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Abstract 

The snake-eyed skink Ablepharus kitaibelii is one of the small-
est European lizards, but despite its minute size it is able to feed 
on comparatively large prey. Here we investigate the diet of A. 
kitaibelii and the mechanisms that allow the skink to overpower 
relatively large and even noxious prey. High-speed cinematogra-
phy showed that A. kitaibelii uses a series of shaking and batter-
ing movements to immobilise and kill prey prior to swallowing. 
During this process, the skinks rises up on the hind limbs and 
then whacks the prey sidewise on the substrate by twisting the 
trunk, neck and head laterally. Our analysis showed that the 
shaking kinematics is very uniform among the investigated spec-
imens. The morphological investigation of the cranio-cervical 
system revealed that A. kitaibelii possesses a well-developed 
synovial joint between the odontoid process of the axis, the atlas, 
and the basioccipital. The odontoid process is cylindrical and 
slim and together with the atlas and the basioccipital it forms a 
highly specialised pivot joint for lateral head rotation. We pro-
pose that the occipito-atlanto-axial complex of A. kitaibelii rep-
resents a functional adaptation for additional stabilisation of the 
cranio-cervical complex during prey shaking. Digital data from 
morphological databases showed that specialised joints of this 
type are very rare, but do also occur in other squamate groups. 
Thus we hypothesise that specialised cranio-cervical joints have 
evolved parallel as functional adaptations to different feeding 
and locomotion patterns. Future studies that link feeding kine-
matics and locomotion to cranio-cervical morphology might elu-
cidate the function of various specialised occipito-atlanto-axial 
systems of squamates. 
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Introduction

Feeding behaviour and performance during food up-
take, intraoral transport (including chewing and punc-
ture crushing) and deglutition have been thoroughly 
investigated in lizards (Schwenk, 2000; Herrel et al., 
2001a, 2007; Ross et al., 2007). Besides the ongoing 
debate on the utilisation of venom in lizards (Herrel et 
al., 1997; Fry et al., 2006, 2009, 2010; Fry and Scheib, 
2007; Weinstein et al., 2009), several strategies for me-
chanical killing and immobilising of prey are described 
to date for this group. Nonophidian lepidosaurs kill 
prey by biting, suffocating, shaking or crushing, and 
dragging it against the substrate (Schwenk, 2000). Va
ranus exanthematicus (Bosc, 1792) utilises a number 
of bites to kill a mouse, but it also shakes and hits the 
prey against the substrate or against objects (Smith, 
1982). A very similar behaviour was reported for Va
ranus salvator (Laurenti, 1768) (Honegger and Heus
ser, 1969; Dauth, 1983). The leopard lizard, Gambelia 
wislizenii (Baird and Girard, 1852), processes noxious 
prey by increasing gape cycle frequencies (Lappin and 
German, 2005).
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	 Some lizards rely on hard bites for killing. The teiid 
Tupinambis teguixin (Linnaeus, 1758) smashes its prey 
by crushing bites with a maximum bite force over 100N 
(McBrayer and White, 2002). Similarly, molluscivo-
rous lizards use repetitive crushing bites to break the 
shell of snails, applying even higher bite forces of more 
than 400N (Schaerlaeken et al., 2012). The scincid Tili-
qua rugosa (Gray, 1825) crushes snails and mice by 
prolonged bursts of all jaw-closing muscles (Herrel et 
al., 1999b).
	 Another behaviour of nonophidian lepidosaurs to 
immobilise prey is ‘prey-shaking’ or ‘death-shaking’ 
(Dauth, 1983, 1986). The tokay gecko Gekko gecko 
(Linnaeus, 1758) shakes and hits pray against the sub-
strate until it becomes completely motionless (Roloff, 

1957). The much smaller five-lined skink Plestiodon 
fasciatus (Linnaeus, 1758), was observed to catch large 
prey by biting and to immobilise it by lateral shaking 
and by battering it against a rock ledge (Fitch, 1954). 
	 The species investigated here, the European snake-
eyed skink Ablepharus kitaibelii (Bibron and Bory de 
Saint-Vincent, 1833), is even smaller than P. fasciatus, 
but feeds on relative large butterflies, cicadas and even 
on noxious spiders (Herczeg et al., 2007) and chilopods 
(see results). The present study addresses the strategies, 
which allow A. kitaibelii to subdue large prey. In liz-
ards, bite force is strongly correlated with overall body 
size (da Silva et al., 2014) and the size and shape of the 
head (for an overview see Anderson et al. (2008)). Liz-
ards with larger heads possess more voluminous ad-

Fig. 1. Kinematics of prey capture and im-
mobilization in Ablepharus kitaibelii. (I) Se-
lected frame from a prey capture sequence in 
A. kitaibelii. (II) Selected sequence repre-
senting a prey shaking cluster (a-h). Time in 
seconds (s).



15Contributions to Zoology, 84 (1) – 2015

ductor muscles and are capable of applying harder bites 
(Herrel et al., 1996, 1999a, 2007; Huyghe et al., 2009). 
Bite force across lizard species can be predicted on the 
base of the shape of the head. Width and height of the 
head are the most important indicators of the ability of 
a lizard to bite hard (Herrel et al., 1999a, 2001a, b, 
2004; Vanhooydonck et al., 2011), but also the length of 
the head impacts bite performance, at least in genus 
Chamaeleolis Duméril & Bibron, 1837 (Herrel and 
Holanova, 2008). Considering the very small overall 
size of A. kitaibelii and the shape of its head, it is likely 
that its main strategy to immobilise prey is not based 
on hard biting (Anderson et al., 2008), and it was men-
tioned briefly that that Ablepharus Fitzinger, 1823 
shakes its prey after uptake (Dauth, 1983). In this work 
we use high-speed video cinematography to analyse 
this behaviour in detail. In such shaking movements, 
forces generated post-cranially have to be transmitted 
to the head of the predator and on the prey, therefore we 
additionally studied the morphology of the joints be-
tween the elements of the cranio-cervical system (sensu 
Weisgram and Zweers, 1987). We compare the bauplan 
of the cranio-cervical joint of A. kitaibelii to other lepi-
dosaurs from different taxa and discuss possible rela-
tions between the morphology of the occipital-atlas-
axis complex and species ecology.

Material and methods

The object in this study A. kitaibelii is a very small 
lizard with snout-vent length up to 55.5 mm in females 
(Ljubisavljević et al., 2002) and 47.5 mm in males (VV 
and NT, unpubl. data). The species inhabits dry bushy 
meadows, and oak forests in South-east Europe and 
Western and Central Asia Minor (Schmidtler, 1997; 
Stojanov et al., 2011). In Bulgaria A. kitaibelii is distrib-

uted sporadically on the territory of the country up to 
1550 m altitude but is absent in the low valleys and de-
forested terrains (Tzankov, 2007). Data on the diet of 
the species are scarce and partly controversial. It was 
reported that A. kitaibelii feeds on small insects and 
their larvae (Fejervary, 1912) and more generally on 
members of seven different arthropod orders (Herczeg 
et al., 2007). It was also reported that A. kitaibelii does 
not feed on big and hard prey (Angelov et al., 1966). 
	 In order to fill the gap of information concerning the 
diet of the species we investigated the food spectrum in 
A. kitaibelii by analysing excrements from a total of 25 
wild individuals inhabiting three Bulgarian localities. 
Preliminary data for the food spectrum of the species 
were taken by examination of the excrements of live 
individuals. For the purpose, live specimens were 
caught and kept a few days in boxes and after that they 
were released back into the wild. Specimens were 
caught in Zemen (14.09.10, relative coordinates N42.47 
E22.72, 20 faeces from 7 specimens); Belovets 
(29.07.10, relative coordinates N43.80 E26.43, 8 faeces 
from 8 specimens); and Pancharevo (15.09.10, relative 
coordinates N42.58 E23.43, 2 faeces from 2 speci-
mens). The chitin rests in the faeces were identified to 
order level by using a dissection microscope. 
	 In indoor experiments, three adult wild skinks (body 
length 35, 46 and 53 mm) were filmed in a glass terrari-
um (40×20×03 cm). Six shaking clusters (groups of prey 
shakes) were filmed per individual in lateral view, using 
a Casio EX-FH20 high-speed camera (210 frames per 
second). As food items we used Tenebrio larvae with a 
total length of 18 (± 3) mm (over twice the length of the 
lizard`s skull). Kinematic analysis was performed by 
using SIMI MatchiX © SRM software. Kinematic data 
was tested with Shapiro–Wilk test for normal distribu-
tion. The p-value was less than the chosen alpha level 
(p<0.05) for one individual, then the null hypothesis 

	 This study	 Angelov et al. (1966)	 Herczeg et al. (2007)

Orders	 *n 	 % (total)	 n 	 % (total)	 n 	 % (total)

Araneae	 7	 23.3	 6	 25	 25	 18.5
Lithobiomorpha	 2	 6.7	 –	 –	 –	 –
Hymenoptera	 3	 10	 2	 8.3	 20	 14.8
Coleoptera	 2	 6.7	 6	 25	 23	 17
Hemiptera	 12	 40	 5	 20.9	 50	 37
Diptera	 1	 3.3	 1	 4.2	 5	 3.7
Pseudoscorpiones	 –	 –	 2	 8.3	 3	 2.2
Lepidoptera	 –	 –	 2	 8.3	 9	 6.6
Other	 3	 10	 –	 –	 –	 –

Table 1. Diet of the snake-eyed skink. 
Food spectrum of Ablepharus kitaibelii 
according to the three methods of re-
search, *n– number of studied excre-
ments, n – number of studied individuals.
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was rejected and Kruskal-Wallis test with a Bonferroni 
correction was later performed for a whole dataset. As 
no statistically significant difference between individu-
als was found, results from the three specimens were 
pooled and standard descriptive statistics including 
mean, range and standard deviation was performed.
	 We investigated the skull morphology using both 
high-resolution microscopic computed tomography 
(µCT) and histology. For µCT, an adult specimen was 
fixed in 4% formaldehyde and then washed and pre-
served in 70% ethanol. It was mounted in a plastic tube 
in 70% ethanol and scanned using a SCANCO µCT35 
with 70keV source voltage and 114µA intensity. Projec-
tions were recorded with an angular increment of 0.18°, 
and reconstructed slices measured 2048×2048 at a 
voxel resolution of 3.5 µm. The reconstructed image 
was visualised via volume rendering using Drishti (Li-
maye, 2012).

	 For histology, one adult specimen was fixed in 
Bouins fluid. For decalcification it was preserved in the 
fixative for 20 days. After dehydration it was embedded 
in paraffin and sagittaly sectioned (section thickness 3 
µm) with a Thermo Scientific™ HM355S-2 microtome. 
Sections were stained with haematoxylin and eosin in 
order to get good overall contrast for bones, articular 
cartilages and the articular capsule and to analyse the 
cranio-cervical-joint on tissue level. Colour micro-
graphs were taken with a Zeiss AxioImager Z2 micro-
scope.
	 In order to assess the differences in cranio-cervical 
morphology in major squamate groups, we juxtaposed 
a recent molecular phylogeny of squamates (Pyron et al., 
2013) to a recent morphological tree (Gauthier et al., 
2012), and plotted the abundance of different states of 
cranio-cervical morphology for each group on these 
trees. Data for most squamate groups was available 

Fig. 2. Prey battering against the sub-
strate. Ablepharus kitaibelii is able to hit 
its prey against the substrate with an av-
erage speed of more than 2m/s. (a, b) The 
prey is lifted. (c, d) The prey is hit against 
the substrate. (d) shows the kinetmatic 
profile of the marker displayed in (b).
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from the digital database Digimorph (www.digimorph.
org; Humphries, 2004). In total we analysed the cranio-
cervical morphology of 110 squamate species based on 
Digimorph datasets. Data on cranio-cervical morphol-
ogy of Rhynchocephalia (Sphenodon punctatus) was 
taken from Jones et al. (2009). 

Results 

Analysis of diet

Analysis of the diet of wild populations showed that A. 
kitaibelii feeds on various arthropod taxa (Araneae, 
Lithobiomorpha, Hymenoptera, Coleoptera, Hemiptera, 
Diptera, Pseudoscorpiones and Lepidoptera) including 
noxious spiders and chilopods (Table 1).

Feeding kinematics

Feeding experiments showed that A. kitaibelii uses jaw 
prehension to catch its prey. Initially, the anterior part 
of the body is lifted and the head is bent ventrally (Fig. 
1I). Food uptake is immediately followed by prey shak-
ing. Single prey shakes were very fast in all three inves-
tigated specimens (durations in average 0.052 ± 0.01 s) 
and relatively uniform in their kinematics (Table 2). 
The number and the duration of the shakes within 
shaking clusters did not differ significantly among the 
individuals (p>0.05 for all pairs). At the beginning of 
each shaking cluster, A. kitaibelii rises up its chest and 
the fore limbs, while the hind limbs and the tail stay in 
contact to the substrate. Next it stretches the fore limbs 
laterally and twists the neck and the head sidewise. Af-
terwards A. kitaibelii hits the prey against the substrate 
or shakes it in the air. Subsequently the body is twisted 

in the alternative direction (see Fig. 1II, Supplementary 
video 1). The maximal number of shakes grouped in a 
shaking cluster was 4 and the minimal number was 2 
(3.28 ± 0.54). In two prey shaking film sequences, the 
prey was lifted and then ‘battered’ laterally against the 
substrate (Fig. 2, Supplementary video 2). On the base 
of the kinematical profile of prey movement measured 
at the most distant part of the prey item (Fig. 2) we 
calculated that the lizard is able to accelerate the larvae 
and hit it against the substrate with an average speed of 
over 2 m/s in less than 25 milliseconds (see Fig. 2d, 
Supplementary video 2).

Morphology of the cranio-cervical-joint

Ablepharus kitaibelii possesses a well-developed syno-
vial joint formed by three bones: the basioccipital, the 
atlas, and the cylindrically elongated odontoid process 
of the axis (Fig. 3d). The basioccipital is a thin bone, 
but it is markedly thickened at the occipital condyle 
(Fig. 3a, c) that has a ventrally curved groove in which 
the odontoid process lies. The atlas articulates anteri-
orly with the single occipital condylus and posteriorly 
with the axis (Figs 3b, d, 4), and its neural arches do not 
fuse dorsally (Figs 3a, c, 4). Altogether the occipito-at-
lanto-axial complex forms a well-developed pivot joint 
(Fig. 3b).

Discussion 

Analysis of diet

Our analysis of A. kitaibelii excrements from three 
different Bulgarian populations showed that 63.3%  
of found food items belonged to either Araneae or 

Table 2. Kinematic analysis of the shake clusters. This table shows average durations of prey shaking clusters and single prey shakes as 
well as the number of shakes per shaking cluster for three specimens.

Variables	 Specimen 1	 Specimen 2	 Specimen 3

Duration of a shake cluster (s)	 0.182 ± 0.041	 0.162 ± 0.039	 0.190 ± 0.031
Minimal–maximal duration (s)	 0.124–0.233	 0.114–0.214	 0.143–0.228
Number of analysed clusters	 n=6	 n=6	 n=6
Number of shakes in a cluster	 3.333 ± 0.516	 3.000 ± 0.624	 3.500 ± 0.548
Minimal–maximal number of shakes	 3–4	 2–4	 3–4
Number of analysed clusters	 n=6	 n=6	 n=6
Duration of single shakes (s)	 0.053 ± 0.015	 0.051 ± 0.011	 0.052 ± 0.008
Minimal - maximal duration (s)	 0.033–0.095	 0.038–0.080	 0.038–0.067
Total number of analysed shakes	 n=20	 n=18	 n=21
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Hemiptera. The found food spectrum was similar to 
previous data (Angelov et al., 1966; Herczeg et al., 
2007) on A. kitaibelii diet (Table 1). Angelov et al. 
(1966) dissected the stomachs from individuals of two 
localities of Bulgaria, collected in May. Herczeg et al. 
(2007) studied the food spectrum of A. kitaibelii popu-
lations in Hungary at different seasons (spring and 
summer) by flushing the stomach content. A compari-
son of the three datasets shows on the one hand that 
two groups of arthropods reported in earlier studies, 
Pseudoscorpiones and Lepidoptera, were not found in 
the present study. On the other hand, the present study 
for the first time reports Lithobiomorpha as part of the 
diet of A. kitaibelii. Interestingly, the smallest of all 
skink species, Menetia greyi Gray, 1845, also feeds on 
noxious prey (Pianka, 2011). 

Feeding kinematics and morphology of the cranio-
cervical-joint

Ablepharus kitaibelii is able to feed on relatively large 
and even harmful prey, despite its minute body size and 
its fragile skull. High-speed video sequences showed 

that the prey is immobilised by vigorous shaking and 
battering movements (Fig. 1II and Supplementary vid-
eos), thus confirming previous observations (Dauth, 
1983). The position of the body and the head of the liz-
ards during these fast movements suggested that forces 
created by twisting of the trunk are transmitted to the 
prey via the predators head. The morphology of the 
cranio-cervical joint shows that the occipito-atlanto-
axial complex of A. kitaibelii functionally represents a 
well-developed pivot joint.
	 In amniotes, the first two cervical vertebrae (atlas 
and axis) are typically modified to support the move-
ments of the skull. In most extant amniote groups, the 
atlas is ring-shaped and lacks a pleurocentrum, thus 
consisting of the neural arches and the first intercen-
trum, while the first pleurocentrum is attached to the 
axis and forms the odontoid process. Such a situation 
is found in lepidosauria, crocodiles, birds, and mam-
mals, while chelonians show a more plesiomorphic 
condition (Romer, 1956; Hoffstetter and Gasc, 1969; 
Wake, 1992). 
	 Plesiomorphic for amniotes, a single convex occipi-
tal condyle forms a ball-and-socket joint with the first 

Fig. 3. Morphology of the occipito-atlanto-axial complex in Ablepharus kitaibelii. (a) Sagittal section of the skull based on microCT 
scan. (b) Detailed dorsal view of the occipito-atlanto-axial based on microCT scan. (c) Lateral section through the occipito-atlanto-
axial joint based on microCT. (d) Histological section representing the sagittal plane of the occipito-atlanto-axial joint. AT, atlas; AX, 
axis; BO, basioccipital; * articular cartilage.
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two cervical vertebrae, which allows for rotation in ba-
sically all directions. Such ball-and-socket joints can 
still be found in various amniote groups (Kasper, 1903; 
Hoffstetter and Gasc, 1969; Weisgram and Zweers, 
1987). Additionally in some groups, most markedly in 
mammals, the odontoid process is elongated and acts 
as a pivot in turning the head (Wake, 1992). In the fol-
lowing we call this a ‘functional odontoid process’, and 
a functional odontoid process evolved homoplastically 
in different amniote lineages (Schaeffer et al., 1972). 
The functionality and morphology of the odontoid pro-
cess is most specialized in mammals, where it allows a 
lateral movement between atlas and axis, while the 
joint between the double occipital condyles and the at-
las only allows a vertical movement (Romer, 1956). No 
reptile has evolved precisely the mammalian type of 

atlas and axis, still various specializations have evolved 
within squamates (Romer, 1956). In many lizards the 
odontoid process comes to lie within a trough on the 
dorsal surface of the occipital condyle (Rieppel, 1980), 
while the atlas articulates via a concave facet to the oc-
cipital condyle.
	 In A. kitaibelii, the morphology of the odontoid pro-
cess is highly distinct. In its slim cylindrical appear-
ance (Fig. 3b) it acts as a highly efficient pivot for lat-
eral head rotation. Since in reptiles the atlas is more or 
less locked to the axis (Hoffstetter and Gasc, 1969), 
rotation occurs between the odontoid process and the 
skull, while in mammals rotation is between the odon-
toid process and the atlas. Considering the fast and 
vigorous head rotation during prey shaking, we hy-
pothesise that the cylindrical odontoid process stabi-
lises the cranio-cervical complex during prey shaking 
and battering and improves the transmission of post-
cranially created muscle forces onto the head. While 
the occipito-atlanto-axial joint stabilises the cranio-
cervical joint during lateral rotation, it likely restricts 
the ability of the species to flex the cranium ventrally 
against the atlanto-axial complex (Fig. 1I).

Differences in cranio-cervical morphology between 
major squamate groups

To our knowledge this is the first study that correlates 
feeding kinematics to cranio-cervical morphology in 
lizards. Considering the high variability in morphology 
of the odontoid process and the fact that some species 
totally lack an odontoid process e.g. the snake Uro-
peltis Cuvier, 1829 (Hoffstetter and Gasc, 1969), we 
think that linking feeding kinematics and locomotion 
to cranio-cervical morphology across various squa-
mate groups should be a fruitful endeavour. In order to 
estimate the variability in cranio-cervical joints we 
screened µCT datasets from 110 representatives of 
squamata (S3 Table) from the digital database Digi-
morph (www.digimorph.org, Humphries, 2004). This 
screening revealed the presence of a functional odon-
toid process in 90 of these species. The analysis also 
showed that highly specialised pivot joints with a slim 
cylindrical or conoid odontoid process as described 
here for A. kitaibelii are very rare, but can be found in 
some iguanians (e.g. Uma scoparia Cope, 1894), some 
gekkotans (e.g. Lialis burtonis Gray, 1835), or in some 
teiids (e.g. Aspidoscelis tigris (Baird and Girard, 1852)). 
In most of the investigated squamate species the odon-
toid process is stout and blunt, and either pyramidal-
shaped or round. Such joints can be found in some 

Fig. 4. Atlas and axis of Ablepharus kitaibelii. The atlas is a 
slender ring formed by the first intercentrum (IC1) and the two 
neural arches, which do not fuse dorsally. The first pleurocen-
trum (odontoid process) is fused to the stout axis, which also 
contains the second and third intercentrum (IC2 and IC3).
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iguanians (e.g. Anolis carolinensis Voigt, 1832), scin-
coids (e.g. Amphiglossus splendidus (Grandidier, 
1872)), or serpents (e.g. Lachesis muta (Linnaeus, 
1766)). Blunt odontoid processes are limited in acting 
as pivot, thus such joints likely function as an interme-
diate between a ball-and socket and a specialised pivot 
joint. Other squamates entirely lack a functional odon-
toid process, such as some chameleons (e.g. Brookesia 
brygooi Raxworthy and Nussbaum, 1995), some am-
phisbaenians (e.g. Amphisbaena fuliginosa Linnaeus, 
1758), or some serpents (e.g. Boa constrictor Linnaeus, 
1758). Altogether the analysis of the digital datasets 
showed that the cranio-cervical joint of squamates is 
extremely variable even within taxa, a fact that war-
rants thorough functional investigation (see also Cer-
nansky et al., 2014; in chameleons, members of the ge-
nus Rhampholeon Werner, 1902 show totally different 
axis morphology). Although variability is large within 
major squamate groups, some general trends can be ob-
served. Well-developed joints between occipital and 
odontoid process are common in iguanians, gekkotans, 
scincoids, and lacertoids, while they are rather rare in 
anguimorphs and totally lacking in amphisbaenians 
(Fig. 5, S3 Table). Therefore, the rareness of well-devel-
oped functional pivots in fossorial and legless species 
may be linked to species ecology e.g. in terms of loco-
motion. 

Conclusions 

Within squamates, highly specialised cranio-cervical 
joints such as the pivot joint described here evolved in 
parallel in various groups, and we hypothesise that 
such joints often represent functional adaptations to 
specific feeding and locomotion patterns. Linking 
feeding kinematics and locomotion to cranio-cervical 

morphology in future studies might further elucidate 
the function of specialised occipito-atlanto-axial sys-
tems. The distribution of cranio-cervical joints in squa-
mate groups shows that functional odontoid processes 
are rare in fossorial and legless groups. 
	 Recent studies on higher-level squamate phylogeny 
still show major disagreements between molecular and 
morphological data (Fig. 5) (Gauthier et al., 2012; Py-
ron et al., 2013). Based on the high degree of parallel 
evolution, we think that the analysing of the morphol-
ogy of the occipito-atlanto-axial complex will not help 
to resolve these disagreements.
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Online supplementary material

S1. Video: This movie shows a prey shaking cluster typical for Ablepharus kitaibelii when feeding on Tenebrio larvae. 

S2. Video: In some sequences, prey immobilization behaviour included battering of prey items against the substrate.

S3. Table: Variability of the occipito-atlanto-axial complex in major squamate groups.




