Key words
cycad conservation
cycad taxonomy
Philippine threatened plants

Abstract Six species of cycads are recorded in the Philippines, three of which are endemic. The different species of cycads can be recognized by the characters of the microsporophyll, megasporophyll, and seeds. The current distribution status of the different species of Cycas is assessed and categorized using the IUCN criteria on basis of currently available information.

Published on 30 October 2009

REVIEW OF THE TAXONOMY OF PHILIPPINE CYCAS

There has been considerable confusion and difference in opinion about the recognition of taxa and the classification of species in the genus Cycas.

Merrill (1923) listed 4 species of cycads. He used the name C. rumphii Miq. for the widespread species, C. cairnsiana F.Muell. for a specimen from Culion Island, C. revoluta Thunb. for an introduced species, and retained an unnamed species based on a collection from Palawan.

Brown & Kienholz (1925) described a new species, C. chamberlainii, from Mt Arayat, Pampanga. This species was later reduced to a synonym of C. ruminiana Porte ex Regel by De Laubenfels & Adema (1998).

Schuster (1932) described C. circinalis subsp. ruminiana var. curranii on basis of a specimen collected by H. Curran on the river banks of Molinao river in Palawan. This was raised to a species, Cycas curranii, by Hill (1995). At the same time, Schuster distinguished C. circinalis subsp. ruminiana var. curranii forma graminea based on the specimen from Culion Island that was named C. cairnsiana by Merrill (1923). However, Merrill (1936), studying more collections from the same island, distinguished these as C. wadei, on basis of the unique seed characteristics.

In an account of the gymnosperms of the Philippines, Zamora & Co (1979) recognized 4 species including C. wadei and applied the name C. circinalis to the widespread C. rumphii.

A review of the Cycas of the Philippines based on vegetative and sporophyll characters was made by Amoroso (1986). In this study, he recognized 5 species and distinguished the more common mountain cycads as C. circinalis from the coastal cycads which he retained in C. rumphii.

According to De Laubenfels & Adema (1998), neither C. rumphii nor C. circinalis occur in the Philippines. They apply the name C. silvestris K.D.Hill (considered as endemic for Queensland by Hill 1992) to part of the widespread species, and C. edentata de Laub. to the remainder. They recognize C. ruminiana Porte ex Regel with a disjunct distribution in the Philippines and Sulawesi, and C. wadei Merr. as a Philippine endemic. Hill separated the specimens of C. silvestris from Palawan as C. curranii (Hill 1995), the specimens of C. ruminiana from Sulawesi as C. falcata (Hill 1999) and restricts the name C. edentata for specimens from the Philippines (Hill 1998–2004). Cycas ruminiana and C. edentata are thus considered as Philippine endemics by Hill.

One obvious reason for the current variety opinion on the taxonomy of Philippine Cycas is the lack of adequate data about the morphology and biology of the species. Cycad specialists are also limited in their studies as they often base these on herbarium specimens alone and have not seen the actual plants in the field. Variations in the different vegetative characters are overlooked because these are simply not represented in the scanty or limited herbarium specimen. The specimens available for study may be incomplete or young specimens, or may just be either male or female plants. Even with more complete material, some researchers fail to examine the seed characters because this will entail damaging specimens.

It can also be noted that recent explorations of poorly known habitats, i.e. forest over limestone or ultrabasic soils have resulted in new discoveries, e.g. C. saxatilis K.D.Hill & A.Lindstr. (2008).

The cycads of the Philippines have been evaluated and included in the 2003 IUCN Red List of Threatened Species. Based on the 2001 Criteria (v3.1), C. curranii, C. edentata, C. ruminiana, and C. wadei were all categorized as Data Deficient (DD). Cycas chamberlainii was categorized as Endangered (EN) based on the limits of the extent of occurrence and area of occupancy, severe fragmentation or number of locations and continuing decline in extent of occurrence and number of populations. Here we present an overview of the Cycads of the Philippines, based on a detailed comparison of the vegetative and sporophyll characters of cycads based on literature, herbarium specimens available at the PNH, recent collections from various localities, as well on-line herbaria digital images. The conservation status of Philippine Cycas species is analyzed and categorized based on land cover maps, derived extent of occurrence and estimated number of populations/subpopulations.

RESULTS

Taxonomic characters of Philippine Cycads

Taxonomic characters which are most useful in the identification of the species are the microsporophyll apical spines, megasporophyll shape, and teeth, and seed sarcotesta; size, shape, and presence of ribs. Vegetative character states such as trunk growth of currently available information.

height and diameter, pinnule number per side of rachis, pinnule length and width overlap in many species are of limited value for the identification of species.

We distinguish six species in the Philippines: *C. curranii*, *C. edentata*, *C. riuminiana*, *C. silvestris*, *C. wadei*, and *C. zambalensis*. Recent discoveries, e.g. *C. saxatilis*, are not included as neither a description nor a specimen was available when we prepared this account.

KEY TO THE SPECIES OF CYCAS IN THE PHILIPPINES

1. Apex of megasporophylls entire, shallowly dentate or serrate; lateral teeth up to 6 mm long 2
2. Apex of megasporophylls pectinate; lateral teeth at least 6 mm long .. 3
3. Petiole and rachis tomentose .. 4
4. Petiole and rachis glabrous, smooth 5
5. Midveins of pinnules prominent on the upper side. Petioles 25–70 (mostly over 40 cm) long; seeds not ribbed 6
6. Microsporophyll with spine 5–6 mm long; seeds 5–6 ribbed, 33–37 by 28–29 mm *C. wadei*
7. Microsporophyll without spine; seeds at least 10-ribbed, 44–46 by 36–37 mm *C. curranii*

Cycas curranii (J.Schust.) K.D.Hill — Plate 1a, 2b–e, 3

Distribution — Philippines: Palawan, Mindoro (Oriental Mindoro).
Habitat — Lowland forests over ultrabasic soils and open grasslands.
Conservation status — The species is limited to the degraded forests in the eastern part of Mindoro Island and Southern Palawan. The original forest cover in many parts of Mindoro has been extensively degraded and converted to grassland. The grasslands are seasonally burned to regenerate grass for cattle. Seeds of this species are also collected and used as ornaments. The (maximum) extent of occurrence is (less than) 4 100 km², with only 2 locations, and there is a continuing decline in quality of habitat. Based on these criteria, its category is Critically Endangered.

Descriptive notes — *Cycas curranii* has microsporophylls with apex not extending to a spine-like structure. The apex is instead abruptly bent and tucked downwards. The seed sarcotesta are longitudinally ribbed similar to *C. wadei*, but the ribs are more pronounced and more in number than in *C. wadei*.

Cycas edentata de Laub. — Plate 1e, 2f, 3

Distribution — Andamans Islands to Timor; throughout the Philippines
Habitat — Coastal forests and thickets.
Conservation status — *Cycas edentata* is a non-endemic widespread coastal species in the Philippines. It usually occurs on beach forest strands and rocky outcrops. There are apparently no current threats to the species or to its habitat. Its category is Not Threatened.

Descriptive notes — This species has megaspores with reduced teeth or almost wanting. It is also the only species with a spongy layer in the endocarp.

Cycas riuminiana Porte ex Regel — Plate 1b, 2g, 3

Distribution — Philippines: Luzon; Sulawesi; Moluccas.
Habitat — Lowland forests.
Conservation status — The species is limited to the lowland mountain forests of Pampanga, Bataan, Batangas, and Isabela in Luzon Island. Though the specific localities are currently in protected areas, their natural habitats are affected by natural and anthropogenic pressures, i.e. landslides, clearing for hiking trails, as well as potential conversion of forests into agricultural plots. The (maximum) extent of occurrence is 9 500 km², with at
least 5 locations, continuing decline in quality of habitat, small population size: < 10 000 individuals (as per actual count of 20–25 individuals per 400 km²). Its category in the Philippines is Endangered.

Descriptive notes — Cycas riuminiana can be readily distinguished by the sterile part of the megasporophyll being broader than long.

Cycas silvestris K.D.Hill — Plate 3

Distribution — Vietnam to Northern Australia; throughout the Philippines.

Habitat — Lowland inland, occasionally coastal forests.

Conservation status — **Cycas silvestris** is a widespread forest species. Its current conservation status can not be ascertained for lack of available field data. Its category is Data Deficient.

Descriptive notes — This species can be distinguished by its megasporophylls having teeth which are almost of the same length.

Cycas wadei Merr. — Plate 1d, 2a, 3

Cycas sp. Foxw. (1911) 152, pl. 27; Merr. (1923) 2.

Distribution — Philippines: restricted to Culion Island.
Descriptive notes — *Cycas revoluta* is similar to *C. zam-
balensis* in leaf structure and in having tomentose petiole and
rachis, but can be distinguished by its strongly revolute pin-
nules.

REFERENCES

Amoroso VB. 1986. Morphological study of the sporophylls of Philippine

Blanco M. 1837. Flora de Filipinas según el sistema sexual de Linneo. Lopez,
Manila, Philippines.

De Laubenfels DJ, Adema F. 1998. A taxonomic revision of the genera Cycas

Foxworthy FW. 1911. Philippine gymnosperms. Philippine Journal of Science,
section C, botany 6: 151–172.

ings of the Third International Conference on Cycad Biology: 160.

Hill KD. 1999. Cycas falcata (Cycadaceae): a new species from Sulawesi,

12: 1: 128.

Madulid DA, Agoo EMG. 2005. A new species of Cycas (Cycadaceae) from

Merrill ED. 1918. Species Blancoanae: a critical revision of the Philippine
species of plants described by Blanco and Llanos. Bureau of Science
Publication 12: 1–423.

Merrill ED. 1923. Cycadaceae. An enumeration of Philippine flowering plants

Merrill ED. 1936. A new Philippine species of Cycas. Philippine Journal of

Pancho JV. 1983. Vascular Flora of Mt Makiling and vicinity (Luzon: Philip-

Quisumbing E. 1951 Medicinal plants of the Philippines. Department of Agri-

Scientiarum Upsaliensis 40.

Diliman, Q.C., Philippines.

IDENTIFICATION LIST

The numbers after the collector numbers refer to the following species:

1 = *C. curranii* (J.Schust.) K.D.Hill
2 = *C. edentata* de Laub.
3 = *C. riuminiana* Porte ex Regel
4 = *C. silvestris* K.D.Hill
5 = *C. wadei* Merr.
6 = *C. zambalensis* Madulid & Agoo
7 = *C. revoluta* Thumb.

Brown & Kienholz BS 42539: 3.

Claustro PNH 116502: 4 – Conklin PNH 37914: 2.

Flores et al. 1001: 3 – Fox 176: 4.

Kondo 32862: 2 – Kondo & Edaño 36768: 4; 38877: 2.

Linis 001: 3; 002: 3; 003: 3; 004: 3; 005: 1; 007: 6; 008: 6.

Madulid 7232: 3 – Madulid & Agoo PNH 173358: 6 – Madulid & Sebastian
9000: 5 – Madulid et al. 1350: 2; 1358: 2; 1367: 2; 9062: 3 – Mendoza
PNH 37074: 2.

Quisumbing et al. PNH 79440: 4.

Taleon PNH 33848: 2.