{cd}=12.0 \mathrm{~mm}\), stereo pair; 4. Paratype, MCZ (no number), Atl-3341, cd of larger calice \(9.0 \times 7.8 \mathrm{~mm}\).
Figs. 5-7. Trochocyathus rawsonii Pourtalès. 5, 7. USNM 46083, G-1036, cd \(=25.3\) \(\times 22.5 \mathrm{~mm} ; 6\). Syntype of \(T\). rawsonii, MCZ 2762, Hassler station off Barbados, \(\mathrm{cd}=10.9 \mathrm{~mm}\).
Figs. 8-11. Tethocyathus cylindraceus (Pourtalès). 8. USNM (no number), off Sand Key, Florida, \(220 \mathrm{~m}, 7.0 \mathrm{~mm}\) tall; 9. USNM 46070, G-708, \(\mathrm{cd}=7.6 \mathrm{~mm}\); \(10-11\). Syntype, MCZ 2763, cd \(=9.4 \mathrm{~mm}\), stereo pair.


\section*{PLATE XIV}

Figs. 1-6. Trochocyathus vawsonii Pourtalès. 1. Syntype of Paracyathus laxus Pourtalès, MCZ 5482, BL-214, 28.0 mm tall; \(2-3\). Same specimen, \(\mathrm{cd}=18.5 \mathrm{~mm}\), stereo pair; 4. Syntype of T. rawsonii, MCZ 5627, off west coast of Florida, cd \(=13.9 \mathrm{~mm}\); 5-6. Holotype of Mantlivaultia poculum Pourtalès, \(\mathrm{MCZ} 2759, \mathrm{~cd}=22.0 \mathrm{~mm}\), stereo pair.
Figs. 7-9. Tethocyathus recurvatus (Pourtalès). 7-8. USNM 46102, G-688, cd \(=7.2\) mm , stereo pair; 9. Same specimen.
Fig. 10. Trochocyathus fasciatus n. sp. Holotype, USNM 16116, Alb-2354, 16.1 mm tall.


\section*{PLATE XV}

Figs. 1-3. Trochocyathus fasciatus n. sp. 1. Paratype, USNM 46913, Alb-2354, \(\mathrm{cd}=7.7 \times 5.8 \mathrm{~mm} ; 2-3\). Holotype, USNM 16116, Alb-2354, cd \(=7.3 \times 6.2 \mathrm{~mm}\), stereo pair.
Figs. 4-6, 11. Trochocyathus fossulus n. sp. 4. Paratype, USNM 46882, CI-6, cd \(=\) \(11.0 \times 10.4 \mathrm{~mm} ; 5-6,11\). Holotype, USNM \(46881, \mathrm{P}-991, \mathrm{~cd}=10.2 \times 9.7 \mathrm{~mm}\), 16.8 mm tall.

Figs. 7-10. Tethocyathus variabilis n. sp. 7. Paratype, USNM 46981, P-861, cd \(=\) 8.0 mm ; 8. Paratype, USNM 46981, P-861, cd \(=7.6 \mathrm{~mm}\); 9. Holotype, USNM 46980, P-861, cd \(=7.6 \mathrm{~mm}\), palus-like elements arranged before \(\mathrm{S}_{2}\) and \(\mathrm{S}_{3} ; 10\). Paratype, USNM 46982, P-929, cd \(=8.0 \mathrm{~mm}\).


\section*{PLATE XVI}

Figs. 1-6. Pavacyathus pulchellus (Philippi). 1-2. USNM (no number), Faial, Azores, \(\mathrm{cd}=13.3 \mathrm{~mm} ; 3-4\). USNM 46107, \(\mathrm{G}-135, \mathrm{~cd}=12.7 \mathrm{~mm} ; 5\). USNM 46059, P-707, \(\mathrm{cd}=10.0 \mathrm{~mm}\), very shallow fossa; 6 . USNM 46009, G-577, cd \(=8.0 \mathrm{~mm}\). Figs. 7-12. Concentrotheca laevigata (Pourtalès). 7, 12. USNM 46238, G-849, cd \(=\) 8.0 mm , cross-section showing polycyclic base; 8. USNM (no number), Combat station off Jacksonville, Florida, \(321 \mathrm{~m}, 10 \mathrm{~mm}\) in diameter, young specimen showing four concentric thecal rings; 9. Syntype, MCZ (no number), \(\mathrm{Bibb}-169, \mathrm{~cd}=5.8 \mathrm{~mm}\); 10. Syntype, MCZ (no number), Bibb-169, cd \(=8.1 \mathrm{~mm}\); 11. Syntype, MCZ 2772, cd \(=4.7 \mathrm{~mm}\).


Figs. 1-3. Deltocyathus sp. cf. D. italicus Michelotti. 1. USNM 46183, G-301, cd \(=\) 10.6 mm ; 2-3. Same specimen, stereo pair.

Figs. 4-6. Deltocyathus agassizii Pourtalès. 4. Syntype, MCZ (no number), Corwin-4, \(\mathrm{cd}=10.8 \mathrm{~mm} ; 5-6\). Same specimen, stereo pair.
Figs. 7-10. Deltocyathus calcar Pourtalès. 7. USNM 46261, P-874, cd \(=13.6 \mathrm{~mm}\); 8. USNM 46252, G-985, \(\mathrm{cd}=10.9 \mathrm{~mm}\), aberrant five-pointed specimen; 9. USNM 46261, P-874, cd \(=12.5 \mathrm{~mm} ; 10\). USNM \(46283, \mathrm{O}-4226, \mathrm{~cd}=9.3 \mathrm{~mm}\), specimen coated with \(\mathrm{NH}_{4} \mathrm{Cl}\).


Figs. 1-3. Deltocyathus moseleyi n. sp. 1. Holotype, USNM 46984, P-876, cd \(=11.4\) \(\mathrm{mm} ; 2-3\). Same specimen, stereo pair.
Figs. 46. Deltocyathus pourtalesi n. sp. 4. Paratype, USNM 46884, P-209, cd \(=11.0\) mm ; 5-6. Same specimen, stereo pair.
Fig. 7. Deltocyathus calcar Pourtalès, USNM 46283, O-4226, \(\mathrm{cd}=12.7 \mathrm{~mm}\).
Figs. 8-11. Deltocyathus eccentricus n. sp. 8-9. Holotype USNM 46986, P-881, cd = 14.6 mm , stereo pair; 10. USNM 46430, P-891, cd \(=10.7 \mathrm{~mm}\); 11 . USNM 46430, \(\mathrm{P}-891 \mathrm{~cd}=12.3 \mathrm{~mm}\).


\section*{PLATE XIX}

Figs. 1-6. Stephanocyathus (S.) diadema (Moseley). 1. USNM 46325, P-338, cd \(=\) 59.5 mm ; 2. USNM 46302, G-858, cd \(=44.4 \mathrm{~mm}\); 3. Holotype of Stephanotrochus (S.) discoides Moseley, BM 1880.11.25.56, Chall-120, cd \(=22.3 \mathrm{~mm}\); 45. Same specimen, stereo pair; 6. USNM 46354, CI-376, cd \(=21.2 \mathrm{~mm}\) (across widest diameter 28.2 mm ).
Figs. 7-9, 11. Stephanocyathus (S.) paliferus Cairns. 7-8, 11. Holotype, USNM 45755, \(\mathrm{G}-1017\), \(\mathrm{cd}=42.0 \mathrm{~mm}\), stereo pair, base; 9. Paratype, USNM 45757, G-694, cd= 31.7 mm .

Fig. 10. Stephanocyathus (S.) laevifundus Cairns. Holotype, USNM 45751, G-293, \(\mathrm{cd}=38.0 \mathrm{~mm}\).


\section*{PLATE XX}

Figs. 1-4. Stephanocyathus (S.) laevifundus Cairns. 1, 4. Holotype, USNM 45751, G-293, cd \(=38.0 \mathrm{~mm}\); 2-3. Same specimen, stereo pair.
Figs. 5-6, 8-9. S. (Odontocyathus) coronatus (Pourtalès). 5-6. USNM 46472, P-892, \(\mathrm{cd}=31.4 \mathrm{~mm}\), stereo pair; 8. Same specimen; 9. MCZ (no number), Atl-2992. Figs. 7, 10. ?Stephanocyathus (O.) nobilis (Moseley). USNM 36442, Alb-2756, cd \(=\) \(42.1 \times 37.5 \mathrm{~mm}\).
Fig. 11. Peponocyathus stimpsonii (Pourtalès). Lindström's (1877) Leptocyathus stimpsonii, NRM, illustrated specimen (pl. 1, fig. 8).


\section*{PLATE XXI}

Figs. 1, 3-4, 6. Trematotrochus corbicula (Pourtalès). 1, 3. USNM 46477, Atl-2987D, \(\mathrm{cd}=2 \mathrm{~mm}\), SEM; 4. Same specimen, \(\times 54\), SEM of costae; 6. Same specimen, \(\times 270\), SEM of thecal pores from inside calice.
Figs. 2, 5. Trematotrochus fenestratus (T.-Woods). 2. USNM (no number), topotypic specimen, \(\mathrm{cd}=2.5 \mathrm{~mm}\), SEM; 5. Same specimen, \(\times 54\), SEM of costae.
Figs. 7-8. Desmophyllum cristagalli Milne Edwards \& Haime. Holotype, MNHNP. Travailleur, \(\mathrm{cd}=27.2 \times 20.2 \mathrm{~mm}, 39.2 \mathrm{~mm}\) tall.


\section*{PLATE XXII}

Figs. 1-4. Peponocyathus folliculus (Pourtalès). 1-2, 4. USNM (no number), Gos1590, cd \(=2.7 \mathrm{~mm}, 2.7 \mathrm{~mm}\) tall, SEM; 3. NMC (no number), Hudson-4B, cd \(=3.0\) mm .
Figs. 5-7. Peponocyathus stimpsonii (Pourtalès). 5-6. USNM (no number), O-4226, cd \(=4.0 \mathrm{~mm}\), SEM; 7. Syntype of Leptocyathus stimpsonii Pourtalès, MCZ 5572, Bibb-201, cd \(=7.1 \mathrm{~mm}\).
Fig. 8. Desmophyllum cristagalli Milne Edwards \& Haime. USNM 46485, unknown CI station in Tongue of the Ocean, Bahamas, cd \(=43.5 \times 34.8 \mathrm{~mm}\).
Fig. 9. Desmophyllum striatum n. sp. Holotype, USNM 46886, CI-6, 8.7 mm tall.


\section*{PLATE XXIII}

Figs. 1, 4-6, 9-10. Thalamophyllia riisei (Duchassaing \& Michelotti). 1, 6. USNM 46495, Cardiff Hall, Jamaica, 39 m , \(\mathrm{cd}=9.4 \times 7.4 \mathrm{~mm}, 10.9 \mathrm{~mm}\) tall; 4. USNM (no number), Cardiff Hall, Jamaica, 36 m , \(\mathrm{cd}=8.8 \mathrm{~mm}\), "solidum" form; 5, 9. Holotype of Desmophyllum simplex Verrill, YPM 3862; 10. Holotype of Desmophyllum solidum Pourtalès, MCZ 2760, Bibb-141, cd \(=7.8 \times 6.8 \mathrm{~mm}\).
Figs. 2-3. Desmophyllum striatum n. sp. Holotype, USNM 46886, CI-6, cd \(=9.7 \times\) 9.7 mm , stereo pair.

Figs. 7-8, 11. Thalamophyllia gombergi n. sp. 7-8. Holotype, USNM 46890, GS(G)-25, cd \(=7.0 \times 6.8 \mathrm{~mm}\), stereo pair; 11. Holotypic colony, 10.8 mm tall.


\section*{PLATE XXIV}

Figs. 1-5. Lophelia prolifera (Pallas). 1, 3. USNM 46013, G-170, \(\mathrm{cd}=10.5 \mathrm{~mm}\), "brachycephala" form; 2. USNM 46026, E-28028, large calice 18.0 mm in diameter; 4. USNM 46013, G-170, 53.5 mm long, "gracilis" form; 5. USNM 46009, G-177, 83.3 mm long.

Figs. 6-8. Anomocora fecunda (Pourtalès). USNM 46499, P-199, 87.3 mm long, \(\mathrm{cd}=10.0 \mathrm{~mm}\).
Figs. 9-11. Coenosmilia arbuscula Pourtalès. 9, 11. MCZ (no number), Blake station off Havana, \(443 \mathrm{~m}, \mathrm{~cd}=17 \mathrm{~mm}\); \(10 . \mathrm{MCZ}\) (no number), BL-134.


\section*{PLATE XXV}

Figs. 1-3, 8-9. Dasmosmilia lymani (Pourtalès). 1. USNM 11021, Alb-2422, 39.7 mm long, broken corallum showing dissepiments and paliform lobes; 2-3. USNM 46564, G-866, cd \(=14.3 \mathrm{~mm}\), stereo pair; 8. USNM 46561, G-19, 8.2 mm long fragment with three buds; 9. USNM 46564, G-866, 46.6 mm long.
Figs. 4-7, 10. Dasmosmilia variegata (Pourtalès). 4. Syntype of Parasmilia variegata Pourtalès, MCZ 5624, 15.9 mm tall; 5-6. MCZ 5575, BL-254, cd \(=16.4 \times 12.0 \mathrm{~mm}\), stereo pair; 7. MCZ 5575, BL-254, 22.2 mm long section; 10. MCZ 5575, BL-254, 23.4 mm long fragment showing paliform lobes.


\section*{PLATE XXVI}

Fig. 1. Dasmosmilia variegata (Pourtalès). MCZ 5575, BL-254, \(\mathrm{cd}=17.7 \times 12.8\) mm.

Figs. 2-4. Solenosmilia variabilis Duncan. 2. USNM 46574, P-891, 58.8 mm long; 3. Same lot (P-891), branch diameter 2.5 mm ; 4. MCZ (no number), BL-100.

Figs. 5-6, 8. Asterosmilia prolifera (Pourtalès). 5. USNM 46777, P-198, \(\mathrm{cd}=12.1 \times\) 11.2 mm ; 6. Same lot ( \(\mathrm{P}-198\) ), cd \(=10.6 \times 9.5 \mathrm{~mm}\); 8. Same lot ( \(\mathrm{P}-198\) ), cd \(=\) \(11.1 \times 10.2 \mathrm{~mm}\), no pali present.
Figs. 7, 9-10. Asterosmilia marchadi (Chevalier). 7, 10. USNM 46614, P-734, 19.2 mm long, \(c d=11.1 \times 10.5 \mathrm{~mm} ; 9\). USNM 46613, P-198, 25.9 mm long, crab impression on side.


Figs. 1-4. Phacelocyathus flos (Pourtalès). 1. USNM 46077, \(26^{\circ} 33^{\prime} \mathrm{N}, 78^{\circ} 34^{\prime} \mathrm{W}, 76 \mathrm{~m}\); 2. Same colony, \(c d=13.7 \times 11.3 \mathrm{~mm}\); 3. USNM 46075, P-1432, 12.3 mm tall; 4. Same colony as figs. \(1-2, \mathrm{~cd}=9.7 \times 9.2 \mathrm{~mm}\).

Figs. 5-8. Rhizosmilia gerdae Cairns. 5. Holotypic colony, USNM 46812, G-725; 6. Calice of holotypic colony, \(\mathrm{cd}=11.3 \times 10.0 \mathrm{~mm}\); 7. Calice of holotypic colony, \(c d=13.6 \times 10.6 \mathrm{~mm}\); 8. Base of paratype, USNM 46813, G-725, basal diameter 8 mm .


\section*{PLATE XXVIII}

Figs. 1-3. Flabellum moseleyi Pourtalès. USNM 46582, P-478, greater \(\mathrm{cd}=45.5 \mathrm{~mm}\). Figs. 4-7. Flabellum pavoninum atlanticum n. subsp. 4-6. Holotype of new subspecies, USNM \(46895, \mathrm{G}-179\), \(\mathrm{cd}=48.5 \times 39.8 \mathrm{~mm}, 44.7 \mathrm{~mm}\) tall; 7. Paratype. USNM 46899, G-666, 30.7 mm across costal wings.
Figs. 8-12. Javania cailleti (Duchassaing \& Michelotti). 8-9. USNM 46770, P-587, \(\mathrm{cd}=18.9 \times 17.4 \mathrm{~mm}\), stereo pair; 10. Same specimen; 11. Broken base of same specimen showing layers of stereome; 12. USNM 46753, G-679, pedicel near base 5.0 mm in diameter.


\section*{PLATE XXIX}

Figs. 1-3, 7. Flabellum fragile Cairns, 1. Holotype, USNM 45764, Hourglass station ' E ", 19.4 mm tall; 2-3. Same specimen, \(\mathrm{cd}=18.2 \times 16.6 \mathrm{~mm}\), stereo pair; 7. Paratype, USNM 45767, southeast of Alligator Reef, Florida, cd \(=20.0 \times 17.4 \mathrm{~mm}\). Figs. 4-6, 8-9. Placotrochides frusta n. sp. 4. Holotype, USNM 36451, Alb-2750, 8.0 mm tall, coated with \(\mathrm{NH}_{4} \mathrm{Cl} ; 5\). NMC (no number), Hudson-4B, greater cd \(=3.6\) \(\mathrm{mm} ; 6,8\). USNM (no number), Hudson-4B, 3.6 mm tall, \(\mathrm{cd}=4.0 \times 3.2 \mathrm{~mm}, \mathrm{SEM}\); 9. Same specimen, \(\times 27\), SEM view from inside calice.


\section*{PLATE XXX}

Figs. 1, 4. Javania cailleti (Duchassaing \& Michelotti). 1. USNM 46770, P-587. 24.5 mm tall; 4. Syntype of Desmophyllum eburneum Moseley, BM 1880.11.25.65, Chall306.

Figs. 2-3, 5-8. Polymyces fragilis (Pourtalès). 2-3. NMC (no number), off Barbados, \(137-183 \mathrm{~m}\), cd \(=15.2 \times 12.4 \mathrm{~mm}\), form tulipa; 5-6. Syntype of Rhizotrochus fragilis Pourtalès, MCZ 5451, cd \(=15.7 \times 14.2 \mathrm{~mm}\), stereo pair; 7-8. A different syntype, MCZ 5451, close-up of basal rootlets, stereo pair.
Figs. 9-10. Javania pseudoalabastra Zibrowius. USNM 46611, CI-46, cd \(=43.8 \times\) \(21.4 \mathrm{~mm}, 34.2 \mathrm{~mm}\) tall.


\section*{PLATE XXXI}

Figs. 1-3. Gardineria simplex (Pourtalès). 1. Lectotype of Colangia simplex Pourtalès, MCZ 5566, BL-22, cd \(=10.6 \times 10.4 \mathrm{~mm} ; 2-3\). Same specimen, stereo pair. Figs. 4-6, 10. Gardineria paradoxa (Pourtalès). 4. Syntype of Duncania barbadensis Pourtalès, MCZ 2757, Hassler station off Barbados, 24.6 mm tall; 5-6. Syntype of Duncania barbadensis from same lot (MCZ 2757), cd \(=10.8 \mathrm{~mm}\), stereo pair; 10. USNM 46618, Gosnold station southwest of Jamaica, 39.6 mm long.
Figs. 7-9. Gardineria minor Wells. 7. USNM 46620, G-984, 10.6 mm long; 8-9. USNM 46632, off Andros Island, Bahamas, cd \(=7.5 \mathrm{~mm}\), stereo pair.


\section*{PLATE XXXII}

Figs. 1-3. Guynia annulata Duncan. 1. USNM 46635, P-1303, 4 mm long, SEM, part of theca broken away revealing columella; 2 . Same specimen, \(\times 54\), SEM of "mural pores' on inside of calice; 3 . Same specimen, cd \(=1.5 \mathrm{~mm}\).
Figs. 4-7. Schizocyathus fissilis Pourtalès. 4. USNM (no number), Hummelinck1443 , \(\mathrm{cd}=3.2 \mathrm{~mm}\), SEM; 5 . Same lot, \(\mathrm{cd}=3.1 \mathrm{~mm}\), SEM of incipient fragmentation of the corallum, mural spots are not revealed by the SEM view; 6. Syntype, MCZ 2791, Hassler station off Barbados, 8 mm long, longitudinal lines and some mural spots visible with conventional photography; 7. Same specimen as fig. 5, \(\times 35\), SEM view from inside calice of small \(S_{2}\) flanked by incipient fracture lines. Figs. 8-10. Stenocyathus vermiformis (Pourtalès). 8. USNM 46649, P-861, cd \(=2.7\) mm ; 9. USNM 46644, G-1102, 52.5 mm long, calice on both ends; 10. USNM 46646, \(\mathrm{GS}(\mathrm{G})-13,26.9 \mathrm{~mm}\) long.


Figs. 1-2. Stenocyathus vermiformis (Pourtalès). 1. Holotype of Caryophyllia carpenteri Duncan, BM 1883.12.10.23, cd \(=2.7 \mathrm{~mm}\); 2. Holotype of Caryophyllia simplex Duncan, BM 1883.12.10.24.
Figs. 3-8. Pourtalocyathus hispidus (Pourtalès). 3. USNM (no number), Bay of Pigs, Cuba, \(183-273 \mathrm{~m}, \mathrm{~cd}=4.2 \mathrm{~mm}\), SEM; 4. USNM 46663, P-984, \(\mathrm{cd}=5.1 \mathrm{~mm}\), hispid theca; 5-6. Same specimen, stereo pair; 7. USNM (no number), SB-3494, 4.9 mm long, SEM, smooth theca; 8. USNM 46661, G-1018, \(\mathrm{cd}=3.0 \mathrm{~mm}\).
Figs. 9-10. Balanophyllia cyathoides (Pourtalès). Holotype of Dendrophyllia cyathoides Pourtalès, MCZ 2774, Corwin station, 27.1 mm tall.


Figs. 1-2. Balanophyllia cyathoides (Pourtalès). 1. Holotype, MCZ 2774, lesser \(\mathrm{cd}=9.6 \mathrm{~mm} ; 2\). USNM \(46665, \mathrm{G}-251, \mathrm{~cd}=10.9 \times 8.3 \mathrm{~mm}\).
Figs. 3-7. Balanophyllia palifera Pourtalès. 3. Paralectotype, MCZ 5438, BL-68, \(\mathbf{c d}=6.9 \times 6.0 \mathrm{~mm} ; 4\). Lectotype, MCZ 5438, BL-68, 16 mm tall; 5-6. Same specimen, \(\mathrm{cd}=6.6 \times 6.0 \mathrm{~mm}\), stereo pair; 7. USNM 16098, Alb-2152, \(\mathrm{cd}=10.2 \times 8.0\) mm.

Figs. 8-9. Balanophyllia wellsi Cairns. 8. Paratype, MCZ (no number), Atl-2980B, \(\mathrm{cd}=16.8 \times 15.0 \mathrm{~mm} ; 9\). Paratype (different specimen from same lot), \(\mathrm{cd}=17.5 \times\) 14.4 mm .


Figs. 1-3. Balanophyllia wellsi Cairns. 1. Holotype, USNM 45855, G-1312, 30.0 mm tall; 2-3. Same specimen, \(\mathrm{cd}=20.0 \times 15.2 \mathrm{~mm}\), stereo pair.
Figs. 4-6. Balanophyllia hadros n. sp. 4. Holotype, USNM 46906, O-4834, 28.5 mm tall, coated with \(\mathrm{NH}_{4} \mathrm{Cl} ; 5-6\). Paratype, USNM 46907, \(\mathrm{O}-4834, \mathrm{~cd}=26.2 \times 20.7\) mm , stereo pair.
Figs. 7-9. Balanophyllia bayeri n. sp. 7. Paratype, USNM 46910, O-4940, 25.0 mm tall, coated with \(\mathrm{NH}_{4} \mathrm{Cl}\); 8-9. Paratype, USNM 46912, P-596, \(\mathrm{cd}=12.2 \times 10.3 \mathrm{~mm}\) srereo pair.


Figs. 1-4. Dendrophyllia cornucopia Pourtalès. 1. USNM 22023, FH-7286, 11.4 cm long; 2-3. Syntype, MCZ 2752, Bibb-173, cd \(=17.4 \times 15.0 \mathrm{~mm}\), stereo pair; 4. Same specimen, 80 mm long.

Figs. 5-10. Dendrophyllia gaditana (Duncan). 5-6. USNM 10289, Alb-2354, 29.1 mm long, greater cd \(=8.8 \mathrm{~mm} ; 7,9\). Specimen from same lot, greater \(\mathrm{cd}=8.0 \mathrm{~mm}\), 18.0 mm tall, coated with \(\mathrm{NH}_{4} \mathrm{Cl}\); 8. Specimen from same lot, 36.3 mm tall; 10. Specimen from same lot, 46.2 mm long.


\section*{PLATE XXXVII}

Figs. 1, 4, 8. Dendrophyllia alternata Pourtalès. 1. Syntype, MCZ 5440, BL-209, 10.3 cm long; 4. Same specimen, branch diameter \(10.9 \times 10.3 \mathrm{~mm} ; 8\). Same specimen. Figs. 2-3, 6. Enallopsammia rostrata (Pourtalès). 2-3. USNM 46693, P-1262, calices about 3.8 mm in diameter, stereo pair; 6. SME (no number), Jean Charcot- 158, \(37^{\circ} 26^{\prime} \mathrm{N}, 25^{\circ} 52^{\prime} \mathrm{W}, 835-1000 \mathrm{~m}\), large colony with barnacle galls. Figs. 5, 7. Enallopsammia profunda (Pourtalès). 5. USNM 46591, CI-140, cd \(=4.9\) mm; 7. USNM 16155, Alb-2662-2672, branch diameter 12.0 mm .


\section*{PLATE XXXVIII}

Figs. 1-3. Bathypsammia tintinnabulum (Pourtalès). 1. Lectotype, MCZ 2768, 16.2 mm tall; 2-3. Same specimen, \(\mathrm{cd}=14.7 \times 12.5 \mathrm{~mm}\), stereo pair.
Figs. 4-6. Bathypsammia fallosocialis Squires. 4. USNM 46710, G-354, 13.5 mm tall; \(5-6\). Same specimen, \(\mathrm{cd}=14.6 \times 13.0 \mathrm{~mm}\), stereo pair.
Figs. 7-9. Thecopsammia socialis Pourtalès. 7. Syntype, MCZ 5601, 18.4 mm tall; 8 -9. Same specimen, \(\mathrm{cd}=15.5 \times 14.9 \mathrm{~mm}\), stereo pair.


\section*{PLATE XXXIX}

Fig. 1. Bathypsammia tintinnabulum (Pourtalès). USNM 46518, G-131, cd \(=14.5\) mm.

Figs. 2-6. Rhizopsammia manuelensis Chevalier. 2. USNM (no number), G-134, small colony; 3. USNM (no number), off Cat Cay, Bahamas, 366 m; 4. USNM 46719, \(\mathrm{G}-135, \mathrm{~cd}=9.1 \mathrm{~mm} ; 5\). Holotype, MNHNP, \(\mathrm{cd}=2.6 \times 3.0 \mathrm{~mm} ; 6\) USNM 46719, G-135.


\section*{PLATE!XL}

Figs. 1-3. Trochopsammia infundibulum Pourtalès. 1. USNM 46722, G-114, 11.5 mm tall; 2-3. Same specimen, \(\mathrm{cd}=10.8 \mathrm{~mm}\), stereo pair.
Figs. 4-5. Enallopsammia amphelioides (Alcock). SME (no number), Jean Charcot\(238,37^{\circ} 25^{\prime} \mathrm{N}, 25^{\circ} 45^{\prime} \mathrm{W}, 506 \mathrm{~m}, 52 \mathrm{~mm}\) long, calicular and acalicular sides of same branch (photographs by H. Zibrowius).
Figs. 6-7. "Cylicia" inflata Pourtalès. 6. Paralectotype, MCZ 5577, BL-69, cd \(=1.4\) mm ; 7. Lectotype, MCZ 5577, BL-69, 3.8 mm tall.
Figs. 8-9. Peponocyathus orientalis Duncan. USNM (no number), Alb-5312, \(21^{\circ} 30^{\prime}\) N, \(116^{\circ} 32^{\prime} \mathrm{E}, 256 \mathrm{~m}, \mathrm{~cd}=4.5 \mathrm{~mm}\), SEM.
Fig. 10. Trematotrochus corbicula (Pourtalès). USNM (no number), Atl-2987D, \(\times 60\), SEM view of porous theca from inside calice.


\section*{TAXONOMIC INDEX}

New names in capital letters; other names in valid use in italic letters.
Page number of main reference in bold face print.
Pages with explanation of plates in italics.
abyssorum, Caryophyllia 53
affinis, Lophohelia 125, 127
Agaricia cailleti 207
agassizii, Deltocyathus 91, 92, 93-101, 201, 220, 284
agassizii, Deltocyathus italicus var. 92
alabamiensis, Stenocyathus 169
alabastrum, Flabellum 147, 150, 154, 156, 206
alabastrum, Placotrochides 152
alternata, Dendrophyllia 183, 203, 237, 324
ambrosia, Caryophyllia 54, 56, 59
ambrosia, Caryophyllia ambrosia 206
americana, Phyllangia 207
Amphelia oculata 39
amphelioides, Enallopsammia 186, 187,
204, 205, 330
Amphihelia oculata 39
ramea 39
rostrata 186,187
sculpta 39
andamanicus, Deltocyathus 98
angulare, Flabellum 103, 150, 206
Anisopsammia rostrata 186
annulata, Guynia 8, 164, 202, 233, 314
Anomocora 127
fecunda 127, 131, 201, 227, 298
antarctica, Caryophyllia 206
Anthemiphyllia 44, 209
dentata 45
pacitica 45
patera 44, 200, 212, 260
anthophyllum, Monomyces 157
antillarum, Caryophyllia 47, 52, 53, 60,

63, 64, 131, 200, 214, 260
arbuscula, Coenosmilia 129, 130, 201 227, 298
Asterosmilia 138
marchadi 140, 202, 229, 302
prolifera 86, 87, 131, 138, 141, 202,
229, 302
Astrangia 7, 208
danae 207
vathbuni 207
solitaria 6, 207
atlantica, Caryophyllia 54
atlanticum, Flabellum pavoninum 149
198, 202, 231, 306
Aulocyathus 68, 69
auritus, Sphenotrochus 207
avis, Kionotrochus 209
Axhelia 27
mirabilis 26
myriaster 26, 29
Axohelia dumetosa 26, 28
mirabilis 26,28
myriaster 26
schrammii 26, 28, 29, 252
Balanophyllia 172, 175-177
bayeri 178, 202, 236, 320
caribbeana 207
cornucopia 179
cyathoides 172, 202, 235, 3I6, 318
dineta 173, 178, 207
fistula 181
floridana 174, 175, 207
gaditana 181
goesi 207
grandis 207

Hadros 176, 178, 202, 235, 320
malouinensis 206
palifera 172, 174, 202, 236, 318
praecipua 181, 182
socialis 188
wellsi 175, 177, 202, 236, \(3^{18,320}\)
barbadensis, Caryophyllia 47, 53, 54, 60, 200, 215, 266, 268
barbadensis, Duncania 160, 161, 312
barbadensis, Gardineria 160, 162
bartschi, Coenocyathus 7
Bathelia candida 125, 206
Bathyactis marenzelleri 36, 37
symmetricus 31,35
Bathycyathus elegans 134, 135
Bathypsammia 190
fallosocialis 185, 189, 191, 198, 203, 239, 326
tintinnabulum 189, 190, 192, 198, 203, 238, 326, 328
Batotrochus 112
bayeri, Balanophyllia 178, 202, 236, 320
bermudensis, Rhizopsammia 207
berteriana, Caryophyllia 6, 47, 52, 200, 213, 262, 264
Blastosmilia fecunda 128
britannica, Leptopsammia 188
brueggemanni, Madracis 7, 207
cailleti, Agaricia 207
cailleti, Desmophyllum 120, 153, 155
cailleti, Javania 153, 202, 205, 231, 306, 3 ro
calcar, Deltocyathus 91, 93, 201, 220, 284, 286
calcar, Deltocyathus italicus var. 93
californica, Lophelia 126
calveri, Caryophyllia 54
candida, Bathelia 125, 206
candida, Lophohelia 39, 41, 260
capense, Desmophyllum 206
caribbeana, Balanophyllia 207
caribbeana, Caryophyllia ambrosia 46, 51, 56, 200, 214, 260, 262
carolina, Lophohelia 39, 42, 43, 258
carolina, Madrepora 41, 42, 63, 193, 200, 212, 258
carpenteri, Caryophyllia 168-170, 316
Caryophyllia 45, 46, 53, 57, 60, 61, 63, \(65,73,144,196,206\)
abyssorum 53
ambrosia 54, 56, 59
ambrosia ambrosia 206
ambrosia Caribbeana 46,51,56,200, 214, 260, 262
antarctica 206
antillarum 47, 52, 53, 60, 63, 64, 131, 200, 214, 260
atlantica 54
barbadensis \(47,53,54,60,200,215\), 266, 268
berteriana \(6,47,52,200,213,262,264\)
calveri 54
carpenteri 168-170, 316
clavus 50, 56
communis 50
communis costata 56
cornuformis 46, 49, 200, 213, 264
corrugata 46, 61, 120, 200, 215, 268
flos 144
formosa 47-49, 262
hovologium 46, 47, 207
lamellitera 61, 120
parvula \(46,62,200,215,268,270\)
paucipalata 46, 55, 200, 214, 266
paucipaliata 56
polygona 46, 53, 200, 212, 264
pourtalesi 50, 51, 264
profunda 206
rugosa 61, 120
seguenzae 58
simplex 168-170, 316
vermiformis \(168-169\)
zOPYROS 47, 53, 63, 200, 216, 270
Ceratocyathus communis 57
elegans 105
prolifer 138, 140
variabilis 107
Ceratotrochus 70, 128
diadema 103, 105
discoides 103, 105
franciscana 209
hispidus 170-172
johnsoni 138, 140
limatulus 70
typus 171
chunii, Flabellum 150, 151
Cladocora debilis 205, 207

Cladopsammia 194
rolandi 194
clavus, Caryophyllia 50,56
coccinea, Tubastraea 205, 207
Coelocyathus 157
Coelosmilia fecunda 127, 129
Coenocyathus bartschi 7
goreaui 207
vermiformis \(168-170\)
Coenopsammia profunda 184
Coenosmilia 130
arbuscula 129, 130, 201, 227, 298
fecunda 128,130
Colangia immersa 207
simplex 162, 163, 312
communis, Caryophyllia 50
communis, Ceratocyathus 57
Concentrotheca 64
laevigata 65, 198, 200, 216, 282
conferta, Pourtalosmilia 207
confertus, Paracyathus 88, 90, 134
Conotrochus typus 171
corbicula, Trematotrochus 112, 201, 224, 292, 330
corbicula, Turbinolia 112
cornu, Cyathoceras 67, \(70,200,209,216\), 274
cornucopia, Balanophyllia 179
cornucopia, Dendrophyllia 179, 202, 236, 322
cornuformis, Caryophyllia 46, 49, 200, 213, 264
coronatus, Odontocyathus 109
coronatus, Platytrochus 109, 111
coronatus, Stephanocyathus (Odontocyathus) 109, 201, 224, 290
coronatus, Trochocyathus 109
corrugata, Caryophyllia 46, 61, 120, 200, 215, 268
costata, Caryophyllia communis 56
costatum, Desmophyllum 118
crispa, Diaseris 31, 34, 35, 252
Crispatotrochus 70
inornatus 70, 274
crispus, Fungiacyathus 34, 37, 200, 211, 252, 254
cristagalli, Desmophyllum 117, 120, 125, 185, 201, 205, 225, 292, 294
Culicia 196
cumingii, Desmophyllum 118
curvatum, Flabellum 206
Cyathina pulchella 88,90
Cyathoceras 66, 69, 70, 72, 75, 122, 209
соrnи 67, 70, 200, 209, 216, 274
incertum 74
kondoi 70
portoricensis 7, 74, 75
riisei 122
SQuiresi 68, 185, 198, 200, 216, 272
woodsi 67, 68
cyathoides, Balanophyllia 172, 202, 235, 316, 318
cyathoides, Dendrophyllia 172, 316
Cylicia inflata 196, 203, 239, 330
cylindraceus, Tethocyathus 83, 85, 201, 218, 276
cylindraceus, Thecocyathus 83, 86
danae, Astrangia 207
Dasmosmilia 132
lymani 132, 198, 199, 202, 228, 300
marchadi 140, 142
variegata 134, 202, 228, 300, 302
debilis, Cladocora 205, 207
decamera, Stenocyathus 168-170
defilippi, Paracyathus 88,90
delicatum, Desmophyllum 154-156
Deltocyathus 90-92, 94, 99, 102
agassizii 91, 92, 93-101, 201, 220, 284
andamanicus 98
calcar 91, 93, 201, 220, 284, 286
eccentricus 91, 98, 201, 221, 286
hexagonus 98
itulicus 91-94, 95, 98-100, 115, 201,
221, 284
italicus var. agassizii 92
italicus var. calcar 93
italicus var. delta 101
lens 115
moseley 91, 100, 201, 220, 286
pourtalesi 91, 92, 101, 201, 222, 286
stimpsonii 115
Dendrophyllia 179, 180, 182, 193
alternata 183, 203, 237, 324
cornucopia 179, 202, 236, 322
cyathoides 172,316
gaditana 181, 203, 205, 237, 322
praecipua 181
profunda 184, 186
ramea 180
Dendrosmilia nomlandi 125,127
dentata, Anthemiphyllia 45
Desmophyllum 117, 121, 122
cailleti 120, 153, 155
capense 206
costatum 118
cristagalli 117, 120, 125, 185, 201, 205,
225, 292, 294
cumingii 118
delicatum 154-156
eburneum 153, 155, 310
fasciculatum 122
galapagense 154-156
gasti 122
incertum 73, 75, 272
nobile 153, 155
reflexum 119
riisei 121
rusei 121
serpuliforme 118, 119
simplex 121, 123, 296
solidum 119, 121, 123, 296
striatum 120, 201, 225, 294, 296
vitreum 153, 156
diadema, Ceratotrochus 103, 105
diadema, Stephanocyathus (Stephanocya-
thus) 103, 105, 201, 222, 288
diadema, Stephanotrochus 103
Diaseris crispa \(31,34,35,252\)
pusilla 30, 31, 254
dineta, Balanophyllia 173, 178, 207
Diplohelia profunda 184
discoides, Ceratotrochus 103, 105
discoides, Stephanotrochus 103, 288
discus, Leptonemus 37
discus, Leptopenus 37, 200, 205, 208, 211, 256
distinctum, Flabellum pavoninum 150
dumetosa, Axohelia 26, 28
dumetosa, Stylophora 28
Duncania barbadensis 160, 161, 312
eburnea, Galaxea 153, 155
eburnea, Javania 154
eburneum, Desmophyllum 153, 155, 3 10
eccentricus, Dellocyathus 91, 98, 201, 221, 286
elegans, Bathycyathus 134, 135
elegans, Ceratocyathus 105
elegans, Stephanocyathus 105, 106
elongata, Trochosmilia 140, 141
Enallopsammia 184, 185, 187
amphelioides 186, 187, 204, 205, 330
marenzelleri 184
profunda 41, 69, 137, 184, 191, 198,
199, 203, 237, 324
rostrata \(186,203,238,324\)
Endopsammia 209
exigua, Lophohelia 42, 43, 122, 258
exigua, Madrepora 42, 43
facetus, Labyrinthocyathus 71, 72, 200, 217, 274
fallosocialis, Bathypsammia 185, 189, 191, 198, 203, 239, 326
fasciatus, Trochocyathus 77, 81, 201, 218, 278, 280
fasciculatum, Desmophyllum 122
fecunda, Anomocora 127, 131, 201, 227, 298
fecunda, Blastosmilia 128
fecunda, Coelosmilia 127, 129
fecunda, Coenosmilia 128, 130
fecunda, Parasmilia 127, 130
fenestratus, Trematotrochus 112, 292
fissilis, Schizocyathus 166, 202, 234, 3I4
fistula, Balanophyllia 181
Flabellum 146, 149, 150, 153
alabastrum 147, 150, 154, 156, 206
angulare 103, 150, 206
chunii 150, 151
curvatum 206
fragile 148, 150, 199, 202, 231, 308
macandrewi 150, 206
montereyense 158, 209
moseleyi 146, 202, 230, 306
pavoninum atlanticum 149, 198, 202,
231, 306
pavoninum distinctum 150
pavoninum lamellosum 150
pavoninum latum 150
pavoninum magnificum 150
pavoninum paripavoninum 151
pavoninum pavoninum 150
patagonichum 206
thouarsii 206
floridana, Balanophyllia 174, 175, 207
flos, Caryophyllia 144
flos, Paracyathus 144
flos, Phacelocyathus 144, 202, 230, 304
flos, Trochocyathus 144
folliculus, Paracyathus 113
folliculus, Peponocyathus 113, 116, 201, 224, 294
folliculus, Stephanophyllia 113
formosa, Caryophyllia 47-49, 262
formosa, Madracis 207
fossulus, Trochocyathus 77, 80, 201, 218, 280
fragile, Flabellum 148, 150, 199, 202, 231, 308
tragilis, Fungiacyathus 31, 206
fragilis, Polymyces 157, 158, 202, 232, 310
fragilis, Rhizotrochus 158, 310
franciscana, Ceratotrochus 209
frusta, Placotrochides 152, 202, 231, 308
Fungia symmetrica 31, 36
Fungiacyathus 30, 33, 36
crispus 34, 37, 200, 211, 252, 254
fragilis 31, 206
hawaiiensis 31
marenzelleri \(33,35,200,205,208,211\), 254, 256
paliferus 31
pusillus 30, 200, 210, 254
sibogae 31
stephanus 31
symmetricus 31, 35, 37, 200, 210, 252, 254, 256
gaditana, Balanophyllia 181
gaditana, Dendrophyllia 181, 203, 205, 237, 322
galapagense, Desmophyllum 154-156
galapagensis, Madrepora 41
Galaxea eburnea 153, 155
gardineri, Sphenotrochus 206
Gardineria 160, 209
barbadensis 160, 162
minor 162, 202, 233, 312
paradoxa 160, 202, 232, 312
simplex 207, 312
gasti, Desmophyllum 122
gasti, Thalamophyllia 122
gevdae, Rhizosmilia 142, 198, 202, 229. 304
goesi, Balanophyllia 207
gombergi, Thalamophyllia 123, 201, 226, 296
goreaui, Coenocyathus 207
grandis, Balanophyllia 207
Guynia 163, 164, 170
annulata 8, 164, 202, 233, 314
inflata 165
hadros, Balanophyllia 176, 178, 202, 235, 320
halianthus, Trochocyathus 207
Haplophyllia paradoxa 160, 161
hawaiiensis, Fungiacyathus 31
hexagonus, Deltocyathus 98
hispidus, Ceratotrochus 170-172
hispidus, Pourtalocyathus 171, 202, 235, 316
hotfmeisteri, Stenocyathus 169
hovologium, Caryophyllia 46, 47, 207
immersa, Colangia 207
incertum, Cyathoceras 74
incertum, Desmophyllum 73, 75, 272
inflata, Cylicia 196, 203, 239, 330
inflata, Guynia 165
infundibulum, Trochopsammia 195, 203, 239, 330
inornatus, Crispatotrochus 70, 274
italica, Turbinolia 95
italicus, Deltocyathus 91-94, 95, 98-100, 115, 201, 221, 284
Javania 153
cailleti 153, 202, 205, 231, 306, 310
eburnea 154
pseudoalabastra 156, 202, 231, 3 Io
vitrea 154
jeffreyi, Solenosmilia 136, 138
johnsoni, Ceratotrochus 138, 140
kauaiensis, Madrepora 41
kikutii, Placotrochides 153
Kionotrochus avis 209
kondoi, Cyathoceras 70
Labyrinthocyathus 70, 73, 209, 272
facetus 71, 72, 200, 217, 274
langae 70, 71, 73, 200, 217, 276
laevifundus, Stephanocyathus (Stephanocyathus) 107, 201, 223, 288, 290
laevigata, Concentrotheca 65, 198, 200, 216, 282
laevigatus, Thecocyathus 65, 86
lamellifera, Caryophyllia 61,120
lamellosum, Flabellum pavoninum 150
LaNGaE, Labyrinthocyathus 70, 71, 73, 217, 276
latum, Flabellum pavoninum 150
laxus, Paracyathus 77, 79, 278
lens, Deltocyathus 115
Leptocyathus stimpsonii 113, 115, 290
Leptonemus discus 37
Leptopenus 37
discus 37, 200, 205, 208, 211, 256
Leptopsammia britannica 188
Letepsammia 37
imatulus, Ceratotrochus 70
Lophelia 124, 126
californica 126
pertusa 125
prolifera 41, 125, 136, 137, 185
201, 205, 226298
Lophohelia 43
affinis 125,127
candida 39, 41, 260
carolina 39, 42, 43, 258
exigua \(42,43,122,258\)
prolifera \(39,42,125\)
tubulosa 125, 127
Lophosmilia 75
rotundifolia 73,75
urena 73
lymani, Dasmosmilia 132, 198, 199, 202, 228, 300
lymani, Parasmilia 132
macandrewi, Flabellum 150, 206
maculata, Rhizosmilia 7, 143, 207
Madracis 26-28
asperula 207
brueggemanni 7, 207
formosa 207
mirabilis 26, 28, 29
myriaster 26, 200, 210, 252
pharensis pharensis 207
Madrepora 39, 43
carolina 41, 42, 63, 193, 200, 212, 258
exigua 42, 43
galapagensis 41
kauaiensis 41
oculata 39, 136, 137, 185, 200, 205, 211, 256, 258, 260
pertusa 125
prolifera 125
magnificum, Flabellum pavoninum 150
malouinensis, Balanophyllia 206
manuelensis, Rhizopsammia 193, 203, 239, 328
marchadi, Asterosmilia 140, 202, 229, 302
marchadi, Dasmosmilia 140, 142
marenzelleri, Bathyactis 36,37
marenzelleri, Enallopsammia 184
marenzelleri, Fungiacyathus 33, 35, 200, 205, 208, 211, 254, 256
margaritata, Vaughanella 206
mentaldoensis, Parasmilia 70, 71
microphyllus, Thecocyathus 77, 84
minor, Gardineria 162, 202, 233, 312
mirabilis, Axhelia 26
mirabilis, Axohelia 26, 28
mirabilis, Madracis 26, 28, 29
mirabilis, Stylophora 26, 28, 29, 252
mitrata, Turbinolia 76
Monomyces 157
anthophyllum 157
tulipa 158
montereyense, Flabellum 158, 209
Montlivaultia poculum 77-79, 278
moseleyanus, Stephanocyathus 105
moseleyi, Deltocyathus 91, 100, 201, 220, 286
moseleyi, Flabellum 146, 202, 230, 306
myriaster, Axhelia 26, 29
myriaster, Axohelia 26
myriaster, Madracis 26, 200, 210, 252
nobile, Desmophyllum 153, 155
nobilis, Stephanocyathus diadema 103
nobilis, Stephanocyathus (Odontocya-
thus) 8, 105, 106, 110, 111, 204, 205, 290
nomlandi, Dendrosmilia 125-127
Notocyathus 115
orientalis 115,116
oculata, Amphelia 39
oculata, Amphihelia 39
oculata, Madrepora 39, 136, 137, 185, 200, 205, 211, 256, 258, 260
Oculina 209
patagonica 206
tenella 207
Odontocyathus 109, 110
coronatus 109
orientalis, Notocyathus 115, 116
ovientalis, Peponocyathus 115, 330
Oxysmilia 73, 75, 205, 209
rotundifolia \(6,7,73,200,217,270,272\)
pacifica, Anthemiphyllia 45
palifera, Balanophyllia 172, 174, 202, 236, 3 I8
paliferus, Fungiacyathus 31
paliferus, Stephanocyathus (Stephanocyathus) \(8,105,201,223,288\)
Paracyathus 76, 88, 144
confertus \(88,90,134\)
defilippi 88, 90
flos 144
folliculus 113
laxus 77, 79, 278
pulchellus 88, 131, 201, 219, 282
paradoxa, Gardineria 160, 202, 232, 312
paradoxa, Haplophyllia 160, 161
Parasmilia 70
fecunda 127, 130
lymani 132
mentaldoensis 70, 71
punctata \(73,75,272\)
variegata 134, 135, 300
paripavoninum, Flabellum pavoninum 150, 151
parvula, Caryophyllia 46, 62, 200, 215, 268
patagonica, Oculina 206
patagonichum, Flabellum 206
patera, Anthemiphyllia 44, 200, 212, 260
paucipalata, Caryophyllia 46, 55, 200, 214, 266
paucipaliata, Caryophyllia 56
pavoninum, Flabellum pavoninum 150
Peponocyathus 113
folliculus 113, 116, 201, 224, 294
orientalis 115, 330
stimpsonii 115, 201, 225, 290, 294
variabilis 114,115
pertusa, Lophelia 125
pertusa, Madrepora 125
Phacelocyathus 144
flos 144, 202, 230, 304
pharensis, Madracis pharensis 207
Phyllangia americana 207
Placotrochides 151, 152, 209
alabastrum 152
frusta 152, 202, 231, 308
kikutii 153
scaphula 152
Platytrochus coronatus 109, 111
plicata, Turbinolia 76
poculum, Montlivaultia 77, 79, 278
Polycyathus senegalensis 207
polygona, Caryophyllia 46, 53, 200, 212, 264
Polymyces 157, 159, 205, 209
fragilis 157, 158, 202, 232, 310
portoricensis, Cyathoceras 7, 74, 75
pourtalesi, Caryophyllia 50, 51, 264
pourtalesi, Deltocyathus 91, 92, 101, 201, 222, 286
pourtalesi, Thecopsammia 209
Pourtalocyathus 170
hispidus 171, 202, 235, 316
Pourtalosmilia conferta 207
praecipua, Balanophyllia 181, 182
praecipua, Dendrophyllia 181
profunda, Caryophyllia 206
profunda, Coenopsammia 184
profunda, Dendrophyllia 184, 186
profunda, Diplohelia 184
profunda, Enallopsammia 41, 69, 137,
184, 191, 198, 199, 203, 237, 324
profunda, Stereopsammia 184
prolifer, Ceratocyathus 138, 140
prolifera, Asterosmilia 86, 87, 131, 138, 141, 202, 229, 302
proliteva, Lophelia 41, 125, 136, 137, 185, 201, 205, 226, 298
prolifera, Lophohelia 39, 42, 125
prolifera, Madrepora 125
pseudoalabastra, Javania 156, 202, 231, 310
pulchella, Cyathina 88, 90
pulchellus, Paracyathus 88, 131, 201, 219, 282
punctata, Parasmilia 73, 75, 272
pusilla, Diaseris 30, 31, 254
pusillus, Fungiacyathus 30, 200, 210, 254
ramea, Amphihelia 39
ramea, Dendrophyllia 180
vathbuni, Astrangia 207
rawsonii, Thecocyathus 86
rawsonii, Trochocyathus 47, 77, 84, 200, 218, 276, 278
recurvatus, Tethocyathus 84, 201, 219, 278
recurvatus, Thecocyathus 84
reflexum, Desmophyllum 119
Rhizopsammia 193, 194
bermudensis 207
manuelensis 193, 203, 239, 328
Rhizosmilia 142, 144
gerdae 142, 198, 202, 229, 304
maculata 7, 143, 207
Rhizotrochus 157
fragilis 158,310
tulipa 158-160
typus 157
rhombocolumna, Trochocyathus 81
riisei, Cyathoceras 122
riisei, Desmophyllum 121
riisei, Thalamophyllia 121, 131, 201, 226, 296
rolandi, Cladopsammia 194
rostrata, Amphihelia 186, 187
rostrata, Anisopsammia 186
rostrata, Enallopsammia 186, 203, 238, 324
rostrata, Stereopsammia 186
rotundifolia, Lophosmilia 73, 75
rotundifolia, Oxysmilia 6, 7, 73, 200, 217, 270, 272
rugosa, Caryophyllia 61, 120
rusei, Desmophyllum 121
scaphula, Placotrochides 152
Schizocyathus 165, 170
fissilis 166, 202, 234, 314
schrammii, Axohelia 26, 28, 29, 252
sculpta, Amphihelia 39
seguenzae, Caryophyllia 58
senegalensis, Polycyathus 207
serpuliforme, Desmophyllum 118, 119
sibogae, Fungiacyathus 31
simplex, Caryophyllia 168-170, 316
simplex, Colangia 162, 163, 312
simplex, Desmophylluin 121, 123, 296
simplex, Gardineria 207, 312
socialis, Balanophyllia 188
socialis, Thecopsammia 188, 198, 203, 238, 326
Solenosmilia 136, 137
jeffreyi 136, 138
variabilis 136, 185, 202, 205, 228, 302
solidum, Desmophyllum 119, 121, 123, 296
solitaria, Astrangia 6, 207
Sphenotrochus auritus 207
gardineri 206
squiresi, Cyathoceras 68, 185, 198, 200. 216, 272
Stenocyathus 168, 170
alabamiensis 169
decamera 168-170
hotfmeisteri 169
vermiformis 168, 171, 202, 205, 234, 314, 316
washingtoni 168,170
Stephanocyathus 103
diadema nobilis 103
elegans 105, 106
moseleyanus 105
(Odontocyathus) coronatus 109, 201
224, 290
(Odontocyathus) nobilis 8, 105, 106,
110, 111, 204, 205, 290
(Odontocyathus) sp. 109
(Stephanocyathus) diadema 103, 105, 201, 222, 288
(Stephanocyathus) laevifundus 107,
201, 223, 288, 290
(Stephanocyathus) paliferus 8, 105, 201, 223, 288
variabilis 107
Stephanophyllia folliculus 113
Stephanotrochus diadema 103
discoides 103, 288
stephanus, Fungiacyathus 31
Stereopsammia profunda 184 rostrata 186
stimpsonii, Deltocyathus 115
stimpsonii, Leptocyathus 113, 115, 290, 294
stimpsonii, Peponocyathus 115, 201,225, 290, 294
striatum, Desmophyllum 120, 201, 225, 294
Stylophora dumetosa 28
Stylophora mirabilis 26, 28, 29, 252
symmetrica, Bathyactis 31, 35
symmetrica, Fungia 31, 36
symmetricus, Fungiacyathus 31, 35, 37, 200, 210, 252, 254, 256
tenella, Oculina 207
Tethocyathus 76, 83-87, 209
cylindraceus 83, 85, 201, 218, 276
vecurvatus \(84,201,219,278\)
VARIABILIS 86, 138, 185, 201, 219, 280
Thalamophyllia 121, 122, 124
gasti 122
GOMBERGI 123, 201, 226, 296
riisei 121, 131, 201, 226, 296
Thecocyathus 76, 86
cylindraceus 83,86
laevigatus 65,86
microphyllus 77, 84
rawsonii 86
recurvatus 84
Thecopsammia 188, 190
pourtalesi 209
socialis \(188,198,203,238,326\)
tintinnabulum 190
thouarsii, Flabellum 206
tintinnabulum, Bathypsammia 189, 190, 192, 198, 203, 238, 326, 328
tintinnabulum, Thecopsammia 190
Trematotrochus 111, 209
corbicula 112, 201, 224, 292, 330
fenestratus 112, 292
Trochocyathus 76, 81, 82, 84, 85, 144
coronatus 109
fasciatus 77, 81, 201, 218, 278, 280
flos 144
Fossulus 77, 80, 201, 218, 280
halianthes 207
rawsonii \(47,77,84,200,218,276,278\)
rhombocolumna 81
variabilis 114
virgatus 81
Trochopsammia 194
infundibulum 195, 203, 239, 330

Trochosmilia elongata 140, 141
Tubastraea coccinea 205, 207
tubulosa, Lophohelia 125, 127
tulipa, Monomyces 158
tulipa, Rhizotrochus 158-160
Turbinolia corbicula 112
italica 95
mitrata 76
plicata 76
typus, Ceratotrochus 171
typus, Conotrochus 171
typus, Rhizotrochus 157
urena, Lophosmilia 73
variabilis, Ceratocyathus 107
variabilis, Peponocyathus 114,115
variabilis, Solenosmilia 136, 185, 202, 205, 228, 302
variabilis, Stephanocyathus 107
variabilis, Tethocyathus 86, 138, 185, 201, 219, 280
variabilis, Trochocyathus 114
variegata, Dasmosmilia 134, 202, 228, 300, 302
variegata, Parasmilia 134, 135, 300
Vaughanella margaritata 206
vermiformis, Caryophyllia 168,169
vermiformis, Coenocyathus 168-170
vermiformis, Stenocyathus 168, 171, 202, 205, 234, 3I4, 316
virgatus, Trochocvathus 81
vitrea, Javania 154
vitreum, Desmophyllum 153, 156
washingtoni, Stenocyathus 168,170
wellsi, Balanophyllia 175, 177, 202, 236, 318, 320
woodsi, Cyathoceras 67,68
zOPYROS, Caryophyllia 47, 53, 63, 200, 216,270

\section*{ERRATA}

Pages 70, 71, 73 and 276: for L. langi read L. langae.
Page 182: for B. praecipua read B. praecipua.```


[^0]:    Material. - P-585 (6) USNM 45821 ; P-605 (1) USNM 45822; P-606 (1) USNM 45823; P-607 (4) USNM 45824; P-861 (27) USNM 45825; P-881 (108) USNM 45772, (1) UMML 8: 228; P-891 (1) USNM 45771; P-904 (9) USNM 45826; P-919 (3) USNM 45774; P-943 (18) USNM 45827; P-944 (1) USNM 45828; P-984 (1) USNM 45829; P-988 (2) USNM 45773; P-1261 (1) USNM 45830; 73 specimens from 30 Gerda stations in the Straits of Florida; SB-2443 (1); BL-2 (3) MCZ; BL-21 (2) MCZ; BL-57 (1) MCZ; BL-59 (1) MCZ; BL-68 (20) MCZ; BL-100 (3) MCZ; BL-128 (2) MCZ; BL-134 (3) MCZ; BL-164 (2) MCZ; BL-167 (2) MCZ; BL-210 (1) MCZ; Alb-2150 (1) USNM 7592; Alb-2342 (3) USNM 16095; Alb-2750 (22) USNM 36448;

[^1]:    Material. - BL-109 (1) USNM 46916. - Syntype of L. discus, Challenger-147 (BM 1880.11.25.159).

[^2]:    Material. - P-364 (USNM 45891); P-388 (USNM 45895); P-607 (USNM 45897); P-636 (USNM 45890); P-673 (USNM 45898); P-675 (USNM 45893); P-689 (USNM 45888, UMML 8: 307) ; P-741 (USNM 45889, UMML 8: 305) ; P-747 (USNM 45892); P-755 (UMML 8: 233); P-954 (USNM 45899); P-1187 (USNM 45894); P-1262; colonies from 19 Gerda stations in the Straits of Florida (USNM 45871-45886); CI-148 (USNM 45900 ) ; GS-31; GS (G)-13 (USNM 45901); GS (G)-39 (USNM 45902); GS (G)-40 (USNM 45904); O-534; O-4569; O-4570; O-4807; O-4913; O-5930; O-11218; O-11718; BL-2 (MCZ); BL-15 (MCZ); BL-171 (MCZ); BL-240 (MCZ, USNM) ; BL-256 (MCZ) ; BL-260 (MCZ); BL-318; Alb-2117 (USNM 7056) ; Alb-2415 (USNM 10746); Alb-2416 (USNM 10528); Alb-2663 (USNM 15950); Alb-2669 (USNM 14496) ; Alb-2672 (USNM 36523) ; Gos-1615; Gos-1748; Goos-1750; Gos-1766; E-26004; E-26017; E-26023; E-26028 (USNM 45903); E-26052 (USNM 45896); WH-90/68 (SME) ; WH-104/68 (SME) ; Akaroa 5c (SME) ; TAMU 70A10-41 (TAMU); TAMU 71A8-29 (TAMU); TAMU 65A9-4 (TAMU). - Syntypes of L.candida; Marenzeller's (1904) specimens (USNM); Squires's (1959) specimens (AMNH); Lindström's (1877) specimens (NRM).

[^3]:    Types. - The Linnaean types of M. oculata from Sicily and the Tyrrhenian Sea are lost. Six syntype branches of $L$. candida are deposited at the BM (1880.11.25.95). They were collected at Chall-23, off Sombrero Island, Lesser Antilles in 823 m . Type-Locality. - Sicily and Tyrrhenian Sea, Mediterranean.

[^4]:    Types. - Of the six syntypes designated for C. antillarum, two are C. barbadensis: the single specimen from lot 5477 (designated here as paratype) and one of four specimens from lot 5432 (designated here as holotype). Both specimens were collected at the same Hassler station off Barbados and are deposited at the MCZ. Four more specimens (paratypes) from BL-294 are also at the MCZ.
    Type-Locality. - Barbados; 183 m

[^5]:    Etymology. - The specific name corrugata (Latin, = wrinkled, ridged) refers to the distinctive thecal ornamentation. Material. - Types.

[^6]:    Types. - The lectotype (1880.11.25.59), collected at Chall-320, and the paralectotype ( 1880.11 .25 .60 ), collected at Chall-163, are both at the BM. The holotype and paratypes of $C$. woodsi are deposited at the USNM.
    Type-Locality. $-37^{\circ} 17^{\prime} \mathrm{S}, 53^{\circ} 52^{\prime} \mathrm{W}$ (off Rio de la Plata, Uruguay); 1097 m .

[^7]:    Remark. - C. squiresi is often found attached to Enallopsammia profunda and consequently is often found on deep-water coral banks, including the bank reported in the Straits of Florida (see E. profunda).
    Etymology. - This species is named in honor of Donald F. Squires, author of numerous papers on the ahermatypic corals of New Zealand and Antarctic.

    Material. - G-661 (2) ; SB-2484 (2) ; Gos-1643 (1). - Types: Squires's (1959) Aulocyathus sp. (AMNH 3347).

[^8]:    Etymology. - The generic name refers to the labyrinthine arrangement of the columellar elements. Gender: masculine.

[^9]:    Etymology. - The specific name fasciatus (Latin, =striped) refers to the darkly pigmented striped costae.

[^10]:    Types. - Two syntypes ( 5610 ), taken at a Blake station off Havana during the dredging season of 1877-78, are deposited at the MCZ. The exact station cannot be determined.
    Type-Locality. - Off Havana, Cuba; 320 m .

[^11]:    Types. - Holotype: P-209 (USNM 46883). - Paratypes: P-209 (1) USNM 46884; G-179 (8) USNM 46885, (1) UMML 8: 280; BL, 2 miles ( 3.2 km ) east of Havana, Cuba (5) USNM 19197.
    Type-Locality. $-26^{\circ} 59^{\prime} \mathrm{N}, 79^{\circ} 16^{\prime} \mathrm{W}$ (northern Straits of Florida); 330-450 m.

[^12]:    Material. - P-340 (2) USNM 46448, (2) UMML 8: 316; P-394 (1) USNM 46447; P-445 (2) USNM 46454; P-607 (1) USNM 46449; P-753 (45) USNM 46443, (7)

[^13]:    Material. - P-881 (13) USNM 46382, (3) UMML 8: 380; P-1187 (3) USNM 46383; 98 specimens from 17 Gerda stations in the Straits of Florida, USNM 46365-46381; CI-210 (3) USNM 46384 ; SB-446 (4) ; BL-214 (1) MCZ; BL-218 (2) MCZ; Alb-2656 (1) USNM 16069; Alb-2657 (2) USNM 14621; Alb-2658 (4) USNM 14553; Atl-2991A (3) MCZ; Anton Bruun-831 (3) MCZ. - Types of S. laevifundus.

[^14]:    Material. - P-105 (USNM 46020, UMML 8: 310); P-112 (USNM 46019); P-197 (USNM 46018) ; P-639 (USNM 46017, UMML 8: 309) ; P-776 (USNM 46016) ; colonies from 12 Gerda stations in the Straits of Florida (USNM 46006-46015); CI-140 (USNM 46021, UMML 8: 253); CI-246 (USNM 46023); O-2776; O-2780; O-3651; O-6690; O-11301; O-11703; O-11716; O-11725; O-11726; BL-117 (MCZ); BL-153 (MCZ) ; BL-260 (MCZ); BL-318 (MCZ); Alb-2415 (USNM 10504); Alb-2416 (USNM 17047); Alb-2625 (USNM 19164); Alb-2661 (USNM 14568); Alb-2663 (USNM 16159); Alb-2667 (USNM 14498); Alb-2669 (USNM 14462); Alb-2671 (USNM

[^15]:    Material. - P-757; P-874 (UMML 8: 340) ; P-969 (USNM 46559); P-991; P-1143 (USNM 46557) ; P-1354 (USNM 46558) ; G-251 (USNM 46553); G-688 (USNM 46554, UMML 8: 338) ; G-691 (UMML 8: 255); G-694 (USNM 46555); G-1327 (USNM 46556, UMML 8: 339) ; O-3568; O-4398; O-4832; O-4932; O-5015; O-5430; O-5648; O-10513; BL-32 (MCZ) ; BL-45 (MCZ); BL-62 (MCZ); colonies from 19 additional Blake stations throughout the Windward Group of Lesser Antilles (MCZ); Alb-2135 (USNM 7101); colonies from 13 additional Albatross stations from off Havana, Cuba (USNM); Alb-2354 (USNM 16084); Caroline-49; Caroline-102; E-30178; Explorer-4; Hummelinck-1443. - Syntypes of C. arbuscula.

    Types. - Three lots of syntypes, including one small colony (2761) and nine other corallites (5622), are deposited at the MCZ. All were collected from a Hassler station off Barbados.
    Type-Locality. - Off Barbados; 183 m

[^16]:    Remarks. - According to descriptions of eastern Atlantic specimens (Zibrowius, 1976; Chevalier, 1966), this species attains lengths of 50 mm and calicular diameters of 18 mm . Also, the eastern Atlantic specimens do not show a dichotomy in size of the $S_{1}$ and $S_{2}$.

    Zibrowius (1976: 71) was the first to report the symbiotic relationship between

[^17]:    Material. - P-405 (USNM 46076); P-1432 (USNM 46075); G-701; G-702; G-983 (USNM 46073) ; G-984 (SNM 46074); O-1890; O-1993; O-4832; SB-2460; SB-3494; Alb-2321 (USNM 16078); Alb-2326; Alb-2407 (USNM 10466); E-30158; E-30176; E-30178; Hudson-3B (NMC) ; Nekton (beta)-563 (USNM 46080); Nekton (gamma)232 (USNM 46078); Akaroa-5b (SME); $26^{\circ} 33^{\prime} \mathrm{N}, 78^{\circ} 34^{\prime} \mathrm{W}, 76 \mathrm{~m}$ (USNM 46077); Hummelinck- 1442. - Syntypes.

    Types. - One lot of syntypes (5483) is deposited at the MCZ. It contains one complete specimen broken into three parts and fragments of another. They were collected at BL-69.
    Type-Locality. - Off Havana, Cuba; 183 m.

[^18]:    Types. - The holotype of $D$. cailleti is lost; it is not present at the MIZS or the MNHNP. The type of G. eburnea is one of the few Pourtalès types that is missing (presumed lost) from the MCZ. Moseley's D. eburneum is based on five syntypes collected from Chall-306. They are deposited at the BM (1880.11.25.65). The holotype of D. nobile Verrill, 1885, is at the USNM (type number 7964). Most of the type-

[^19]:    Types. - The corallum of the holotype of $H$. paradoxa, collected at Bibb-22, is lost, but the soft parts are preserved in the alcoholic type-collection at the MCZ. There are 14 syntypes of $D$. barbadensis divided into three lots (2757, 2791, no number), also deposited at the MCZ. All were collected at a Hassler station off Barbados ( 183 m ).
    Type-Locality. $-24^{\circ} 14^{\prime} 20^{\prime \prime} \mathrm{N}, 80^{\circ} 59^{\prime} 40^{\circ} \mathrm{W}$ (Straits of Florida); 692 m .

    Distribution. - Antillean distribution; Arrowsmith Bank, Yucatan (Map 46). 91-700 m.

[^20]:    Material. - P-596 (1) USNM 46650; P-861 (3) USNM 46649; G-663 (4) USNM 46641 ; G-664 (5) USNM 46642; G-703 (1) USNM 46643; G-1102 (14) USNM 46644, (1) UMML 8: 266; GS(G)-14 (3) USNM 46645; GS(G)-13 (1) USNM 46646; GS(G)-43 (1) USNM 46647; O-4226 (44); BL-5 (2) MCZ; BL-51 (2) MCZ; BL-100 (2) MCZ; Alb-2672 (1) ; Gos-1607 (1); Gos-1650 (2) ; Gos-1653 (4) USNM 46648 ; Gos-1766 (1); Gos-1767 (1); E-26023 (1); E-26031 (1); Akaroa-5c (30) SME; Chain-15 (3); off Anna Maria Key, Florida, 366-487 m (1) USNM 46651; $21^{\circ} 48^{\prime} \mathrm{S}, 40^{\circ} 03^{\prime} \mathrm{W}, 128 \mathrm{~m}$ (4) USNM 10923. - Syntypes of Coenocyathus vermiformis; holotypes of C. simplex, C. carpenteri, and Caryophyllia vermiformis; Squires's (1959) specimen (AMNH 3441).

[^21]:    Etymology.-This genus is named in honor of L. F. Pourtaless. Gender: masculine.

[^22]:    Material. - P-861 (65) USNM 46684,r (10) UMML 8: 269; P-1171 (2) USNM 46683; G-386 (1) USNM 46678; G-663 (3) USNM 46679; G-664 (1) USNM 46680; G-1012 (3) USNM 46682; G-1029 (30) USNM 46681, (1) UMML 8: 368; GS(G)-19 (1) USNM 46685; GS(G)-23 (4) USNM 46686; SB-2427 (8); BL-100 (1) MCZ; BL

