SOME FOSSIL CORALS FROM THE ELEVATED REEFS OF CURAÇAO, ARUBE AND BONAIRE.

BY

T. WAYLAND VAUGHAN, A. M.,

INTRODUCTORY REMARKS.

While I was in Europe in the summer of 1897, it was my good fortune to meet Prof. K. MARTIN, Director of the Leyden Geological Museum, who upon hearing that I was making a special study of West Indian fossil corals, kindly offered to place at my disposal the specimens that he had collected in the Dutch West Indies. Hon. CHAS. D. WALCOTT, Director of the United States Geological Survey, has permitted me to study this material and write a report upon it.

The principal object of my journey to Europe during the last International Geological Congress was to visit and study collections bearing upon our American fossil corals. Type collections of a good many of the species discussed in this paper were examined, and it is my pleasant duty here to make acknowledgements for courtesies extended to me at several museums. Dr. WILHELM WELTNER, Custos in the Museum für Naturkunde at Berlin, was very kind to
me, and enabled me to study all of Ehrenberg's types from the West Indies. I also examined some of Klunzinger's types. Prof. Camerano at Turin, gave me every facility for studying such types of Duchassing and Michelotti as are preserved there. The assistants of Prof. Edmond Perrier permitted me to study a considerable amount of the material of Milne-Edwards and Haime in the Muséum d'Histoire Naturelle at Paris. Dr. Henry Woodward and Dr. Gregory gave me every facility for studying the fossil corals in the British Museum of Natural History; and Prof. F. Jeffrey Bell and Mr. H. M. Bernard gave me access to all of the recent corals that I desired to study in that institution. The officers of the Geological Society of London gave me all the assistance possible. I studied there most of the types of Duncan.

The whole collections of the United States National Museum and of the U. S. Geological Survey have been unrestrictedly at my disposal. Besides these collections the whole material collected by Mr. R. T. Hill, during his many years of work in the West Indies, that collected by Dr. J. W. Spencer, and the recent collections of the U. S. Fish Commission, have been submitted to me for study. Therefore, putting all together, I probably have been able to examine and study larger bulks of West Indian recent and fossil reef corals than any other one student. I am indebted to Mr. Alexander Agassiz and Mr. Sam'l Henshaw for the loan of books from the Museum of Comparative Zoology, and to Dr. W. H. Dall and Dr. Leonard Stejneger for the use of books in their private libraries. I have often consulted Dr. Dall, Dr. C. W. Richmond and Mr. G. S. Miller, Jr., concerning questions of nomenclature.

In stating the synonymy of the species discussed, the references to articles published in the transactions of so-
cies are to the page numbers of the volumes and not to the page numbers of the separates. This is true of Ehrenberg’s *Beiträge zur Kenntniss der Corallenthiere des Rothen Meeres*, in the *Abhandlungen der Kgl. Akademie der Wissenschaften zu Berlin*, the articles of Duchassaing and Michelotti, etc. In these instances the actual title of the paper is not always mentioned. It may be found in the appended bibliography.

I have credited the article in *Encyclopédie Méthodique* on Zoophytes to Lamouroux; it is usually credited to Deslongchamps.

It seems proper to call attention here to the very great difficulty in delimiting the species of compound corals, and to the extremely perplexing synonymy of many of the species; for instance *Orbicella acropora* possesses ten specific synonyms. One of the first causes of trouble is that the older zoophytologists took very little into account the possibilities, and actual facts, of the variations of species. It is especially true of compound corals, where so many features of the corallum are due to the interaction of individuals, where also the colonies are sedentary and are subjected to so many extraneous influences, character of bottom, depth and purity of water, strength and direction of currents, wave action, etc., that no two colonies or no two coralla, are exactly alike. Many species were founded on the most insignificant differences. Dana, Milne-Edwards and Haime, Duchassaing and Michelotti, Duncan and others have made too many species in this way. Some species have been erected because of insufficient material for comparison. Other species have been made because of gross ignorance and carelessness. Duncan is the greatest sinner in this manner. The best work that has been done on these corals is that of Pourtalès. Nearly all of his work is excellent.

Much of the confusion regarding the naming of the species
is due to the neglect by Milne-Edwards and Haime of the work done before them, and no one since them has taken the trouble to make a thorough study of the work of the pioneers in zoophytology-Linnaeus, Pallas, Esper, Oken, Lamarck, etc., but practically every one has accepted the dictum of the great French authors as law and gospel. They were often arbitrary in their use and manufacture of names, either through ignorance or because they considered themselves sufficient authority for making any changes in nomenclature, or any misapplication of names, pass as valid.

The following paper is a study in synonymy and to a certain degree in stratigraphic distribution. Only nineteen fossil species are identified, but it is hoped that the names of these species are fixed, and that the synonymy so far as given is correct.

This paper may be looked upon as an excerpt from a larger paper, "The Post-Eocene Corals of the United States", now in course of preparation. This larger paper will treat of all the post-Eocene species in the United States, and as the species found in Florida, etc., are often not to be separated from the West Indian species, a complete revision of the whole West Indian post-Eocene faunas will be necessary. In that paper more data on the structure of the hard parts of the corals will be given. In my "Eocene and Lower Oligocene Corals of the United States", Monograph XXXIX of the U. S. Geological Survey, the microscopic structure of several West Indian species is described as incident to the description of other species. Another paper by myself, for the United States Fish Commission, now completed, contains plates of nearly all the corals collected by the Fish Commission in Puerto Rican waters. To a certain degree it is a companion of this paper.
PAST WORK ON THE WEST INDIAN REEF CORALS.

I have appended to this paper a bibliography of the literature bearing on West Indian and northern South American stony corals and on the coral reefs of those regions. The literature on the subject is so scattered, and it has taken such a long time and so much work for me to get it together, that it has seemed to me that it might be of much use to students intending to undertake work on the subject, if the titles were brought together in a compact form. I shall esteem it a personal favor for any one to notify me of any title that may be omitted from the list of papers.

In the following notes I shall confine my remarks to the palaeontology of the reefs. Very little has been published on these fossils in spite of the enormous West Indian literature. SCHOMBURGK in his History of Barbados, p. 562, gives an imperfect list of a few species. DUCHASSAING has published a few notes (see Bibliography), and DUNCAN has mixed up, as GREGORY has pointed out, species from Miocene (or Oligocene) to Pleistocene or recent. There are other brief notes but the only really extensive paper is one by GREGORY "Contributions to the Geology and Physical Geography of the West Indies" 1).

As I was able to examine all of GREGORY's material, it may be worth while to give a somewhat critical review of his treatment of the species. His specimens came from Barbados.

Madracis decactis (Lyman). The genus should be Axhelia.

GREGORY had previously furnished JUKES BROWNE and HARRISON a list of the Barbadian elevated reef corals. This list, which, excepting some typographic errors, is in all essentials the same as the subsequent more detailed paper on the Geol. and Phys. Geog. of the West Indies, was published by them in their "Geology of Barbados" (Quart. Jour. Geol. Soc. Loud. vol. XLVII, 1891, p. 226).
Lithophyllia lacera (Pallas).
Lithophyllia cubensis (M.-Ed. & H.).

I am not sure that these two species are really distinct; however, I am sure that Antillia ponderosa Duncan (non-Milne-Edwards and Haime) is a distinct species and does not belong in the synonymy of L. cubensis. As Duncan wrongly identified the species with Milne-Edwards and Haime’s Montlivaultia ponderosa, it has no name. Therefore I propose to call it Antillia gregorii, nom. nov. Gregory makes no reference to the work of Brüggemann on „A Revision of the Recent Mussacea” 1). Brüggemann with perfect justice uses Scolymia Haime (op. cit. p. 301) for Lithophyllia Milne-Edwards and Haime. The name as first used by Haime 2) is an exact equivalent of the Caryophyllia of Milne-Edwards and Haime (non-Stokes) 3). The type of which is Madrepora lacera Pallas. The Madrepora lacera Pallas therefore is the type of Scolymia. Milne-Edwards and Haime were not justified in discarding Scolymia and proposing in its stead Lithophyllia 4). I agree with Gregory’s remarks about the relative values of epithea and septal dentations in the classification of this group of corals, but I am not prepared to combine Antillia, type A. gregorii Vaughan (= A. ponderosa Duncan 5), non-Montlivaultia ponderosa Milne-Edwards and Haime) with Scolymia Haime (type S. lacera (Pallas)), because of differences in the septal dentations and in the bases of the coralla of the two species.

Lithophyllia walli Gregory (non-Duncan).

This is not the Antillia walli of Duncan. Duncan’s species is a true Bowden fossil, and is Miocene (old usage) or

3) Comptes Rend., t. XXVII, 1848, p. 491.
5) Duncan Quart. Jour. Geol. Soc. Lond., vol. XX, 1864, p. 28, Pl. V, Fig. 5.
CURAÇAO, ARUBE AND BONAIRE.

Oligocene (later usage) in age. It belongs most probably in the genus *Circophyllia*. Mr. R. T. Hill has collected some good material in Jamaica but I have not yet completed the study of it.

- Eusmilia fastigiata (Pallas).
- Eusmilia knorri M.-Edw. & Haime.

I agree with his remarks on these two species.

- Mussa angulosa (Pallas). Correct.
- Dendrogyra cylindrus Ehrenberg. Correct.
- Pectinia mæandrites (Pallas).

Should be Linneus, becomes *Meandrina mæandrites* (Linn.).

- Diploria cerebriformis (Lam.).
- Becomes *Diploria labyrinthiformis* (Linn.).
- Manicina areolata (Pallas). Correct.

Linnaeus first named the species.

- *Mæandrina filograna* (Esper).

Includes two species. One *Platygyra clivosa* (Ell. & Sol.), the other *Platygyra viridis* (Le Sueur).

- Mycetophyllia lamarcki M.-Edw. & Haime.

Should be *Mycetophyllia lamarckana* M.-Edw. & H.

- Colpophyllia gyrosa (Ell. & Sol.). Correct.
- Hydnophora latefundata, n. sp.

Surficial casts of *Agaricia agaricites* (Linn.).

- Dichocœnia stokesi M.-Edw. & Haime. Correct.
- Lamellastreae Smythii Duncan.

Not this species, probably *Dichocœnia stokesi* M.-Edw. & H.

- Favia ananas (Pallas).

Becomes *Favia fragum* (Esper).

- Orbicella radiata (Ell. & Sol.).

Becomes *Orbicella cavernosa* (Linn.).

- Orbicella acropora (Linn.). Correct.

Solenastræa hyades and *abditæ* do not belong in its synonymy.

- Solenastræa stellulata (Ell. & Sol.).
Probably correct. This group of species is in great confusion.

Cyphastræa costata Duncan.

Gregory’s specimens are *Orbicella acropora* (Linn.).

Echinopora franksi, n. sp.

= *Orbicella acropora* (Linn.).

Stephanocœnia intersepta (Esper). Correct.

Astræa radians (Pallas).

Astræa siderea (Ell. & Sol.).

Species correct; genus should be *Siderastrea*.

Agaricia agaricites (Pall.). Correct.

Linnaeus first described the species.

Agaricia elephantotus (Pallas).

I am doubtful if *Mycedium fragile* should be included in the synonymy of the species.

Madrepora muricata Linn.

Should be *Isopora muricata* (Linn.).

Porites clavaria Lam.

Should be *Porites porites* (Pallas).

Porites astræoides Lamarck. Correct.

The spelling is *astræoides*. Ehrenberg’s *Porites astræoides* is a *Stylophora, St. ehrenbergi* M.-Edw. & Haime.

The reasons for most of the changes of the names used by Gregory appear in the subsequent discussions of the synonymy of the species.

The revised list of his species is as follows:

1. *Axhelia* decactis (Lyman).
2. *Scolymia* lacera (Pallas).
5. *Eusmilia* fastigiata (Pallas).
8. Dendrogyra cylindrus Ehrenberg.
9. Meandrina mæandrites (Linn.).
10. Diploria labyrinthiformis (Linn.).
11. Manicina areolata (Linn.).
12. Platygyra viridis (Le Sueur).
14. Colpophyllia gyrosa (Ell. & Sol.).
16. Favia fragum (Esper).
17. Orbicella cavernosa (Linn.).
18. Orbicella acropora (Linn.) + Cyphastræa costata Duncan (pars) + Echinopora franski Gregory, n. sp.
19. Solenastrea stellulata (Ell. & Sol.).
20. Stephanocænia intercepta (Esper).
21. Siderastrea radians (Pallas).
22. Siderastrea siderea (Ell. & Sol.).
23. Agaricia agaricites (Linn.) + Hydnophora latefundata Gregory.
25. Agaricia fragilis (Dana).
26. Isopora muricata (Linn.).
27. Porites porites (Pallas).
28. Porites astreoides Lam.
Out of thirty-one species I recognize twenty-eight, modified by the remarks made in the foregoing critical review.

THE REEF CORALS OF CURAÇAO, ARUBE AND BONAIRE.

Prof. K. Martin in his work „Geologische Studien über Niederländisch West Indien, auf Grund eigener Untersuchungen“ ¹)

¹) Leiden, E. J. Brill, 1888.
has given an account of the elevated reefs of the island, and any one interested in the subject may consult his memoir.

Species of the recent Reefs: The U. S. Fish Commission Steamer Albatross, in 1888, made a rather extensive collection of the recent reef corals found around Curaçao, and the material has been deposited in the U. S. National Museum. The following is a list of the species:

Eusmilia fastigiata (Pallas). The species with poorly developed columella.
Stephanoccenia intercepta (Esper).
Mussa angulosa (Pallas).
Favia fragum (Esper).
Colpophyllia gyrosa (Ell. & Sol.).
Diploria labyrinthiformis (Linn.).
Platygyra clivosa (Ell. & Sol.).
Siderastrea radians (Pallas).
Siderastrea siderea (Ell. & Sol.).
Agaricia agaricites (Linn.). One specimen wrapped around a stick. The calices resemble those of A. agaricites but are on one side of the lamina as in fragilis. The specimen seems intermediate between the two species.
Isopora muricata (Linn.) forma muricata s. s. (= cervicornis Lam.).
Isopora muricata (Linn.) forma prolifer a Lam.
Isopora muricata (Linn.) forma palmata Lam.
Porites porites (Pallas) forma clavaria Lam., but very near furcata Lam. 1).
Porites astreoides Lam.

Later (Young) Quaternary:
Eusmilia knorri M.-Edw. & H.
Stephanoccenia intercepta (Esper).

1) This specimen is illustrated in my report on the Puerto Rican corals.
Orbicella acropora (Linn.).
Scolymia sp. indet.
Favia fragum (Esper).
Diploria labyrinthiformis (Linn.).
Platygyra viridis (Le Sueur).
Platygyra clivosa (Ell. & Sol.).
Siderastrea radians (Pallas).
Siderastrea siderea (Ell. & Sol.).
Agaricia agaricites (Linn.).
Isopora muricata Linn. forma muricata s. s.
Porites porites (Pallas).
Porites astreoides (Lam.).

Old Quaternary:
Meandrina mæandrites (Linn.).
Orbicella acropora (Linn.).
Orbicella cavernosa (Linn.).
Colpophyllia gyrosa (Ell. & Sol.).
Platygyra viridis (Le Sueur).
Siderastrea siderea (Ell. & Sol.).
Agaricia agaricites (Linn.).
Agaricia fragilis (Dana).
Isopora muricata forma muricata s. s.

Upper Oligocene (Antiguan):
From Serro Colorado, Arube.
Orbicella cavernosa (Linn.).
Orbicella tenuis (Duncan).
Alveopora regularis (Duncan).

Table showing the Stratigraphic Distribution of the Species.

The following table shows the stratigraphic distribution of the species. The whole fauna is typically Caribbean in
character. It may be of interest to compare the table here given with the one given in Gregory's paper (already cited) which treats of the Barbadian species. In order to make the comparison, the revised names of Gregory's species as given in the preceding pages should be used.

All of the Quaternary species (both Young and Old) are also recent, and I have been able to discover no palaeontologic criteria for distinguishing between Quaternary and Recent. In the Caloosahatchie Pliocene of Florida, most, if not all, of the species are also recent, but the proportions

<table>
<thead>
<tr>
<th></th>
<th>Recent</th>
<th>Late (Young) Quaternary</th>
<th>Old Quaternary</th>
<th>Oligocene</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eusmilia fastigiata (Pallas)</td>
<td>☒</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
</tr>
<tr>
<td>Eusmilia knorri M.-Edw. & H.</td>
<td>☒</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
</tr>
<tr>
<td>Meandrina meandrites (Linn.)</td>
<td>☒</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
</tr>
<tr>
<td>Stephanocenia intersepta (Esper)</td>
<td>☒</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
</tr>
<tr>
<td>Orbicella acropora (Linn.)</td>
<td>☒</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
</tr>
<tr>
<td>Orbicella cavernosa (Linn.)</td>
<td>☒</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
</tr>
<tr>
<td>Orbicella tenuis (Duncan)</td>
<td>☒</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
</tr>
<tr>
<td>Scolymia sp.</td>
<td>☒</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
</tr>
<tr>
<td>Massa angulosa (Pallas)</td>
<td>☒</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
</tr>
<tr>
<td>Favia fragum (Esper)</td>
<td>☒</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
</tr>
<tr>
<td>Colpophyllia gyrosa (Ell. & Sol.)</td>
<td>☒</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
</tr>
<tr>
<td>Diploria labyrinthiformis (Lion.)</td>
<td>☒</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
</tr>
<tr>
<td>Platygyra clivosa (Ell. & Sol.)</td>
<td>☒</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
</tr>
<tr>
<td>Platygyra viridis (Le Sueur)</td>
<td>☒</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
</tr>
<tr>
<td>Siderastrea radians (Pallas)</td>
<td>☒</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
</tr>
<tr>
<td>Siderastrea sidera (Ell. & Sol.)</td>
<td>☒</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
</tr>
<tr>
<td>Agaricia agaricites (Linn.)</td>
<td>☒</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
</tr>
<tr>
<td>Agaricia fragilis (Dana)</td>
<td>☒</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
</tr>
<tr>
<td>Isopora muricata (Linn.)</td>
<td>☒</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
</tr>
<tr>
<td>forma muricata s. s.</td>
<td>☒</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
</tr>
<tr>
<td>‣ prolifera Lam.</td>
<td>☒</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
</tr>
<tr>
<td>‣ palmata Lam.</td>
<td>☒</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
</tr>
<tr>
<td>Alveopora regularis Duncan</td>
<td>☒</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
</tr>
<tr>
<td>Porites porites (Pallas)</td>
<td>☒</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
</tr>
<tr>
<td>Porites astreoides Lam.</td>
<td>☒</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
</tr>
</tbody>
</table>
of the numbers of individuals of the respective species is not the same as at present. The commonest Pliocene species are not so abundant now; and *vice versa*, the commonest recent species were in some instances only sparingly represented then.

Manicina areolata (*pliocenica* Gane) is an exception. It is an abundant Pliocene fossil, as well as being an abundant recent species.

The species from the Serro Colorado are typical Antiguan Oligocene, and in all probability are of the same age as the Chipola beds of Florida and the Bowden beds of Jamaica.

SYSTEMATIC DISCUSSION OF THE SPECIES.

Genus Eusmilia Milne-Edwards and Haime. 1848.

Eusmilia knorri Milne-Edwards and Haime.

Gregory has given (loc. sup. cit.) a synonymy of this species. I have not the data at hand to discuss the synonymy myself, so refer only to the original description of the species and Gregory's synonymy. Only one specimen is in the collection from Curaçao. It comes from Vereis. It is merely a fragment, and possesses a fairly well-developed spongy columella. Because of the character of the columella it is identified as *E. knorri*.

The species possesses a rather wide distribution in the present West Indian seas, and is also found in the elevated Pleistocene reefs of Barbados. (Gregory, loc. sup. cit.).

Genus Meandrina Lamarck. 1808.

Type species: *Meandrina pectinata* LAMARCK (=*Madrepora maxandrites* ELLIS & SOLANDER, Nat. Hist. Zooph., p. 161, tab. XLVIII, fig. 1).

1815. *Meandrina (pars)*, Oken, op. cit., p. 70, pl. II, 2nd column, bottom fig. (=pl. IVa, Esper reduced).

Not *Mæandrina* of subsequent authors.

This name *Meandrina* has had a perplexing and exasperating history. When Lamarck proposed it, he included only one species in the genus, referring at the same time to a figure by Ellis and Solander which is of the *Meandrina pectinata* of Lamarck, the *Madrepora mæandrites* of Linnaeus and of Ellis and Solander. This species is the type and it cannot be supplanted by any other. In 1815, Oken proposed the name *Pectinia* for a genus in which he included two species *Meandrina pectinata* and *Madrepora lactuca*. In the same work Oken used *Mæandra* which was defined "Mundungen als Furchen vielfältig hin und hergewunden wie Hirnwindungen, unverzweigt, in Klumpen" 1). He included in the genus *M. areola* (*Manicina areolata* (Linn.)); and *M. mæandrites* which he divides into two varieties, "a. Gemeines Hirnkorall *Matrepora mæandrites* Pallas labyrinthiformis Linn. Blätter gezähnelt. Das gewöhnliche das man in Kabinettten antrifft." This is partly *Diploria labyrinthiformis*, but surely a considerable number of species is here

1) Lehrb. Naturgesch., p. 70.
confused. "b. Irrgarten, M. labyrinthiformis Pallas, meandrites Linn.; Blätter ungezähnelt. Sehr selten. Amerika, auch im Mittelmeer, u. s. w." This is Meandrina meandrites (Linn.) + pectinata Lamarck.

"Hierer Matrepora gyrosa, daedalea, natans".

The figure given by Oken, pl. II, 2nd column, bottom figure, is a copy somewhat reduced of Esper's pl. IV A, which is Madrepora meandrites Linn. = Meandrina meandrites (Linn.). I think it best to consider the figured species as the type of the genus. This would make Mæandra Oken a synonym of Meandrina Lamarck.

Lamarck in 1816 included nine species in his Meandrina, the last one being the Madrepora filograna of Esper (= cli- vosa of Ellis and Solander). Dana's Ctenophyllia covers precisely the same ground as Lamarck's original Meandrina. In 1848, Milne-Edwards and Haime in the Ann. Sci. Nat., t. X, use Ctenophyllia for Lamarck's original Meandrina (following Dana), and in the Comptes Rendus, t. XVII, make filograna the type of Meandrina: i.e. they ignored the Système des Animaux sans Vertèbres of 1801, and selected as the type of the genus the last species referred to the genus in Lamarck's Histoire Naturelle des Animaux sans Vertèbres of 1816. In 1851, in their Polypières des Terrains Paléozoiques, Pectinia of Oken replaces their previous Ctenophyllia; the same course is followed in the Histoire Naturelle des Coral- liaires of 1857.

The type of Meandrina being absolutely fixed, we can make disposition of the other names.

First as to Pectinia. Since two species were originally included in the genus by Oken, one of them must be the type. The species pectinata cannot be the type because it was already the type of Meandrina, therefore lactuca must become the type of Pectinia and Tridacophyllia of Milne-
Edwards and Haime must become a synonym of Pectinia. *Maandrina* becomes a synonym of *Meandrina*.

Ctenophyllia is an exact synonym of *Meandrina*. A new name must be used for what Milne-Edwards and Haime have called *Maandrina*. The name *Platygyra* of Ehrenberg, which has not been employed by subsequent authors, is available. The name *Platygyra* is fully discussed later in considering the species referable to it.

These changes in names can be summarized thus:

Meandrina
Pectinia.

Platygyra
Tridacophyllia.

These changes are unfortunate, but they seem inevitable.

Meandrina maandrites (*Linnaeus*).

1766. *Madrepora labyrinthica*, *Pallas* (non-*Linnaeus*), op. cit., p. 297. (Synonymy given by Pallas not of *Madrepora maandrites*).
1820. *Meandrina pectinata*, *Schweigger*, Handb. Naturgesch., p. 420. (Ref to pl. IV of Esper, wrong; this is *Manicina areolata*).

1846. *Ctenophyllia meandrites*, p. 170, pl. XIV, fig. 13; *Ctenophyllia quadrata*, p. 170, pl. XIV, fig. 14; *C. pachyphylla*, p. 172, pl. XIV, fig. 15; *C. profunda*, p. 172, pl. XIV, fig. 16, Dana, Zooph. Wilkes Expl. Exped.

1861. *Pectinia quadrata*; *P. meandrites*; *P. disticha*, sp. nov., pl. IX, fig. 16; *P. elegans*, sp. nov., p. 342; *P. cariboea*, sp. nov. p. 343, Duchassaing & Michelotti, Mém. Corall. Ant.

1881. *Pectinia meandrites*, Quenstedt, Röhren u. Sternkorall., p. 993, pl. CLXXXI, fig. 47.

There have been twelve recent species of *Meandrina* (*Pectinia auct.*) described or named, viz.: *meandrites* by Linnaeus;
SOME FOSSIL CORALS FROM THE ELEVATED REEFS OF

lamellosa by Humphreys; *pectinata* by Lamarck; *pachyphylla* by Ehrenberg; *quadrata* and *profunda* by Dana; *brasiliensis, danae* and *sebae* by Milne-Edwards and Haime; *disticha, elegans* and *caribaea* by Duchassaing and Michelotti.

My study of the synonymy of *maandrites* has resulted in the identical conclusion of Gregory, excepting I have included as questionable, Dana's *profunda*.

The American species of *Meandrina* may be divided into two sections, typified by the mode of multiplication of the valleys. Milne-Edwards and Haime recognized these characters, as their descriptions show, but they did not give them the importance that, it seems to me, should be attached to them. The valleys in the *maandrites* section are usually arranged in a recognizably radial manner, radiating outward from the center of the upper surface of the corallum (the valleys may be irregularly arranged). The other section is typified by *M. brasiliensis*. In traverse outline the corallum is elliptical and there is often or usually a valley zigzagging along the longer transverse axis or parallel to it. The shorter valleys run perpendicularly outward from the longer transverse axis. This mode of growth is similar to that of *Manicina areolata*.

The granulations on the faces of the septa and the septal dentations in *Meandrina brasiliensis* are coarser than in *Meandrina maandrites*. These differences are very striking when the specimens are compared side by side. Pourtales many years ago called attention to the dentation of the septal margins of "*Pectinia* maandrites") 1). The dentations are small but perfectly distinct.

The following species are included in *Meandrina maandrites*: *lamellosa* Humphreys; *pectinata* Lam. (an exact sy-

nonym); *pachyphylla* Ehrenberg (also an exact synonym, the type was examined by me in the Museum für Naturkunde at Berlin); *quadrata* Dana; *disticha, elegans* and *caribæa* Duchassaing and Michelotti. The types of Duchassaing and Michelotti's species were studied in Turin. Their *Pectinia quadrata* and *P. elegans* are the same thing. The width of the valleys is from 13 to 15 mm. The specimen called *P. quadrata* often has the walls separated or there may be a depression along the summit of the colline where the two walls come together; in other instances the fusion of the walls of adjoining series is complete. In *P. elegans* the fusion is more often complete than in the former. I could find absolutely no basis for even varietal separation. The *disticha* and the *caribæa* are absolutely the same, except for some difference in the shapes of the colonies. The valleys in *disticha* are from 8 to 9 mm. wide, in *caribæa* 8 to 10, they are narrower than in the specimens called *quadrata* and *elegans*. A specimen in the U. S. National Museum from Belize, Honduras (A. E. Morlan, collector), has valleys 7, or less, to 15 mm. wide, and 8 or 9 mm. deep. Two specimens, also in the U. S. National Museum, from the Caloosahatchie Pliocene of Florida, show about the same variation. *Ctenophyllia profunda* Dana, is placed questionably in the synonymy of *maandrites*. Dana's description is not sufficient to base a positive opinion upon, and I have not seen the type.

Pectinia sebae Milne-Edwards and Haime seemed to be based upon Seba's pl. CVIII, figs. 3 and 5, Ellis and Solander's pl. LI, fig. 1, (Lamouroux, Exp. méth., also pl. LI, fig. 1). All of these figures appear to me to be *Colpophyllia gyrosa*.

Pectinia danae (Milne-Edwards and Haime) groups with their *brasiliensis*, but is a distinct species. The salient dis-
tistinguishing features are, *danae* possesses an epitheca; the costæ are distinct only above, where they project but little, are not granulated. The costæ of *brasiliensis* consist of rows of tall, distinct, separated granulations. Prof. Edmond Perrier has kindly sent exquisite photographs of the type of *P. danae*.

The result of the study of the species *Meandrina* is to recognize on the eastern American coast two good species, viz: *M. mæandrites* and *M. brasiliensis*. "*Pectinia sebæ*" is a doubtful species, as is also *profunda* of Dana. The locality of *danae* is unknown, but it is probably from the Caribbean Sea.

One poor specimen from Groot Berg, Curáçao (Old Quaternary), seems preferable to *Meandrina mæandrites*. The species is found fossil in the elevated reefs of Barbados and other West Indian Islands. It occurs in the Pliocene marls of Caloosahatchie, Florida. The species occurs as recent rather generally throughout the West Indian region, but appears never to be very abundant.

Genus Stephanocœnia Milne-Edwards and Haime. 1848.

Stephanocœnia intersersepta (Esper).

Gregory's synonymy of this species ¹) is extensive and in my opinion is correct, so it is not repeated here. I have given in my „Eocene and Lower Oligocene Corals of the United States”, Monograph XXXIX of the United States Geological Survey, pp. 152, 153, a description of the microscopic features of the species, as it is the type of the genus. Felix refers to the species in his „Beiträge zur Kenntniss der Astrocoeninæ” ²).

Localities: fossil in Curacao: The foot of Fort Nassau (Young Quaternary); Aruba: Spanish Lagoon.

Found fossil in the elevated reefs of many of the West Indian Islands; recent throughout the Caribbean region.

Genus Orbicella Dana. 1846.

Attention has several times been called to the fact that Dana understood by Orbicella what Milne-Edwards and Haime meant by their later described Heliastræa 1).

The characterization given by Dana is „Cells nearly circular, more or less prominent, not subdividing, or rarely so; stars with distinct limits formed by the coalescense laterally of the lamellæ, and therefore cells appearing tubular and separated by interstices“. From his characterization and subsequent treatment of the species, it is evident that Orbicella radiata or annularis is regarded as typical. Dana confused some other genera with Orbicella, similar to the confusion by Milne-Edwards and Haime of other genera with Heliastræa; the meaning of the respective authors, however, is clear, and Dana’s name because of priority must replace that of Milne-Edwards and Haime.

I have seen in the literature on corals no reference to the genus Favites Link 2). He defined the genus „Unförmige, kalkartige Massen, mit oberflächlichen zerstreuten sternförmigen blättrigen Öffnungen“; and included in it, F. astrinus, Madrepora favites, Linn. Gmel. Syst. Nat., p. 3763, Esper’s

VERRILL, in Dana’s Corals and Coral Islands, 1872, p. 388.
QUELCH, Reef Corals, Challenger Exp., 1886, p. 106.
2) Beschreibung der Naturalien-Sammlung der Universität zu Rostock, Ste Abth., Rostock, 1807, p. 162.
SOME FOSSIL CORALS FROM THE ELEVATED REEFS OF

Pflanzenth. Fortsetz., 1. Madr., t. 44—46. *F. cavernosus* Linn. Gmel. Syst. Nat. p. 3767, Esp. Fortsetz., 1. Madr., t. 37 and *F. pentagonus*. Esp. Fortsetz., 1. Madr., t. 39. Link's *Favites astrinus* includes a species of *Favia* (Esper, t. XLIV) and species of *Prionastrea*. *Favites pentagonus* is a *Goniastrea*. Four genera are included in *Favites*. The name *Favia* was first given by Oken, to a species not included in Link's list, but it applies to *Madrepora favosa* of Esper (pl. XLIV); *Orbicella* Dana takes in *F. cavernosa*. *Fiscicella* Dana 1846, contains a conglomeration of forms *Favia*, *Dichocœnia*, *Prionastrea* etc. The name in my opinion should be discarded as it is a sort of renaming of Oken's *Favia*. Milne-Edwards and Haime, 1848 1), proposed *Goniastrea* which equals a part of Link's *Favites*, and proposed at the same time *Prionastrea*, which takes in the residue of *Favites*. *Favites* should be used instead of *Goniastrea* or *Prionastrea*. Since, the greater portion of *Madrepora favosa* of Esper is *Prionastrea*, as this is the first name in the list of Link's species, and as *Prionastrea* occurs after the characterization of *Goniastrea*, in my judgment *Favites* should supplant *Prionastrea*.

Orbicella acropora (Linnaeus).

1846. Orbicella annularis, Dana, Zoophytes Wilkes Expl., p. 214, pi. X, fig. 6.
1866. Plesiastroæa ramea, Duncan, Quart. Jour. Geol. Soc. Lond., vol. XIX, p. 432; Phylloœnia limbata, Ibid., p. 433; Cyphastræa costata (par-tim), Ibid., pp. 441 & 443; Astraæa barbadensis, Duncan, Ibid., pp. 421 & 444, pl. XV, figs. 6a, 6b.
SOME FOSSIL CORALS FROM THE ELEVATED REEFS OF

Gregory has published some notes on the synonymy of this species 1). He bases his placing of *annularis* under the synonymy of *acropora* upon finding that, in some systems of the septa, the costae of the last cycle have no corresponding septa, while in other systems, or in portions of other systems, septa corresponding to the last cycle of costae may be well developed, i.e., he destroys the specific distinction established by Milne-Edwards and Haime. The figure of the enlarged corallites given by Esper (pl. XXXVIII) shows three complete cycles of septa and costae. From his description and figure there can be no doubt about his having had the common small celled *Orbicella* of the West Indies, and that it is the same as the *Madrepora annularis* of Ellis and Solander.

H. Stanley Gardiner 2) identifies a coral from Rotumā Island in the South Pacific as *Orbicella acropora* (Linnaeus), he adds some notes, and calls attention to Esper's (Fortsetzungen) pl. XXXVIII, fig. 2. I have not seen Gardiner's specimens and do not know how closely they resemble those from the West Indies, but we do know that Esper's specimens come from the West Indies. He says concerning his specimens 3): „Sie kommen aus den südlichen amerikanischen Meeren“. We can be sure that what is here called

Orbicella acropora is what Esper called Madrepora acropora, and I suspect that Gardiner's Orbicella acropora is a different species.

The remainder of the synonymy is extremely perplexing, because of the insufficient description of the species, lack of figures, or that the types are lost or confused.

Cyphastræa oblita Duchassaing & Michelotti. The specimen so labeled in Turin, is a rounded-head, possessing the general aspect of Orbicella acropora; the calices are small, usually 2 mm. in diameter; the septa are in three complete cycles, the third cycle being very small; the costæ are as in Orb. acropora. A specimen labeled Cyphastræa oblita in the Muséum d'Histoire Naturelle at Paris is an entirely different thing. It belongs to the genus Solenastræa and is the same as the Heliastræa abdita D. & M., which is not a synonym of Orbicella acropora, as Gregory states in his synonymy of the species.

Cyphastræa costata Duncan. The type from Barbuda, preserved in the collection of the Geological Society of London, is a specimen of Orbicella acropora. Some of the septa are cribriform almost to the corallite wall, while others extend as solid lamellæ far into the corallite cavity joining the columella by septal processes, in fact the columella is made up of these processes. The corallite walls are dense and are united among themselves by costæ which are stout and correspond to all cycles of septa; diameter of corallites, 3 to 4 mm., usually about 3.5. Exotheca well developed, the dissepiments extend straight across the intercostal spaces. Two dissepiments to 1.5 mm. Distance between corallites, 1 to 2 mm., usually only about 1 mm. Almost any corallite of Orbicella acropora will show the septal peculiarities of Duncan's Cyphastræa costata, so Duncan's species is the exact equivalent of the former. A specimen, also in the Geological
Society of London, from Santo Domingo, seems to be a *Solenastrea*, the corallites are joined by a vesicular exotheca and differ in other ways from Duncan's type. The specimens identified by Gregory from Barbados as *Cyphastrea costata* are *Orbicella acropora*. The material studied by him is in the British Museum. *Orbicella hyades* is, according to Pourtales 1), probably a *Solenastrea*. The *Solenastrea hyades* of Duchassaing is a *Solenastrea*, as an examination of the specimens in Turin Museum showed, and is not a synonym of *Orb. acropora* as Gregory makes it. I was unable to find the type of *Heliastræa rotulosa* in Turin, and as the work of Duchassaing and Michelotti is throughout so poor, the species cannot be determined, so should be discarded altogether. Gregory places it in the synonymy of *Orb. acropora*, and so much as one can make out of the original description supports his reference.

The only specimens in Prof. Martin's collection showing any noteworthy peculiarity are some from Westpunt, Curaçao (coll. v. Koolwijck). Some of these instead of being rounded heads or more or less explanate are small columns or are digitiform. One specimen is about 90 mm. long and possesses a maximum diameter of 25 mm. Excepting form, there is nothing abnormal. *Plesiastræa ramea* Duncan, from Santo Domingo, is absolutely the same as this growth form of *Orbicella acropora*. I have examined the type in the collection of the Geological Society of London, and the officers of that society have kindly sent a duplicate to the U. S. National Museum.

Phyllocœnia limbata Duncan, is the same as the *Plesiastræa ramea* (type, coll. Geol. Soc. Lond.). *Phyllocœnia sculpta* Duncan (non Michelin) var. *tegula* Duncan, also from Santo

Domingo, is an explanate form of *Orbicella acropora*. Except in form, it possesses no distinguishing characteristics, size of corallites, septa, costæ, columella, exotheca and endotheca as commonly in *O. acropora*. (Type, coll. Geol. Soc. Lond.; duplicate in U. S. National Museum). Gregory's *Echinopora franski* from Barbados, is only a specimen of the same species. At first I thought it could be separated from *O. acropora* by its having solid walls, without exotheca between the corallites, but an examination of the splendid suite of recent specimens in the U. S. National Museum showed this to be only an individual variation. There is no character by which it can be separated from *O. acropora*. (Type in British Museum; duplicate in U.S. National Museum).

Localities where found fossil in Curaçao: In the Harbor on the road to Fort Nassau, Old Quaternary; Plantersrust, loose on the surface; near Plantersrust, Old Quaternary; Hato, Old Quaternary; Savonet, Young Quaternary; Hermanus, Old Quaternary; West Point, Old Quaternary; ?Santa Barbara, in phosphate; in Bonaire: Fontein, Young Quaternary; phosphate of Serro Grande, Old Quaternary; in Arube: Fontein.

Other localities where found fossil: in the elevated reefs of Barbados, Barbuda, Jamaica, Cuba, Costa Rica, etc.

Recent: throughout the Caribbean region.

Orbicella cavernosa (Linnaeus).

1758. SÉRA, Thesaurus, t. III, pl. CXII, figs. 15, 19, 22.
SOME FOSSIL CORALS FROM THE ELEVATED REFS OF

1797. Madrepora cavernosa, Esper, Pflanzenth. Fortsetz, I, p. 18, Tab. XXXVII.
1797. Madrepora cavernosa, Humphreys, Mus. Calomn., p. 66.
1807. Faviæ cavernosæ, Link, Rost. Mus., p. 162.
1850. Astrea cavernosa, Milne-Edwards and Haime, Brit. foss. corals, p. XXXIX.
1863. Astrea endophylæa, pl. XV, figs. 7a, 7b, and Astrea cylindrica, pl. XV, fig. 8, Duncan, Quart. Jour. Geol. Soc., vol. XIX, p. 434.
1863. ? Astrea antiquænsis, Duncan, op. sup. cit., p. 419, pl. XIII, fig. 8.
1863. ? Astrea endophylæa, var. 1, Duncan, op. cit., p. 419, pl. XIV, fig. 9; and ? Astrea radiata var. intermedia, Duncan, op. cit., p. 421.
1881. *Astraea cavernosa*, Quenstedt, Röhren u. Stern-Kor., p. 777, pl. 173, fig. 28.
1866. *Oorbicella compacta*, Rathbun, Ms.
1820 non *Madreporites cavernosus*, Schlotheim, Peterfactenkunde, p. 358.
1842 non *Astraea argus*, Michelin, op. cit., p. 59, pl. XII, fig. 6.
1842 non *Astraea argus*, Michelin, Icon. Zooph., p. 58, pl. XII, fig. 4.
1852 non *Astraea cavernosa*, Quenstedt, Handb. Petref., p. 1000, pl. LXXX, fig. 41.
1856 non *Astraea argus*, Catullo, op. cit., p. 59, pl. XII, fig. 2.

The first question to be determined in the synonymy of the species is which name, *cavernosa* or *radiata*, shall stand. Gregory has used *radiata*, as he considered the definition of *cavernosa* too meager. I do not agree with Gregory. All of the Linnaean characterisations of species are unsatisfactory, but in this instance he refers to the figures of Seba, and places the *Madrepora astroites* of Pallas in the synonymy. He furthermore gives the locality „Habitat in O. Americano”.

Taking all things together, the original characterisation of the species, with the references, seems to me entirely
sufficient to identify the species — in fact, the brief Latin description is not bad.

The further discussion of the synonymy cannot be better introduced than by a full quotation from Pourtalès (Ill. Cat. IV, 1871, p. 76):

"There is considerable variation among the specimens from Florida in the Mus. Comp. Zool., enough apparently to warrant placing them among the three species mentioned in the synonymy: but by carefully examining the different parts of each specimen, passages from one to the other can be found. Thus young polypidoms, expanding rapidly laterally, and with rather distant polyps, appear at first to differ considerably from strongly convex ones with crowded calices; the costae are larger, flatter, and less sharply denticate, and the border of the calicles less elevated.

"The size of the calicles, relied on to divide the genus into groups by Milne-Edwards and Haime, is a very uncertain character; one specimen has in one part the calicles varying from 3.5 to 4 mm., in another from 7 to 8 mm. The same specimen has in some parts the contiguous walls united solidly, with very few or no exothecal cells, in others separated by an abundant cellular exotheca. In worn specimens the last cycle disappears first, for that reason probably Orbicella (Madrepora) radiata Ellis has been characterized by Milne-Edwards and Haime as having but three cycles".

The type of Ehrenberg's *Explanaria argus* which is the type of Milne-Edwards and Haime *Astrea conferata* is in the Berlin Museum für Naturkunde. The following notes are based upon it. The specimen is much worn and is apparently somewhat fossilized. The calices are not regularly rounded but frequently are of irregular polygonal outline. The greatest diameter of an average calice is 8.5 mm.;
lesser 7 mm. Thickness of wall between the calices 2.5 mm. In one calice there were 21 large and 21 smaller septa, there may be four complete cycles in some calices. The columella is very large and vesicular, occupies the greater part of the corallite cavity. Dissepiments abundant, about 13 to 5 mm., they slope downward and inward. From reading the Pourtalès description quoted above, it will be evident that this is only a variety of _O. cavernosa_ with crowded calices. The _Explanaria radiata_ of Ehrenberg is the ordinary _Heliastræa cavernosa_ as figured by Milne-Edwards and Haime, excepting the fourth cyclé of septa may not always be complete.

The original specimens of Duchassaing and Michelotti were examined in Turin. Their _Heliastræa radiata_ is the same as Ehrenberg's _argus_, Milne-Edwards and Haime's _conferta_; their _cavernosa_ is the usual _cavernosa_.

The only other recent species concerning which it seems necessary to make notes is the _Heliastræa aperta_ of Verrill. It is especially characterized by having the principal septa, i.e. those that reach the columella, taller and thinner than in the usual _O. cavernosa_. This probably is a good species, but _O. cavernosa_ is very variable, in the amount of exsertness and thinness of the septa. _O. aperta_ is certainly a good and easily recognizable variety, should it not be accorded specific rank. _Orbicella compacta_ Rathbun, ms. (type U. S. N. M.), is a form of _cavernosa_ with dense walls between the corallites.

As for the fossil species placed in the above synonymy, _Heliastræa endotheçata_ and _H. cylindrica_ of Duncan are the ordinary _cavernosa_ and scarcely need a note. The types are in the Geological Society of London; duplicates in the U. S. National Museum. Duncan's _Heliastræa brevis_ seems to be the same species, but with smaller corallites, i.e. smaller
SOME FOSSIL CORALS FROM THE ELEVATED REEFS OF

in diameter. *Heliastræa antiquensis* of Duncan is the same as his *H. endothecata* from Antigua, and I could not find specific differences between them and the types of *H. endothecata* from Santo Domingo. I have not seen the type of *H. antillarum* (Duncan), so my placing it in the synonymy of *caavernosa* is a surmise based upon Duncan's description and is indicated as such.

Localities: Fossil in Curâçao: Hato, Old Quaternary; Arube: Serro Colorado, Oligocene (Antiguan).

Fossil elsewhere: in most of the elevated reefs throughout the Caribbean region (Quaternary); it is doubtfully found in the Oligocene of Antigua.

Recent: throughout the Caribbean region, and on the northern coast of Brazil.

Additional note: The specimens from Serro Colorado, Arube, deserve further consideration. I do not feel absolutely certain that they should be referred to *Orbicella caavernosa*. The corallites are circular in cross section, and have a diameter of a centimeter, sometimes slightly greater. The distance between the corallites is 3 mm. or even greater. Endotheca and exotheca are very richly developed. The septa are usually twenty-four in number, alternately larger and smaller, all of the larger reach the columella. They are thin, but are thickened at the wall sufficiently to form a so-called "pseudotheca". There are two specimens of this coral from S. Colorado, one of which is completely silicified, and a large portion of the other has undergone silification. The mineral transformation has produced considerable changes in the appearance of the coralla. The corallite walls in one specimen have disappeared and the peripheral ends of the septa have become much thickened, producing an appearance similar to that figured by Duncan for his *Astræa (Orbicella) crossolamellata*. The columella is
lax, spongy, and fairly large, occupying about one-third of the diameter of the corallite cavity. I can discover no tangible characters by which to separate the specimens from *O. cavernosa*, so have referred them to that species.

Orbicella tenuis Duncan.

Locality: Arube, Serro Colorado (Oligocene); also “Oligocene” of Antigua; and what appears to be the same species, from near Lares Puerto Rico (R. T. Hill, collector).

The following are the more important characters of the specimens that I have referred to this species. The corallites are long; are close together, only a millimeter apart, and usually are not round because of having been deformed by mutual pressure; the diameter of the corallites is from 4 to 5 mm. The septa are thin, and crowded; the usual arrangement being four complete cycles. The members of the first and second cycles reach the columella; those of the third cycle are not so long; and those of, the fourth are still shorter. The members of the first and second cycles are of about the same thickness, no constant difference in thickness according to cycles is discernible; there is no marked difference in the thickness of any of the septa at the wall; the members of the third and fourth cycles are slightly thinner. Endotheca is well developed; the exotheca has been destroyed in the process of fossilization. The columella is poorly developed, being formed by the loose fusion of the principal septa in the axial space.
SOME FOSSIL CORALS FROM THE ELEVATED REEFS OF

The *Orbicella cellulosa* (Duncan) also from Antigua is very close to *tenuis*, and I am by no means certain that they should not be referred to the same species. The principal difference is, in *O. cellulosa* there are usually about eight septa that are distinctly thicker than the others, the septa are not so nearly of the same thickness.

Genus Scolymia Haime. 1852.

In discussing Gregory's use of the name *Lithophyllia*, the synonymy of *Lithophyllia* and *Scolymia* has been considered, and is not here repeated. (Supra p. 6).

Scolymia sp.

A small imperfect specimen without nearer data than Santa Barbara and Curacao. This is probably *Scolymia lacera* (Pallas).

Genus Favia Oken. 1815.

Favia fragum (Esper).

This species has usually been known by the name *Favia ananas*, the specific name being referred back to Pallas's
Elenchus Zoophytorum. The name Madrepora ananas was not available for this species as Linnaeus had already applied it to a palæozoic coral from Gothland now known as Acervularia ananas. Prof. Lindström has discussed the name as applied to the fossil species in his „On the Corallia Baltica of Linnaeus“). After Pallas there followed great confusion, the Baltic fossil and the West Indian recent species bearing the same name, and evidently considered by authors to be the same thing. In the mean time Esper proposed the name Madrepora fragum for the West Indian species. Therefore the ananas of Linnaeus must be restricted to the fossil species, and the ananas of Pallas must give way to fragum of Esper. The confusion of ananas is still greater for Esper, although he re-named Pallas’s ananas, applied the same name to a species of Dichocœnia from the East Indies and now known as Dichocœnia porcata. The Explanaria ananas of Ehrenberg is, as shown by an examination of his material in the Museum für Naturkunde at Berlin Dichocœnia stokesi.

Esper’s figures and the description of fragum are very good, and answer perfectly to the ordinary West Indian Favia. A note is by the figures in the Museum of Comparative Zoology’s copy, presumably made by Pourtalès, „this seems to be what we have labelled F. ananus throughout the collections“. I was able to examine the types of Duchassaing and Michelotti’s Favia incerta and Favia coarctata in Turin. The difference between the three may be tabulated thus:

\[Favia \text{ incerta} \text{ D. \& M.}, \text{ wall between corallites not thick;} \]
\[\text{[calcular margin not elevated}. \]

Favia coarctata D. & M., wall between corallites not thick; calcular margin elevated.

Favia ananas LAM., wall between corallites thick; calcular margin elevated.

The first species is founded on a somewhat worn specimen. They have labeled another worn specimen, grouping with incerta, Favia fragum. The series of six specimens possessed by Duchassaing and Michelotti, had they studied them carefully, should have shown them that they were dealing with variations of a single species, to which they attached four different names.

There is in the U. S. National Museum a suite of over eighty recent specimens from various localities in the West Indian region. Notes on the variations of these specimens may be of interest in connection with the synonymy given above. First there are seventeen specimens from the Island of Curaçao, collected by the Steamer Albatross expedition in 1888. The specimens are all small encrusting, usually capuliform or sub-hemispherical masses. The greatest distance across a colony rarely exceeds 45 mm. The calices are sub-elliptical or are deformed, in only one instance did I find indications of two calicinal centers in a series, except where fission is in progress. Reproduction is by septal budding, i. e. fission. The calices are divided into subequal halves. The calices are not very long, 6.5 mm. in length, by 4.5 in breadth, is large for one in which there is no evidence of the beginning of division. There are calices almost circular, only 3 mm. in diameter. The thickness of the walls between corallites varies very much, from merely a separating rim to 2 mm. or even more. The elevation of the calicular margin also shows great variation. It may not be at all elevated, or it may form the rim of a truncated deformed cone, standing a millimeter, or even slightly more
above the depression between adjoining corallites. The septa vary between three complete cycles and very nearly four complete cycles, common numbers are from thirty-six to a few over forty. The septal cycles are not distinctly marked, but the members of the first and some of the second are usually larger than the others. The youngest septa are much smaller than the bounding older ones. The amount of exertness and the thickness of the septa are variable quantities, but the septa could scarcely ever be characterized as very thin, though they sometimes are quite thin. The septal margins are irregularly and rather jaggedly dentate, and bear near the columella an irregular jagged paliform tooth. Costae correspond to all septa, and show a variation in size corresponding to that of the septa; they are rather acute, not very or only fairly prominent, and have their margins pointedly dentate, the dentations on the costae being more regular than those on the septa. The columella is rather large, very spongy, and usually forms a flattish bottom to the fairly deep calice.

From east of Fort Taylor, Key West (Dr. Edward Palmer, collector), is a lot of thirty-two specimens. These in general differ from the Curacaoan specimens by having thinner walls between the corallites, 1.5 mm. being about the average thickness, in some specimens the adjoining calices are separated by merely a simple rim; by having the calicular margins not at all or scarcely perceptibly elevated, and by having very often narrow corallites with a tendency to become sinuous. One specimen possesses a calice 6 mm. long and less than 2 mm. wide. The intergradation between these specimens and those from Curacao is seen to be perfect when some specimens from Key West (collected by Hemphill) and Tortugas (collected by Palmer) are placed between them. There is no need
to cite more specimens, except one from St. Thomas (collected by the Albatross Expedition). This specimen would be referred to *Favia incerta* D. & M. It is an irregularly capuliform mass with a greater diameter of 50 mm., a lesser of 46, and a height of 38. It has the general appearance of the ordinary *F. fragum*, excepting over the whole upper surface of the colony the walls are thin and simple. Instances of simple walls have been cited before, but in no case did such occur over the whole upper surface of the specimen. Around the edges the specimen from St. Thomas has assumed the form of wall usually found in *F. fragum*, so that if one had a piece broken from the edge, especially at one particular end, he would immediately pronounce it *F. fragum*.

From the above discussion one might think that this species has no criterional characters, but it has, and they are quite definite. They are, (1) the size and shape of the colony, (2) the size and shape of the calices, (3) the number of the septa, (4) the septal dentations, the pali and the character of the columella. This gives a number of characters and only throws over the basis on which Duchassaing and Michelotti attempted to differentiate the species.

Verrill has described three species of *Favia* from Hartt’s Brazilian collections 1). They are *Favia leptophylla*, *Favia gravida* and *Favia conferta*, all three from the Abrolhos Reefs. We have in the U.S. National Museum, from Brazil, twenty-nine specimens of this group of *Favia*, and upon them and Verrill’s original descriptions I base the following remarks. The features by which the species would be separated among themselves are:

F. leptophylla, septa 24 to 30, calices circular or deformed, about 25 inch in diameter, margins elevated.

F. gravida, about the same as F. leptophylla, excepting that there are four complete cycles of septa.

F. conferta possesses narrow long meandriform calices, usually series with several calicinal centers.

There are no specimens of F. leptophylla in the U. S. National Museum. The other two species in my mind grade into each other, showing a variation in prominence of calicular margins and thickness of wall between adjoining corallites similar to what has been described for F. fragum. The essential specific characters are (1) the number of septa, usually at least four complete cycles, i.e. they are more numerous than in F. fragum, (2) the calices are nearly always larger, or at least longer than in fragum, and may be so long and sinuous that they are meandriform. When the calicular margins are free and elevated they rise perpendicularly from the common surface of the corallum. (3) The septal dentations seem very much more regular than in F. fragum. There are points of resemblance between fragum and the Brazilian species, but the two seem to me distinct. I would suggest that of Verrill's two names gravida and conferta, applied to the Brazilian species, conferta be suppressed and gravida be used as the specific designation.

As I have seen no specimens of F. leptophylla, I can express no opinion upon it.

F. fragum is found fossil in Curacao: Foot of Fort Nassau, Veeris; in Aruba: Spanish Lagoon. It occurs in the elevated reefs of other West Indian Islands, Barbados, &c. As a recent species it is generally distributed in Bermuda, the West Indian and Caribbean region, and is very abundant on the Florida reefs.
Genus Colpophyllia Milne-Edward and Haim. 1848.

Colpophyllia gyrosa (Ellis and Solander.)

1786. Madrepora gyrosa, Ellis & Solander, Nat. Hist. Zooph., p. 163, pl. LI.
1789. Madrepora natans, Esper, Pflanzenth., p. 140, pl. XXIII.
1846. Massa fragilis, p. 185, pl. VIII, fig. 9, and M. gyrosa, p. 186, Dana, Zooph. Wilkes Expl. Exped., pp. 185, 186, pl. VIII, fig. 9.
SOME FOSSIL CORALS FROM THE ELEVATED REEFs OF

1881. *Colpophyllia gyrosa*, Quenstedt, Böhr- u. Sternkorallen, p. 1011, tab. 182, fig. 49.

There is no difficulty in deciding what name this species should bear, as that proposed by Ellis and Solander was accompanied by a good figure and clearly has priority over all others.

The original specimens of Ehrenberg were examined. His *Manicina gyrosa*, *fissa* and *maandrites* are the same species. The last is referred by Milne-Edwards and Haime to *Colpophyllia fragilis*, but I can see no specific difference between the specimens. Dana’s type of *fragilis*, was the property of J. R. Redfield of New-York and is not in the U. S. National Museum. From a comparison of Dana’s description of the species and the notes made by him on *Mussa gyrosa*, no specific distinction between the two can be discovered. Notes on the variation of the species are given after the discussion of the synonymy. Milne-Edwards and Haime add two species to those previously described, viz: *C. tenuis* and *C. breviserialis*. *C. tenuis* differs according to the description from *C. fragilis* by having the walls nearer together, slightly narrower and deeper valleys. *C. breviserialis* differs from *C. gyrosa* by having short series, composed of only two or three corallites. This last species has been considered by Gregory as valid 1), but it seems to me only a phase of *C.

gyrosa. I did not see the original specimens of Milne Edwards and Haime.

The specimens of the Duchassaing and Michelotti collection were examined in Turin. Their C. gyrosa, C. tenuis (a broken piece), C. astreaformis and C. breviserialis are all the same species. The breviserialis consists of two young heads attached to a piece of the same species or have originated by rejuvenescence from the old colony. The only possible difference is that the septal notch ("échancrure" of Milne-Edwards and Haime) is usually not well marked, but this is not of specific value. The specimens identified as fragilis possess characters worthy of note. The valleys are only 9 or 10 mm. deep, while in the other specimens they are 12 to 15; the septa appear more raggedly dentate. The valleys are usually narrower than in the other specimens. The width of the valleys corresponds very closely with what Pourtalès figures in his Florida Reef Corals 1).

It seems to me that, so far as we at present know, there is only one species of Colpophyllia in the West Indian waters.

The following notes on the variations of the species are based upon material in the U. S. National Museum.

There are in the U. S. National Museum eleven excellent and several inferior specimens. The material comes from Belize, Honduras, Curaçao and the Florida Reefs.

The form of the colony has a direct bearing on the depth of the valleys, etc. The colonies may begin by an explanate method of growth, then the valleys are wide and more open at the bottom; or they may begin by a sub-inversely-conical form, when the valleys are deep and narrower, especially near the bottom of the valleys.

I have selected for a somewhat detailed description an

excellent specimen from Belize, Honduras (A. E. Morlan, collector), No. 15779 (U. S. N. M.). It is a somewhat oblong mass with a flattish base, about 28 cm. long, 20 cm. wide and 5 cm. high. Colonies may grow larger. The number of calicinal centers in a series varies from two to seven. The length of a series varies from 35 mm. to 108 mm. The width of the valleys varies from 10 mm., or slightly less, to 25 mm. The depth of the valleys varies from 10 to 12 mm. Other specimens have valleys only 8 mm. deep, the depth may be as much as 17 or 18 mm. In the middle portion of the colony the distance between the walls is from 1.5 to 2.5 mm., 2 mm. is the usual and average distance apart. Near the periphery in one instance, the walls are 6 mm. apart. The septa are eight to ten to the centimeter. The septa on the middle portion of the colony show a fairly regular alternation of large and small, but there are no rudimentary septa. Near the periphery there is often an apparent arrangement in three or four cycles. The upper septal margins are arched, rather prominent, regularly dentate, each dentation corresponding to a septal ridge, or stria. There is a line of divergence of the striae corresponding in position with the serial wall. Many septa have a notch on the inner margin dividing off a kind of paliform. This notch may be well marked or there may be practically no vestige of it.

The descriptions of Milne-Edwards and Haime and the figures of Pourtalès make further notes unnecessary, but it may be of interest to add, the specimens from Curaçao usually have thicker septa and shallower valleys than those from Belize, Honduras, however there is no specific difference between them.

Fossil in Curaçao: Plantersrust, Old Quaternary; elsewhere: elevated reefs of Barbados, & c. Recent:
Caribbean region, Florida. It is one of the common recent Curaçaoan species.

Genus Diploria Milne-Edwards and Haime. 1848.

Diploria labyrinthiformis (Linn.) emend. Esper.

1789. Madrepora labyrinthiformis, Esper, Pflanzenth., p. 74, pl. III.
1797. Madrepora sinuosa, Humphreys, Mus. Calonz., p. 66.
1815. Meandra meandrites (partim), including Meandra labyrinthiformis (partim), Oken, Lehrb. Naturg., p. 70.
1834. Meandrina cerebriformis, de Blainville, Man. d'Actin., p. 357.
It is generally conceded that Linnaeus confused several species under his *Madrepora labyrinthiformis* 1), they are what have later been called *Diploria cerebriformis* (Lam), from the West Indies, and *Cœloria labyrinthiformis*, from the Red Sea. Esper in 1789 (Pflanzenthiere, loc. jam cit.) definitely attached the name *Madrepora labyrinthiformis* to what we now call *Diploria cerebriformis*. His application of the name and his restriction of it are perfectly definite and unmistakable. Why it should have been overlooked by Lamarck and Milne-Edwards and Haime is difficult to understand, especially when Esper gives a figure and makes a remark: "Ersterwähntes Exemplar, das nach ausserordentlichen Veranstaltungen und so grossen Kostenaufwand aus dem
rikanischen Ocean ist beygebracht worden, misst in der lange gegen zwey, und in der Breite über einen Schuh". So Meandrina cerebriformis Lamarck becomes a synonym of Madrepora labyrinthiformis Linn. (emend. Esper), and leaves the Cœloria labyrinthiformis of Milne-Edwards and Haime without a name unless it should be merely a variety of some already described species of the genus. The Madrepora labyrinthica of Pallas is a different name, and is the same as M. maandrites Linn. Variety β. of Ehrenberg's Meandra (Platygyra) cerebriformis, which Milne-Edwards and Haime make the type of their Diploria stokesi, is only a young specimen of Diploria labyrinthiformis with distant valleys and wide collines having a rather deep depression along their summit. Ehrenberg's type is in the Museum für Naturkunde at Berlin, where I have seen it. Dana's Meandrina truncata from his description is evidently only a worn specimen of the D. labyrinthiformis. The specimens identified by Duchassaing and Michelotti as Diploria cerebriformis and D. truncata are in the Turin Natural History Museum. They both belong to the same species.

It seems scarcely necessary to enter into a long discussion of the variation of the species, especially as it has a small synonymy. The principal variation consists in the width of the collines and the depth of the depression along them. The depression on the collines may even be deeper than the valley. On the other hand the series may be so close together that the depression may be simply an obscure furrow. The columella is vary variable. I have spoken of its being lamellar1). In instances the lamellar character may not be in evidence, and the columella then consists of a spongy mass as it was first described for the genus.

Fossil: Curaçao, Westpunt; Bonaire: Fontein, Quaternary; also elevated reefs of Barbados, etc. Recent: throughout the West Indian region and the Bermudas.

Genus Platygyra Ehrenberg. 1834.

The names *Meandrina* and *Meandra* have been disposed of. The name *Platygyra* Ehrenberg remains to be considered. Ehrenberg placed the following species in the subgenus (as recognized by him) viz: *labyrinthica* including vars. α leptochila and β pachychila; *lamellina*, sp. nov.; *cerebriformis* Lamarck, including vars. α and β; *phrygia* Lamarck; *spatiosa*, sp. nov. I made a careful study of most of the original specimens referred to those species by Ehrenberg.

There are six specimens in the Museum für Naturkunde in Berlin bearing the name *Meandra (Platygyra) labyrinthica*, but there appear to be four distinct species.

1. Specimens N°s 682, 683 and 687 are *Caeloría labyrinthiformis* of Milne-Edwards and Haime 1).
3. Specimen N°. 669. No locality is given. „*M. filograna Esp.”* is written on the label below the name given by

Ehrenberg. The corallum is a head deformed by certain parts dying, it is about 160 mm. high. The valleys are very long and sinuous, frequently forming sharp angles in the sinuosities. Wall between the series thin and acute at top, thickening below. Depth of valleys 6.5 to 7 mm. Cross section of colline angular above. Septa, 12 to 15 to cm., nearly all of equal size, only occasionally a small or rudimentary one between a pair of large ones, they do not project much above the wall between the valleys. The septal dentations are subequal excepting the lowest is often much larger than the others. The columella is formed of septal trabeculae and lobes; it very often is of a loose, spongy texture. This is not filograna Esper, but is probably viridis Le Sueur (= striyosa Dana).

4. Specimen N°. 671 bears "M. grandilobata M. E." on the label below Ehrenberg's name. This is correct, only it must now be called clivosa of Ellis and Solander.

I did not study M. Platygyra lamellina.

M. Platygyra cerebriformis = Diploria cerebriformis (Lam.) called Diploria labyrinthiformis in the present paper.

M. Platygyra phrygia = Leptoria phrygia, fide Milne-Edwards & Haime. M. Platygyra spatiosa a synonym of Dendrogyra cylindrus Ehrenberg. It is the basal portion of a large column. Ehrenberg had in his Platygyra seven species now distributed among five genera:

Mæandrina 2 sp. (not Meandrina Lamarck 1801).
Cæloria 2 sp.
Diploria 1 sp.
Leptoria 1 sp.
Dendrogyra 1 sp.

The name Meandrina cannot be applied to any of these forms.

The order of the publication of the genera above listed, excepting Meandrina, is:
Dendrogyra Ehrenberg 1834.
Diploria Milne-Edwards and Haime 1848

Leptoria Milne-Edwards and Haime 1848

Cæloria Milne-Edwards and Haime 1848

Arranged according to sequence on the page.

Ehrenberg in his treatment of *Platygyra labyrinthica* makes no mention of the West Indian forms, but discusses only those from the Red Sea, therefore if we follow his published work the former must be omitted. The name *Platygyra* must be used instead of one of the four genera noted. Since *Cæloria* comes last among these proposed by Milne-Edwards and Haime, I substitute *Platygyra* for *Cæloria* following Brüggemann who in his "Corls of Rodriguez" shows that *Platygyra* should take the place of *Cæloria*, and remarks that the type species is the *Madrepora labyrinthica* from the Red Sea. His course in my mind is the only logical one.

Pourtales was the first of whom I know that pointed out the difficulty or impossibility of separating *Cæloria* and *Meandrina* (Milne-Edwards and Haime). Duncan places *Cæloria* as a subgenus of *Meandrina*. J. Stanley Gardiner has made some notes on the relations of the genera. I can find no tangible differences between the two, the columellar characters being insufficient, therefore I merge *Cæloria* and *Meandrina* of Milne-Edwards and Haime into a single genus and call it *Platygyra* Ehrenberg. If the West Indian species cannot be referred to *Platygyra* they must receive a new generic designation.

1) Comptes Rendus, t. XXVII, 1848, p. 493.
Platygyra viridis (Le Sueur)

1820. *Meandrina sinuosa*, Le Sueur, Mém. Mus. d’Hist. Nat. Paris, t. VI, p. 278, pl. XV, fig. 4, and vars. *viridis*, p. 279, pl. XV, fig. 5; *appressa* p. 280, pl. XV, fig. 6; *rubra*, p. 280, pl. XV, fig. 7; *vinea*, p. 280, pl. XV, fig. 8; also *Meandrina dedalea*, p. 281, pl. XVI, fig. 9 and *M. labyrinthica*, pl. XVI, fig. 10. (Non *Madrepora sinuosa* Ell. & Sol.; nec *Meandrina sinuosa* Quoy & Gaimard).

1840. *Meandrina labyrinthica*, p. 256, pl. XIV, fig. 1; *M. strigosa*, p. 257, pl. XIV, fig. 4a, Dana, Zooph. Wilkes Expl. Exp.

The first available name for this species is *viridis* of Le Sueur. The *sinuosa* of Le Sueur is a mistaken identification of *Madrepora sinuosa* of Ellis and Solander, so it cannot be used.

It has already been shown in the present paper that the name *labyrinthiformis* of Linnaeus must be restricted to *Diploria labyrinthiformis* (= *cerebriformis* Lamarck). Labyrinth-
thica of Ellis and Solander is not available because Pallas had previously applied it to *Meandrina mæandrites*') (= *Madrepora labyrinthica* Pallas).

There are over twenty specimens of the *Platygyra viridis* group in the U. S. National Museum. Before proceeding to a discussion of the specimens it would be best to examine Milne-Edwards and Haime's mode of classification of the species of the genus, and those of their species that come from the West Indies.

Their first section comprises forms with "Le polypier formant une masse fortement gibbeuse ou même lobée", which comprises *M. filograna* (Esper) and *M. grandilobata* M.-Ed. & H. (to which should be added *M. clivosa* of Ellis and Solander, sp.). The second division has "Le polypier formant une masse légèrement gibbeuse"; here is placed *M. superficialis*. The third "le polypier formant une masse simplement convexe sans gibbosités" and contains *M. heterogyra*, *M. sinuosissima*, *M. serrata* and *M. crassa*. *Mæandrina valida* and *M. mammosa* Dana are placed in the "espèces douteuses", and *Meandrina strigosa* Dana is referred to *Cœloria* as a doubtful species.

To tabulate the characters by which *heterogyra*, *sinuosissima*, *serrata* and *crassa* are separated:

M. heterogyra. Corallum convex, oblong, 12 to 14 septa to cm., usually equal; width of valleys, 6 mm.; depth, 4 or 5.

M. sinuosissima. The points of difference given by Milne-Edwards and Haime are the subspheroidal form, the septa crowded and alternating in size, narrow above and enlarging in the interior of the valleys. Valleys nearly a centimeter wide.

M. serrala. Would be separated from the preceding by having valleys 7 mm. wide and 5 mm. deep.

M. crassa. Form as in heterogyra, otherwise resembling sinuosissima, excepting the columella is greatly developed, and valleys are 7 mm. wide and 3 or 4 mm. deep.

Milne-Edwards and Haime have based their division of these forms into four species on the following characters: 1) the coralla being elongate or subspheroidal; 2) the septa being all of the same size or alternately larger and smaller; 3) the collines being rounded above or acute; 4) the valleys ranging between 6 mm. and 1 cm. in width and 3 to 5 mm. in depth. Minor importance is laid upon the septal dentations and the development of the columella. I came to the conclusion that we have to deal with a single species from an examination of the material of the Duchassaing & Michelotti in Turin, and again to the same conclusion from a study of the specimens of Milne-Edwards and Haime in Paris and the specimens in the British Museum. I shall now describe in detail, a single specimen from Belize, Honduras (collected by A. E. Morlan).

The specimen is about 23.5 cm. long, by 19 cm. wide on the flattish base, and approximately 10 cm. high, i.e. the form is oblong. On one end the valleys are extremely sinuous; while on the other they are usually parallel, running perpendicular to the axis of elongation of the colony, and show very few sinuosities. The width of the valleys varies from 4.5 mm. to 9 mm., i.e. in width of valleys this specimen takes in all species. The depth of the valleys varies from 2 mm. to 6 mm., this specimen shows depth of valleys both less and greater than the extremes recorded by Milne-Edwards and Haime in their characterization of the species. The walls between the valleys are solid but may vary some in thickness. The septa probably
present the greatest variation of any element of the corallum. For long distances there may be only large septa, with no hint of smaller septa between them, where as on other portions of the surface, the alternation of larger and smaller is perfectly regular. A place where there are only larger septa shows twelve to the centimeter on one side of the colline and thirteen on the other. In another place where there is faintly regular alternation of larger and smaller, there are fourteen larger and thirteen smaller to the centimeter. These measurements cover all the four so-called species. The septa may be narrow at the top, sloping downward into the bottom of the valley, thus giving the colline a triangular profile; or they may arch gently over the top of the colline, and have their inner margins fall perpendicularly to the top of the paliform lobé at the base. The paliform lobes may be absolutely suppressed or they may be greatly developed, but whenever the inner margins of the septa fall perpendicularly to the bottom of the valley, the paliform lobes are well developed. The septal dentations are usually quite regular, and are like the teeth of a saw ("en scie"), but there may occasionally be slight irregularities. The columella varies much, it may consist of weak, spongy, calicinal centers, each pair connected by a septum, representative of a lamellar columella; or a spongy columella may be very considerably developed. Endotheica is well developed and quite vesicular, the dissepiments are thin.

It is evident that this one specimen, except in the matter of form, comprises all of the four above discussed species. Whether a coral head is spheroidally rounded above or somewhat elongated in one direction, is so much a matter of pure chance, depending upon the object to which it is attached, &c., that no one would think of separating species on that basis.
It seems to me that *Maandrina superficialis* of Milne-Edwards and Haime, judging from the specimen I saw in Paris, may belong here but according to their description it is a synonym of the next species. To what species it should be referred depends upon whether the surface of the corallum is thrown into lobes. In my notes on the Paris specimens I have placed it in the synonymy of *Maandrina strigosa*, and have added "septa to cm. 19, all of the same size: width of valleys, 4 to 6 mm.; columella lamellar interrupted, surrounded by very little vesicular tissue." However *superficialis* may belong under *clivosa* of Ellis and Solander.

The *Leptoria fragilis* of Duchassaing is the same as *Maandrina heterogyra*, and falls into the synonymy of *P. sinuosa*. I am not positive as to what should be done with his *Leptoria hieroglyphica*, but believe that it also should be placed in the synonymy of *sinuosa*.

The *Maandrina labyrinthiformis* and *Maandrina strigosa* figured by Poulalès in the Florida Reefs Corals') are the same species. The *labyrinthiformis* has lower collines and the septa are more broadly rounded over the summit of the collines; while in *strigosa*, the septa have a tendency to be almost angular where they cross the wall. The pali-form lobes are represented as being fully developed in *strigosa*. The amount of variation of each of these features in a single corallum has already been pointed out. A few notes on the variation of some other specimens should be added: There is a specimen, the *labyrinthiformis* type, from Eastern Dry Rocks, Florida, (collected by Palmer), that I thought could be kept separate from the other specimens because the septal dentations are not saw-toothed ("en scie")

but often are rather long spines, or they may even be forked. We possess from Bermuda a single specimen in which both types of dentation exist, though in this the teeth are usually longer than in the majority of specimens, but it is not abnormal and the passage to the usual condition is perfect.

It seems scarcely necessary to expand these notes on characters and variation further. Quelch has made extremely interesting remarks in his Report on the Challenger Reef Corals (pp. 91—94). He recognizes *Meandrina labyrinthica*, *Meandrina sinuosissima* and *Meandrina strigosa* with the remark that *sinuosissima* may be only a "very thick and triangular walled variety" of *strigosa*. I go further than he and place the *labyrinthica* or *labyrinthiformis* in the synonymy of the same species, but three usually good varieties may be recognized, in the line of Quelch's separation into three species.

This species can be defined only in terms of its variation. One character seems absolutely invariable, i.e. the form of the upper surface, it is uniformly rounded and never thrown into gibbosities.

Localities where fossil in Curaçao: West Point; Arube: Daimarie; Bonaire: Fontein.

Found fossil elsewhere in many of the quaternary elevated reefs of the West Indies; occurs recent in the West Indian Islands, Honduras, the Bahamas and Bermudas.

Platygyra clivosa (Ellis & Solander).

1789. Madrepora filograna, Esper, Pflanzenth, p. 139, pl. XXII, fig. 1, 2.
SOME FOSSIL CORALS FROM THE ELEVATED REEFS OF

1846. *Meandrina interrupta*, p. 258, pl. XIV, fig. 18; *M. filograna*, p. 262; *M. mammosa*, pl. XIV, figs. 10, 10a; Dana, Zooph. Wilkes Expl. Exp.
The original characterization of Madrepora clivosa, given by Ellis and Solander is entirely sufficient for its identification. It reads "Madrepora conglomerata, anfractibus basi angustatis, disseminatis subexis aequalibus, ambulacris simplicibus crassiusculis, lamellis alternis abbreviatis.

"Habitat in Oceano Indiae occidentalis.
"Corallium rotundatum, nodulis magnis inaequales."

The part of the description that is especially characteristic is the last line, there is no other West Indian coral "nodulis magnis inaequales."

What Esper has figured as Madrepora filograna seems to me to be a worn specimen of the same thing, as Milne-Edwards and Haime 1) have already noted, in their words "Figure d'un échantillon très usé."

Meandrina interrupta Dana, from the statement "M. convexa et undulata" seems to me to fall in the synonymy of this species; M. mammosa certainly does; Meandrina superficialis and grandilobata also certainly do.

The following of the Duchassaing and Michelotti collection at Turin belong to this species, M. superficialis, M. interrupta, M. grandilobata and M. filograna. The Ehrenberg specimens at Berlin have been fully described in preceeding pages.

Specimen No. 671, Gerresheim collection, no locality given, is the grandilobata of Milne-Edwards and Haime, and consequently a synonym of clivosa (Ell. & Sol.).

Gregory has considered all of the West Indian Platygyra as belonging to only one species, a course in my opinion not justifiable, after having had an opportunity to study an enormous amount of material, and having never found any hint of intermediate forms. His specimens from Barbados are Platygyra viridis.

There is a fine suite of specimens of this species in the U. S. National Museum, and on them the following notes are based. The most constant, and so far as my experience goes, the invariable character of this species is the presence of gibbosities on the surface. The figures given by Pourtalès in Agassiz's Reef Corals are excellent'). The corallum may be in large rounded masses, small irregular heads, or explanate, almost lamelliform masses, but gibbosities are always present. There are other characters that give the coralla distinctive appearances. The valleys are shallower and narrower than in viridis, the walls of the collines are denser. The septa never stand high above the collines, so the summits are either very obtuse or almost flat. The septa are more regularly alternately larger and smaller and are more crowded; the number is variable, 14 large and 14 small to the centimeter is that for one specimen, but it may reach 17 or 18 large and as many small. The septal dentations are smaller and more regular than in P. viridis. The inner margin of nearly all of the larger septa possess an obscure paliform lobe, and are distinctly thickened in the direction of the axes of the valleys. This thickening of the inner ends of the septa is one of the most pronounced characters of the species. The columella is variable, very poorly developed or a pronounced spongy mass.

Fossil in Curâçao: Exact locality not given.
Recent: Curâçao, and throughout the West Indies and in the Florida Reefs.

Genus Siderastrea de Blainville. 1830.

The validity of the name Siderastrea and the non-availability of Astrea, have been fully discussed in my paper

on „The Eocene and Lower Oligocene Coral Faunas of the United States”; Monograph XXXIX of the U. S. Geological Survey, pp. 154—155. That discussion need not be repeated here, further than to state Astraea was used in a binomial sense by Bolten in 1798, for some shells now referred to Turbo and Xenophora. This was three years before Lamarck applied it to a coral, so the name cannot be used for a coral; if it is employed in zoologic nomenclature, it must be applied to a shell. Fischer 1) gives the date of Xenophora 1807 (Fischer de Waldheim) and Turbo 1758 (Linn.). Astrea might be applied to the former of these genera, unless a name for it antedates 1798.

Siderastrea radians (Pallas).

1846. Siderina galaeza, Dana, Zooph. Wilkes Expl. Exped., p. 218, pl. X, figs. 12, 12b, 12c (non figs. 12a, d).

Linnaeus described a Madrepora astroites in Systema Naturæ, ed. X, p. 796, but the description is not sufficient for even approximate identification. The only reference in the synonymy that I have been able to verify is the one to Sloane's Jamaica (vol. I, p. 54, pl. XXI, Lapis astroites s. stellaris). I cannot identify this figure. When Pallas's descrip-
tion of *M. radians* is taken together with Seba’s figures (pl. CXII, figs. 12, 14, 17, 18) one can be reasonably sure of the identification being correct. The *Maddrepora astroides* of the twelfth edition of Linnaeus is the same as the *M. radians* of Pallas. It appears to me that *astrotites* of Linnaeus must be dropped altogether, and that *radians* of Pallas must be adopted.

Fossil in Curaçao: West Point, and foot of Fort Nassau (Young Quaternary), Beekenburg (Young Quaternary).

Fossil elsewhere: Barbados, Lowlevel reefs; Bahamas, Pleistocene reefs. (Gregory).

Recent: West Indies, Florida, &c.

Siderastrea siderea (Ellis and Solander).

1863. *Siderastræa grandis*, **Duncan**, op. sup. cit., p. 441, pl. XVI, figs. 5a, 6.

Gregory places *Siderastrea globosa* Milne-Edwards and Haime doubtfully in the synonymy of this species. From the original description of the former I would judge that it is not a synonym of *S. siderea*. *Siderastræa stellata* of Verril, from Brazil, is a distinct species, and does not be-
long in the Synonymy of *S. siderea*. It usually possesses four complete cycles of septa, but in most of its characters it resembles *S. radians* more closely. The upper portions of the septa are flattened as in the latter species. The calices may form short series, sometimes are even meandri-form. The examination of a large suite of specimens in the United States National Museum leads me to the conclusion that it is a valid species.

Fossil in Curacao: Hato, loose on the surface; Beekenburg (Young Quaternary); Spanish Harbor (Young Quaternary); foot of Fort Nassau (Young Quaternary); Veeris (Young Quaternary); Arube: Spanish Lagoon.

Fossil elsewhere: Barbados, Low and High level reefs; Santo Domingo; Jamaica; Cuba.

Recent: throughout the Caribbean region.

Genus Agaricia Lamarck. 1801.

(+ *Undaria* and *Mycedium* Oken, 1815).

After having spent considerable time in comparing specimens of *Agaricia* and *Mycedium*, I have reached the same conclusion as Gregory regarding their generic relationships, i.e. that the two genera must be merged into one, and under the former name as it is the older.

There is a large amount of material of *Agaricia agaricites* (Linn.) and *Mycedium fragile* Dana in the U. S. National Museum.

The *Mycedium* condition of the corallites, may appear on specimens of *A. agaricites*, combined with the calicular type usual for the species; and vice versa, specimens of *M. fragile* when seen from above look like the ordinary *A. agaricites*. Young specimens cannot always be specifically identified. The specific distinction consists in *fragile* having
calices on one side of the lamina, while in agaricites they are nearly always on both sides; and fragile grows in thin laminae or somewhat funnel-shaped masses, attached in the middle. The young of agaricites has calices on only one side, but the older colonies usually have calices on both sides of the irregularly shaped laminated masses.

The corallum of agaricites is nearly always heavier than in fragile. I have not seen specimens excepting young, that I could not identify with one or the other of the two species, but they sometimes run very close together.

Milne-Edwards and Haime place Phyllastræa of Dana (type species Phyllastræa tubifex Dana, Fiji Islands) in the synonymy of Mycedium). The type (and only) species seems to me utterly distinct from Mycedium. Both endothecal and exothecal dissepiments are well developed; if synapticula are present they are rare. The septa of the two lower cycles are very exsert and those next the lamina are prolonged above the calice as strong jaggedly denteate costæ, making the edge of the laminate corallum denteate by their projection. The septa are very denteate. The columella is formed of spines from their inner ends.

It seems that Dana was correct in placing it in his "Astræacea." I believe that it should be grouped with Tridacophyllia (now Pectinia).

Agaricia agaricites (Linnaeus).

1758. Serra, Thes., III, pl. CX, fig. 6, cc.

CURAÇAO, ARUBE AND BONAIRE.

As my study of the synonymy of this species has led to the same conclusion as that reached by Gregory, I do not repeat the long and complicated synonymy. But Linnaeus, and not Pallas, gave the first characterization of the species.

The following species in my opinion are synonyms of *Agaricia agaricites*. *A. undata* (Ell. & Sol.), *A. purpurea* Le Sueur, *A. gibbosa* (Dana), *A. cristata* Lam., *A. lamarcki* Milne-Edw. & Haime, *A. danae* (Duch. & Micht.), *A. lessoni* (Duch. & Micht.), *A. vesparium* (Duch. & Micht.) and probably *A. sancti-johannis* (Duch. & Micht.)

I saw in Turin the types of Duchassaing & Michelotti's *Mycedium danai*, *lessoni* (labeled *lesueuri*), and *vesparium*, but did not see those of *sancti-johannis* and *cailleti*. From the description the *Mycedium sancti-johannis* seems a synonym of *agaricites*, therefore, though I do not possess positive knowledge, it seems to me that it belongs in the synonymy of this species.

I cannot determine Horne's *Agaricia anthrophylla* from his description 1) and have not seen the type. The following is the description: "A. late explanata, undata, corallium margine fragile. Superfice inferiore striata; superne laminis erectis (1—3½" altis) coalitis et meandrinis (saepe 8" longis); collibus elongatis et æqualibus (1—1½" altis et latis) lamellis crassis confertissimis.

Grows in subhemispherical clumps, attached below by its center. It differs from the other *Agariciæ* in its vertical and coalescing plates. The lamellæ are stout, being greater in the thickness than the width of the species between them. Corallum thin at the edges, interiorly measuring from three to five lines.

"Locality. Unknown. Dr. G. B. Wilson."

Judging from "superficie inferiore striata", this would seem to group with *A. fragilis* or *elephantotus*, but the vertical and coalescing plates recall one of the common varieties of *A. aqaricites*. I am inclined to treat the species as Gregory has done, placing it doubtfully as a synonym of the last mentioned species.

The primary division of the genus into species by Milne-Edwards and Haime is based upon the number of septa to the calice. The number is extremely variable. I find their *agaricites* and *lamarcki* combined in one specimen. The real distinction between *agaricites* and *undata* consists in the type of the valleys and collines and certain peculiarities of calicular arrangement (cf. Ellis & Solander pl. XL). It is easy to find on the same corallum long regular valleys and collines of the *undata* type with short broken valleys or even circumscribed calices. Ellis and Solander evidently made no attempt to figure the details of the septal arrangement but they indicate more septa than Milne-Edwards and Haime give. Gregory has pointed out the variation in the calicular arrangement (op. sup. cit.). In the same colony portions may be wide and frond- or fan-like, while other portions are much lobed. The species is so extremely variable that it is very difficult, specifically to characterize it, but after one has examined a large number of specimens it is usually easily recognized.

Gregory's *Hydnophora latefundate*¹ is only a cast of the surface of the same species. It had seemed to me that such was the case from a first study of Gregory's description and figures. There is one such cast in the collection from Curacao and I have seen others from the elevated reefs of other West Indian Islands. Too, I have seen Gregory's type

in the British Museum. To make myself feel sure of my opinion, I made rubber squeezes from four different specimens. These squeezes show considerable variation, but in general the description of Hydnophora latefundata applies splendidly; to one specimen it applies in toto. The dentations that are described for the septa of H. latefundata appear on the casts of the interseptal loculi. The furrows between the septo-costae of Agaricia agaricites are of the same size, as the septa of Gregory's species are of the same size. The details of this comparison might be carried further, but it does not seem necessary to say more.

Fossil in Curacao: Foot of Fort Nassau (Young Quaternary); summit of Fort Nassau (Old Quaternary), this specimen is a cast of the surface of a specimen of the undata type of Ellis and Solander; Veeris (Young Quaternary).

Fossil elsewhere: Low-level reefs of Barbados; Santo Domingo; Guadaloupe.

Recent: West Indies, Caribbean region, Florida.

Agaricia fragilis (Dana).

Gregory combines fragilis with elephantotus of Pallas but I have not as yet seen specimens that in my mind warrant their union into a single species, although there is a large suite of A. fragile in the U. S. National Museum, and I have seen good specimens of A. elephantotus. Mycedium cailleti appears to me to be distinguishable. The U. S. Fish Commission collected excellent specimens around Puerto Rico in its 1898—99 expedition. Sufficient notes on the
variation have been made in the discussion of the genus *Agaricia* and in the description of *A. agaricites*.

Fossil in Curaçao: Plantersrust (Old Quaternary).
Fossil elsewhere: elevated reefs of Barbados.
Recent: West Indian Islands, Florida &c.

Genus Isopora Studer. 1878.

(Also of ESTER, Pflanzentiere; ELLIS & SOLANDER, Nat. Hist. Zooph.; LAMARCK, Syst. An. sans Vert., etc.)
Madrepora, DANA, MILNE-EDWARDS and subsequent authors.

Brook has pointed out (op. cit. p. 22) that none of the species at present called *Madrepora* were included in the Linnæan *Madrepora* of 1758. *Madrepora muricata* was placed in *Millepora*. What we now call *Madrepora* was subsequently inserted in the original Linnæan genus and later the inserted part was made the type of *Madrepora* when it was subdivided. This is against all rules for nomenclature. The name *Madrepora* cannot be employed as by Dana, Milne-Edwards and Haime and later authors. *Heteropora* Ehrenberg cannot be used because de Blainville had previously applied the name to a genus of Bryozoa. The first available name known to me is *Isopora* Studer applied in a subgeneric sense. I propose here to elevate it to generic rank. Studer included two species in it, *Madrepora labrosa* and *Madrepora securis* both of Dana, designating neither one as a type.

The type species of *Madrepora* must be selected from
the original list of species of Linnæus, but I have not studied the generic history of all the species to determine the one to which the name *Madrepora* should be attached.

Isopora muricata (Linnæus) forma muricata s. s. (= cervicornis Lamarck).

1767. *Madrepora* *muricata (part.)* *Linnæus,* *Syst. Nat.,* ed. XII, p. 1279.

After having examined very large suites of specimens of this species and having studied the material in the British Museum and most of Duchassaing and Michelotti's types in Turin, I have reached the same conclusion as Brook, subsequently reiterated by Gregory — i. e. so far, we known only one species of *Madrepora* from the West Indies, and this may be conveniently divided into three formæ or varieties, viz: *muricata* s. s. (*cervicornis* Lam.), *prolifera* and *palmata.* The forma *muricata* s. s. is one of the commonest fossil corals of the elevated reefs of the West Indian Islands. I have given photographic illustrations of the intergradation of these formæ in my report for the U. S. Fish Commission on the recent corals of Puerto Rico.

I propose here to supplement what Brooks has said on the early history of the nomenclature of this species.

The second reference given by Linnaeus in his original synonymy of *Millepora muricata*¹ is „Sloan jam. I, p. 51, t. 18, f. 3 corallium album porosum maximum muricatum.” The full title of the work referred to is „A voyage to the Islands of Madera, Barbados, Nieves, S. Christophers and

Jamaica, with the natural history of the herbs and trees, four-footed beasts, fishes, birds, insects, reptiles, &c. of the last of these islands; to which is prefixed an introduction wherein an account of the habitants, air, water, diseases, trade &c. of that place, with some relations concerning the neighboring continent, and islands of America. Illustrated with the figures of the things described, which have not been heretofore engraven; in large copper plates as big as the life. By Hans Sloane, M. D., in two volumes. London, 1790." This old book contains a considerable number of fairly good figures of Jamaican corals. The figure to which Linnaeus makes reference, pl. 18, fig. 3, is the typical Madrepora cervicornis of Lamarck. Pallas') divided the species into three varieties: a. varietas ramosa, under which reference is made to Browne's Jamaica, Sloane's Catalogus plantarum Insulæ Jamaicae (Lond. 1691), and Sloane's Natural History of Jamaica. He also refers to Seba's Thesaurus. I do not know what pl. CVIII, fig. 6, represents, but pl. CXIV, fig. 1, is the common cervicornis. Knorr's (Deliciae Naturæ) pl. A II, fig. 1, also referred to by Pallas, is the same. Knorr's says "Het is namentlyk dit eige zelve Koral 't welk by Sloane Jamaica. Tab. XVIII, fig. 3, onder den Naam van corallium album porosum muricatum maximum gevonden werd, etc." (op. cit. p. 6). β. varietas corymbosa. Under this, reference is made to Browne's Jamaica p. 391, No. 6. "Madrepora maxima compressa, palmata & muricata." Browne states "This grows the largest of all the coralline substances found about Jamaica; it is met with in large single masses of an irregular compressed form, which spread into broad flat lobes towards the top." (Op. loc. cit.). Browne refers to pl. 18 of Sloane's Nat.

Hist. of Jamaica, but seems to me to mean pl. 17, fig. 3. γ: Reference is made to Sloane's Natural History of Jamaica, vol. I, p. 58, n. 5, tab. 17, fig. 3, which is what is usually denominated Madrepora palmata. Pallas gives as the „Locus: Mare Americanum & Indicum.”

Linnaeus in Syst. Nat., ed. XII, pp. 1279, 1280, gives references again, showing that the West Indian forms were included in Millepora muricata now transferred to Madrepora, following Pallas. Ellis and Solander included the West Indian species in muricata. Their var. α is cervicornis Lam.; δ has for a synonym var. β of Pallas; ε is the γ of Pallas, or palmata Lamarck. Esper's Madrepora muricata1) was composed of several species, but included the West Indian forms. In the Museum Calonnicum, 1797, p. 68, usually credited to Humphreys, the name muricata so far as I know is for the first time attached definitely to the West Indian species. Dana, Milne-Edwards and Haime and subsequent writers on corals until Brook, have not used the name. Brook was entirely correct in his use of the name. The form hitherto usually called cervicornis should be the typical form of the species2).

Fossil in Curaçao: One specimen without locality; Hato, loose on the surface: Brievengat, loose on the surface.

Recent: Curaçao, Vera Cruz, West Indies, Florida (and Australia, fide Brook).

Genus Alveopora Quoy and Gaimard. 1833.

Alveopora regularis Duncan.

2) J. E. Duerden has some interesting observations on the polyps of this species in Jour. Inst. Jam., vol. II, No. 6, 1839, pp. 621—622.
The following is Duncan's original characterization of the species: "Corallites prismatic, in all cases radiating from a small base, and lobed above. Walls very regularly perforated and thin. Calices a little smaller than the transverse sections of the corallites, rather deformed, polygonal, \(\frac{1}{2} \) line in diameter. Septa spiculiform, and forming a false columella by their junction with some slight cellular trabeculae.

"From the Chert-and-Marl formations of Antigua."

I am also inclined to believe that Duncan's *Alveopora fenestrata* from the Marl-formation of Antigua belongs to the same species. I saw Duncan's material in the collections of the Geological Society of London. It is very unsatisfactory, being casts and impressions and not furnishing data for complete specific characterization. Duncan gives the diameter of the corallites as \(\frac{1}{2} \) line, which is approximately 1 mm. I doubted this, so wrote to Mr. C. Davies Sherborn and requested him to make some measurements for me. The diameter, he writes me, is from 1.5 to 2 mm., more often 2. He has also sent me some rubber squeezes, made parallel to the longitudinal axes of the corallites. I find 2.5 mm. not an infrequent diameter on the squeezes. The diameter of the corallites should have been stated as 1.5 to 2.5 mm. or slightly greater.

The specimen in the collection of Prof. Martin is a mass not quite so large as a man's fist. The original calcareous skeleton has been dissolved and only a cast is now left. The general features of the corallum are the same as those described by Duncan for *regularis*. The diameter of the corallites ranges from 1.5 mm. to 3 mm. or slightly more. The usual diameter is between 2 and 2.5 mm. Neither the septa nor calices are preserved.

There are in the collections of the U.S. Geological Survey
two excellent but young specimens of Alveopora from the Upper Oligocene, 2 1/2 miles west of Tampa, Florida. From the size and arrangement of the corallites and the mural perforation, they are evidently the same as regularis. These specimens will be fully described and figured in my memoir on the Post-Eocene Corals of the United States, now in preparation. There is also a good large specimen in the collection of fossil corals made by Dr. J. W. Spencer in Antigua. This collection is in the U. S. National Museum.

Fossil in Arube: Serro Colorado. Elsewhere: Antigua, both chert and marl formations; Tampa, Florida, in Tampa beds, also on Hint River, near Bainbridge, Georgia.

Geologic horizon: Miocene of Duncan; formerly Older or Warm Water Miocene of Dall; now designated Upper Oligocene by Dall.

Genus Porites Link. 1807.

Porites porites (Pallas). ¹)

Gregory has omitted the names of three species that should be placed in this synonymy. *Porites polymorphus* Link²) is simply a new name for *Madrepora porites* of Pallas. Reference is made to pl. XXI of Esper, which is the *Porites clavaria* of Lamarck. The genus *Porites* does not date from Lamarck 1816, but from Link 1807. The type species is *Madrepora porites* Pallas, here called *Porites porites* (Pallas).

¹) The synonymy and variation of this species are fully discussed in my report on the Porto Rican Corals.
Lamarck did not use *Porites* in his *Système des Animaux sans Vertèbres*, 1801. The other species omitted by Gregory are *Porites valida* Duchassaing and Michelotti 1) and *Porites nodifera* Klunzinger 2). Rehberg in his „Neue und wenig bekannte Korallen“ 3) says that Klunzinger's *P. nodifera* is probably the same as *P. clavaria*, and that the locality, Red Sea, as given by Ehrenberg and Klunzinger is erroneous. I studied carefully the figured type of *nodifera* is the Museum für Naturkunde, Berlin, and can state that *nodifera* and *clavaria* are the same, and that it seems to me most probable that Rehberg's suggestion as to the wrong locality label becoming attached to the specimen is correct.

Fossil in Curacao: Beekenburg, Young Quaternary; foot of Fort Nassau, Young Quaternary; Veeris Young Quaternary; in Arube: Spanish Lagoon. Fossil elsewhere: in the late Tertiary elevated reefs of many West Indian Islands, Barbados. Recent: Bermuda, Florida, West Indies, eastern Mexican coast.

Porites astreoides Lamarck.

Ehrenberg’s Madrepora (Porites) astræoides is not a Porites but is a Stylophora, St. ehrenbergi Milne-Edwards and Haime

The only point in the synonymy of this species demanding especial consideration is the treatment accorded the species of Duchassaing and Michelotti. I found in Turin the types of five of the eight species described by these authors,

SOME FOSSIL CORALS FROM THE ELEVATED REEFS OF

viz: *littoralis*, *superficialis*, *guadalupensis*, *incerta*, and *agaricus*. I could not discover differences of sufficient importance to establish even varieties. There remain *Neoporites michelini*, *N. subtilis*, and *Cosmoporites laevigata*, all of which are figured, besides the names are accompanied by poor brief Latin descriptions. Neither the descriptions nor figures show any characters of value, unless it be in the figure of the calice of *subtilis* showing a greater number of septa than the other species.

The work of Duchassaing and Michelotti is at all times miserable, it has been the most serious misfortune that has befallen the study of the recent West Indian Corals, but their thorough incapacity reached a climax in their treatment of *Porites*, which closes their work on the true corals.

Two species grouping with *astraeoides* remain to be considered, viz: *Porites solida* Verrill (non *solida* Forskal) = *P. verrilli* Rehberg¹), and *Porites branneri* Rathbun. The former *P. verrilli* Rehberg, must in my opinion be placed in the synonymy of *P. astraeoides*. There are several excellent specimens from Rio Formosa, Pernambuco, Brazil (collected by the Hartt Expedition, 1875), in the U. S. National Museum. These specimens have the same general appearance as *astraeoides*. The only feature that could be used for specific differentiation is the usually constant presence of a solid columella, which may have a small slight styli-form projection in the center. There are twelve septa, no pali and the wall is as in *astraeoides*. The difficulty about

using the difference of the columella as of specific value, is that in the specimens of *verrilli* it shows variation in the degree of compactness while in *astreoides* we can find in the same specimen the typical *verrilli* condition or a weak style with very little or no basal deposit around it. There can be no varietal difference.

Porites branneri Rathbun seems to be a perfectly distinct species. There are in the U. S. National Museum several specimens from Pernambuco, Brazil (Hartt Exp., collector). The species grows in small, incrusting masses. The calices are smaller than is common in *astreoides*, but the distinguishing feature is the constant presence of five pali, they are rather slender and erect. The columella space is usually vacant, sometimes a columella is present. The species needs further study, for it suggests the young colony of *Porites porites* (Pallas).

In *P. astreoides* the usual number of septa is twelve, but sometimes rudimentary septa are present between the larger.

Fossil in Curacao: Foot of Fort Nassau (Young Quaternary); in Arube: Daimarie (Young Quaternary). **Fossil elsewhere**: in late Tertiary elevated reefs of Barbados and other West Indian Islands, Cuba, &c. **Recent**: Bermudas; West Indian Islands; Florida; Vera Cruz; Brazil. Common in Curacao.

This is a list of the papers known to me bearing on the stony corals and coral reefs of these regions. I found if I gave references to all papers which merely alluded to the occurrence of fossil corals, that it would be necessary for me to work up completely all of the geologic literature on the regions; therefore for Cuba and Curacao, and may be other islands, the bibliography is not complete. I know of papers on each of these islands that I have omitted. I believe that nearly every paper dealing with the synonymy of the species of corals or their geographic distribution is included, probably excepting some notes, &c., published in L'Institut by Milne-Edwards and Haime and Duchassaing. References to text books on geology have not been included. The papers that I have not personally examined are indicated by an asterisk (*).

Dr. H. S. Gane in his "Some Neocene Corals from the United States" gives an extensive bibliography of these corals from those formations in the United States. I have a similar bibliography in my "Eocene and Lower Oligocene Coral Faunas of the United States." Those bibliographies, I believe, contain references to about all that has been published on the post-Cretaceous stony corals of the
United States and the West Indian and Caribbean regions, except a few papers on the recent fauna of the Pacific coast of North America.

Dr. J. E. Duerden, Curator of the Museum of the Institute of Jamaica, Kingston, Jamaica, is just completing an exhaustive study of the soft parts of the species of stony corals found around that island. Mr. A. W. Greeley of San Diego, California, has in preparation a report on the corals of the Brazilian reefs. I cannot add titles of these papers to the list and do not know when they will be published.

AGASSIZ, L., and J. W. FEWKES. The Anatomy of Astrangia damm. Six lithographs by A. Sonrel. Natural History illustrations prepared under the direction of Louis Agassiz, 1849. Explanation of plates (22 pp., 4to) by J. Walter Fewkes. Published by the Smithsonian Institution. 1889.

SOME FOSSIL CORALS FROM THE ELEVATED REEFS OF

Dictionnaire des Sciences Naturelles, t. XLIII, 1826, p. 50.

Dictionnaire des Sciences Naturelles, t. LX, 1830, references from p. 310 to p. 358.

Deslongchamps, Éd. (See Lamouroux in Encyclopédie Méthodique, 1824).

Duchassaing, P. *L’Institut 1846, p. 117. (Title and contents unknown.)

Animalx radiaires des Antilles. 1850. Paris: imprimerie de Plon. 8°, 32 pp., 2 pl.

Révue des Zoophytes et des spongiaires des Antilles, 8vo with 2 plates (Sponges). Paris, V. Masion et Fils, 1870, pp. 52.

On the correlation of the Miocene beds of the West Indian Islands; and on the synchronism of the Chert-formation of Antigua with the lowest limestone of Malta. Geol. Mag., vol. I, No. 3, Sept. 1864, pp. 97—102.

On the genera Heterophyllia, Battersbyia, Palœocyclus, and Asterosmilia; the anatomy of their species, and their position in the classification of the Sclerodermic Zoantharia. Phil. Trans. Roy. Soc., vol. CLVII, 1867, pp. 643—656, pls. XXXI and XXXII. (Genus Asterosmilia, pp. 652—654, pl. XXXII, figs. 3a—3d, 4 and 5).

A revision of the families and genera of the Sclerodermic Zoantharia, Ed. & H., or Madreporaria (M. Rugosa excepted). Jour. Linn. Soc. (Zoology), vol. XVIII, No. 104 & 105, 1884, pp. 1—204.

SOME FOSSIL CORALS FROM THE ELEVATED REEFS OF

Die Pflanzenthiere, Fortsetzungen. 1797.

Etheridge, R. Appendix J. On the occurrence of animal fossils, with a list of genera, in Rep. on Geol. of Trinidad, 1860. (See Wall and Sawkins). Appendix V. to Reports on the Geology of Jamaica, 1869. (See Sawkins). The coral data are based upon Duncan's work.

Harrison, J. B., and A. J. Jukes-Browne. The geology of Barbados. Also Geologic map of the Island. Published by the Barbudan Legislature, 1890.

The Bermuda Islands: a contribution to the physical history and zoology of the Somer's Archipelago. Phila. 1889.

Humphreys, George. Museum calonnianum. Specification of the various articles which compose the magnificent museum of natural history collected by M. de Calonne in France and lately his property; consisting of an assemblage of the most beautiful and rare subjects in entomology, conchology, ornithology, mineralogy, &c. London, May 1, 1797. (Written on Dr. W. H. Dall's copy, »Sold by George Humphreys, Dealer in Shells, Minerals, &c., No. 4, Leicester Street, Leicester Square, Price 2s 6d")

SOME FOSSIL CORALS FROM THE ELEVATED REEFS OF

Knorr, George Wolfgang. Deliciae naturae selectae, etc. I. Deel. Dortrecht, 1771.

LaHaroüx, J. V. Exposition méthodique des genres de polypiers. 1821.

Langenbeck, R. *Die Theorien über die Entstehung der Koralleninsel und Korallenriffe und ihre Bedeutung für geographischen Fragen. Leipzig, 1890.

Elements of Geology. — Various editions.

Leuckart, F. S. De Zoophytis coralliis et speciatim de genere Fungia observationes zoologicae. Freiburg, 1841.

Curaçao, Aruba and Bonaire.

Link, H. T. Beschreibung der Naturalien-Sammlung der Universität zu Rostock, 3te Abth., May 1807, pp. 161—165.

Linnaeus, Carolus. Systema Naturae, ed. X. Hallm. 1758.

Systema Naturae, ed. XII, t. I. Holmén. 1767.

Marrott, J. F. *De plantis, zoophytis et lithophytis Maris Mediterranei. Rom. 1776.

Martin, K. Geologische Studien ueber Niederländisch West-Indien, auf Grund eigener Untersuchungsgereisen. Mit. 4 col. Karten, 4 Tafeln und 41 Holzschnitten. Leiden. E. J. Brill. 1888. (References to papers on the geology of these islands contained in the foot-notes).

Maycock, J. D. Flora barbadensis, a catalogue of plants, indigenous, naturalized and cultivated in Barbados, to which is prefixed a geological description of the island. (Contains a geologic map of the island). London, 1830.

Michelotti, G. Specimen zoophytologiae diluvianæ. 1838.

SOME FOSSIL CORALS FROM THE ELEVATED REEFS OF

Description of a new species of simple coral, Desmophyllum lamproticum. Proc. Zool. Soc. London, 1880, pp. 41, 42; 2 figs, in text. (The locality is unknown, therefore the reference is inserted here, as the species might have come from American waters.)

(Translation into German by C. F. Wilkens under name of Characteristik der Theirpflanzen. Nürnberg, 1787.)

87

Curaçao, Aruba and Bonaíre.

Röhren- und Sternkorallen. Leipzig, 1881.

Über die Vegetations Verhältnisse der Bermuda Inseln. Ibid. 1872—73, 1873, pp. 131—158.

SOME FOSSIL CORALS FROM THE ELEVATED REEFS OF

Serra, Albertius. Locnpletissimi rerum naturalium Thesauri accurata descriptio et iconibus artefiosissimis expressio per universam physices historian, Tomus III. Amsterdam, 1758.

Schlotheim, E. F. Baron von. Die Petrefactenkunden. 1820. Contains name of West Indian species, but they are erroneous identifications. Systematisches Verzeichniss der Petrefacten Sammlung des verstorbenen wirklichen Geh.-Raths Freiherrn von Schlotheim. Gotha. 1832. Names of West Indian species, but erroneously identified.

A voyage to the Islands of Madera, Barbados, Nieves, St. Christopher's and Jamaica, with the natural history of the last of those islands., vol. I. London, 1707.

Suess, E. Antlitz der Erde. 2 vols., vol. I, 1885, 10 ter Abschnitt.; vol. II, 1888, 7 ter Abschnitt. (French translation by E. de Margerie»Face de la Terre»).

Tippenhauer, L. G. Die Insel Haiti. Leipzig, 1893.

The stony corals collected by U. S. Fish Commission in Porto Rican waters in 1899. U. S. Fish Commission, Rept. of Porto Rican Expedition, 1900, with photographic illustrations of the species. (In press.)

Whitfield, R. P. Observations on the genus Barrettia Woodward, with de-
SOME FOSSIL CORALS FROM THE ELEVATED REEFS OF

Washington, D. C., June 1900.

POST-SCRIPT.

Since the manuscript of the foregoing paper went to press, I have discovered that I omitted the titles of at least two papers that should have been included in the bibliography; several papers have either been published or have come to my notice since the manuscript left my hands; my finding the extensive development of coral reefs in the Chattahoocheean Oligocene of Southwestern Georgia gives us much more data for determining the chronology of the West Indian fossil reefs.

The following is a list of the additional titles:

CURAÇAO, ARUBE AND BONAIRE.

Washington, D. C., Mar. 6, 1901.
TABLE OF CONTENTS.

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introductory Remarks</td>
<td>1.</td>
</tr>
<tr>
<td>Past Work on the West Indian Elevated Reef Corals</td>
<td>5.</td>
</tr>
<tr>
<td>The Reef Corals of Curacao, Aruba, and Bonaire</td>
<td>9.</td>
</tr>
<tr>
<td>Species of the Recent Reefs</td>
<td>10.</td>
</tr>
<tr>
<td>Later (Young) Quaternary Species</td>
<td>10.</td>
</tr>
<tr>
<td>Old Quaternary Species</td>
<td>11.</td>
</tr>
<tr>
<td>Upper Oligocene (Antiguan) Species</td>
<td>11.</td>
</tr>
<tr>
<td>Table Showing the Stratigraphic Distribution of the Species</td>
<td>11.</td>
</tr>
<tr>
<td>Systematic Discussion of the Species</td>
<td>13.</td>
</tr>
<tr>
<td>Genus Eusmilia</td>
<td>13.</td>
</tr>
<tr>
<td>Meandrina</td>
<td>13.</td>
</tr>
<tr>
<td>Stephanocenia</td>
<td>20.</td>
</tr>
<tr>
<td>Orbicella</td>
<td>21.</td>
</tr>
<tr>
<td>Scolymia</td>
<td>34.</td>
</tr>
<tr>
<td>Favia</td>
<td>34.</td>
</tr>
<tr>
<td>Colpophyllia</td>
<td>41.</td>
</tr>
<tr>
<td>Diploria</td>
<td>45.</td>
</tr>
<tr>
<td>Platygyra</td>
<td>48.</td>
</tr>
<tr>
<td>Siderastrea</td>
<td>60.</td>
</tr>
<tr>
<td>Agaricia</td>
<td>63.</td>
</tr>
<tr>
<td>Isopora</td>
<td>68.</td>
</tr>
<tr>
<td>Alveopora</td>
<td>71.</td>
</tr>
<tr>
<td>Porites</td>
<td>73.</td>
</tr>
<tr>
<td>A List of Papers on the recent and fossil stony corals and coral reefs</td>
<td>78.</td>
</tr>
<tr>
<td>of the West Indies, Florida, the Bermudas, the western shores of the</td>
<td></td>
</tr>
<tr>
<td>Gulf of Mexico and North Eastern South America</td>
<td></td>
</tr>
</tbody>
</table>