THE GENUS FARADAYA (LABIATAE)

R.P.J. DE KOK & D.J. MABBERLEY

SUMMARY

A revision of the genus Faradaya F. Muell. (Labiatae) is presented with taxonomic history, keys, full descriptions, distribution maps and ecological and ethnobotanical notes. Only three species are recognised: F. amicorum (Seem.) Seem., F. lehuntei (Horne ex Baker) A.C. Sm. and F. splendida F. Muell.; fifteen names are put into synonymy for the first time.

Key words: Faradaya, Labiatae, morphology, taxonomy, distribution.

INTRODUCTION

The genus Faradaya was revised as part of a PhD thesis at the Department of Plant Sciences, Oxford (De Kok, 1997). Revisions of the genera Oxera Labill. and Hosea Ridl. and a cladistic analysis of the whole group, based on morphological, flavonoid and nrDNA characters, were also part of that project. The other revision (De Kok & Mabberley, in press), the data on the flavonoid contents (Grayer & De Kok, 1998) and the cladistic analysis will be published elsewhere (De Kok et al., in prep.)

In this article a full taxonomic account of the genus Faradaya is given, including taxonomic history, keys, full descriptions, distribution maps and ecological and ethnobotanical notes. Observations, regarding the pollination biology, were made during fieldwork in Fiji and Vanuatu in the autumn of 1995.

TAXONOMIC HISTORY

The first scientific collection referable to Faradaya was a specimen of F. amicorum, made in the Friendly Islands (Tonga), by Banks and Solander in 1769 (Banks & Solander, collection label), during the first voyage of Captain Cook (1768–1771). The genus was described for the first time by Von Mueller in 1865 and was named in honour of Michael Faraday (1791–1867), the physicist. The genus was based on one species, Faradaya splendida, from Queensland. Originally it was placed in the Bignoniaceae. Von Mueller sent his analysis and a specimen to Seemann, and asked for his comments on the genus. After his examination of the specimen, Seemann concluded that F. splendida belonged to the same group as two recently described Clerodendrum species from Tonga, Fiji and Samoa. One of these was based on three different collections.

1) Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, United Kingdom.
2) Rijksherbarium/Hortus Botanicus, Leiden, The Netherlands, and Royal Botanic Gardens, Sydney, Mrs Macquaries Road, Sydney, NSW 2000, Australia.
The first specimens were collected by G.W. Barclay, who accompanied Sir Edward Belcher as botanist on his world voyage. Strangely, this collection was not included in Bentham’s (1843) account of the plants collected on the voyage. Later, specimens of the same species were collected by the U.S. Exploring Expedition under Captain C. Wilkes in 1840 and by W.H. Harvey in 1855. These plants were described by Seemann (1862) and named Clerodendrum amicorum Seem.

Asa Gray (1862), who also had plants from Fiji, wanted to describe what was the same species and give it the same name: Clerodendrum amicorum. However, when a copy of Bonplandia with Seemann’s account had reached him, he recognised Seemann’s priority and described an other ‘new’ species as Clerodendrum ovalifolium. Furthermore, he formed a new section of Clerodendrum, sect. Tetraphyranthus, to accommodate them. As distinctive characters, he mentioned the four-lobed regular calyx and corolla. Recognising that Von Mueller’s Faradaya splendida and the two Clerodendrum species (C. amicorum and C. ovalifolium) belonged to the same group, Seemann referred Clerodendrum sect. Tetraphyranthus to Faradaya. Furthermore he placed the genus, with Oxera and Clerodendrum, in the ‘Natural Order Verbenaceae’ (Seemann, 1865). The decision that the genus Faradaya belonged to the Verbenaceae was accepted by all later authors up to Cantino (1992a, b).

Long before, Solander had recognised in manuscript a new section of Clerodendrum, sect. Terminalioides, for what was to become Clerodendrum amicorum from Tonga. However, he never published it. In 1866 Seemann recognised that this section was similar to Faradaya, and placed it in synonymy under Faradaya in his Flora Vitiensis. In his treatment of the Verbenaceae for the Flora Australiensis, Bentham put Faradaya with Oxera in the subtribe Oxereae (Bentham, 1870).

In 1891, Baillon described a Jacquinot collection from Coupang (Timor) as a new species of a new genus: Schizopremna timorensis. This genus was accepted as distinct from Faradaya by Junell (1934) and Lam (1919). It was overlooked by Lam & Bakhuisen van den Brink (1921). Van Steenis re-examined the type specimen collected by Jacquinot, which seems to be incorrectly labelled, as the handwriting on the label is not that of Jacquinot himself. One other collection by Jacquinot with the label Coupang (Timor) could be found, and proved to be a Cyperus restricted to Melanesia. A Faradaya collection from Samoa was found, which was almost identical to the Jacquinot collection. Van Steenis concluded that Schizopremna is congeneric with Faradaya (Van Steenis, 1955).

Lam (1919), in his treatment of the Verbenaceae of the Malayan Archipelago, recognised ten species of Faradaya, of which two were newly described by him. In 1921, in a treatment of the Verbenaceae for the Dutch East-Indies and surrounding countries, he recognised only eight species (Lam & Bakhuisen van den Brink, 1921). Moldenke (1982a, b), in two uncritical articles with notes on the genus, recognised 22 taxa. The Australian species were revised by Munir in 1987. He accepted two species for the country. This number was reduced to one by Mabberley (1992). Smith & Darwin (1991) recognised five species in their treatment for the Fiji Islands, of which two are newly described by them. Currently, about 20 species are recognised (Smith & Darwin, 1991).
THE POSITION OF FARADAYA IN THE TAXONOMIC SYSTEM
FROM JUNELL (1934) TO THE PRESENT

In his detailed discussion of the structure of the gynoecium of the Verbenaceae and Labiatae, Junell (1934) placed Oxera, Faradaya and Hosea together with Clerodendrum, Kalaharia, Amasonia, Monochilus, Tetraclea, Holmskioldia and Huxleya in the Verbenaceae, tribe Viticoideae, subtribe Clerodendreae. Based on differences in the placing of the placenta, he informally distinguished a subgroup within the Clerodendreae, consisting of Oxera, Faradaya, Hosea and Holmskioldia. Based on overall similarity of the gynoecium he placed Hosea between Oxera and Clerodendrum (Junell, 1934).

In Raj’s (1983) study of the pollen morphology of the Verbenaceae, he concluded that the pollengrains of eight (Clerodendrum, Faradaya, Hosea, Huxleya, Kalaharia, Oncinocalyx, Oxera, Tetraclea) of the eleven genera of the Clerodendreae, are very similar to each other and distinct enough from other pollen types to be grouped under a separate one (Raj, 1983).

In a phenetic analysis of the genus Clerodendrum and allies, based on chemical and morphological characters, Faradaya amicorum was placed in the group comprising the bulk of the Indo-Malesian species of Clerodendrum (Stenzel et al., 1988). This is not too surprising, as geographical distribution was used as one of the characters in the analysis. Winterhalter (1991) continued the work, but analysed the data cladistically with other taxa from the subfamilies Viticoideae and Verbenoideae. In this analysis, Oxera, Faradaya and Hosea form a monophyletic group closely related to Clerodendrum, Tetraclea, Holmskioldia, Kalaharia and Rotheca.

In 1992 Cantino published a cladogram of the Labiatae, with some Verbenaceae genera which he thought were closely related (Cantino, 1992a, b). The cladogram is based on 71 macromorphological, three embryological, five palynological, one phytochemical and five leaf epidermal characters. Oxera was placed together with Hosea, as part of an unresolved node at the base of the Ajugeae clade with spinulose or verrucate supratectal pollen sculpturing, the clade including the tribe Monochileae (Verbenaceae), the genera Aegiphila (Callicarpaceae) and Spartothamnella (Chloantheae) and most genera of the tribes Clerodendreae and Caryopteridaceae. In the discussion Cantino expressed his doubt about the exclusion of the genus Faradaya from this group. Faradaya is included in the analysis, but turns up in a different clade. He blames this on insufficient data concerning Faradaya for some characters used in the analysis (Cantino, 1992a: 376–377). This hypothesis has been strengthened by later research
which showed that *Faradaya* indeed has an exine with branched columellae like *Oxera, Hosea* and a few species of *Clerodendrum* (Cantino, pers. comm.).

In the same year, Rimpler published a cladogram of the Caryopteridoidae and related taxa, based on 66 morphological and chemical characters. The genus *Faradaya* was represented by *F. splendida*. In the cladogram *Oxera* and *Faradaya* are part of a well-supported clade, together with *Amsonia, Holmskioldia* and some members of the genus *Clerodendrum* (Rimpler et al., 1992). In a new analysis of the data set, but with more taxa, *Oxera* and *Faradaya* were placed together at the largely unresolved base of the cladogram (Rimpler et al., 1993).

In Cantino, Harley & Wagstaff's provisional intra-familial classification, *Oxera, Faradaya* and *Hosea* were placed in the subfamily Teucrioideae (Cantino et al., 1992).

In 1995, Steane wrote a thesis on the molecular systematics of the genus *Clerodendrum* s.l. In her analysis she used *Oxera* and *Faradaya* as outgroups, but did not include *Hosea* as she was unable to obtain samples of this taxon. In her cladistic analysis, she used 329 discrete, binary restriction site characters of chloroplast DNA and 281 sequence characters of ITS region of the nuclear DNA. In the separate cladistic analysis of the chloroplast and nuclear data and in the analysis of all the combined data, *Oxera* and *Faradaya* were placed together as a separate clade, and as the sister group of *Clerodendrum* s.s. or as the sister group of *Clerodendrum* s.l. (*Clerodendrum* s.s. + *Rotheca*). In some analyses, the genera *Caryopteris* and *Trichostema* appeared to be the sister group of the combined *Oxera-Faradaya* and the *Clerodendrum* s.s. clades (Steane, 1995; see also Steane et al., 1997). This was confirmed by a separate analysis based on morphological, flavonoid and nrDNA characters (De Kok, 1997).

FARADAYA

[*Clerodendrum* sect. *Terminalioides* Soland. ex Seem., Fl. Vit. (1866) 190, nom. in synon.]

[Faradaija] Wignman, Teysmannia 1 (1890) 488, sphantm.]

Lianes or small trees, stems with (hardly) raised lenticels. *Leaves* simple, decussate or ternate, petiolate, exstipulate, margin entire; venation reticulate, main veins abaxially prominent, adaxially not so; small glands 0.04–0.10 mm diam., sunken, round, scattered, many; big glands 0.2–2.2 mm diam., scattered or concentrated at base, few; stomata hypostomatic, anomocytic and sometimes actinocytic or anisocytic (Cantino, 1990). *Inflorescence* a determinate thyrsed, axillary and/or terminal, sometimes cauliflorous;
bracts linear to fusiform, 1.5–32 mm long, apex acute to acuminate, erect to reflex, flat, sessile to petiolate. Flowers tetramerous, large, conspicuous, bisexual, hypogynous. Calyx 2–4-lobed, persistent, campanulate, united to adherent, but during flowering split into 2–4 lobes. Corolla hypocrateriform or campanulate, 4-lobed, symmetrical, fleshy to stiff, white or creamy to yellowish white, deciduous. Stamens four, antepetalous, filiform, exerted, usually all equal in length; anthers extrorse, dorsifixed; pollen in monads, elliptic in equatorial view, rounded triangular, P = 66–90, E = 37–95 μm; colpi narrow, with pointed ends, margin uneven; tectum thin; spines 3–4 μm long, 5–10 μm apart, solid, few; nexine form a thin, homogeneous layer (Raj, 1983). Ovary deeply lobed, 4-locular, with one ovule in each cell, seated on a disk; style filiform, terete, gynobasic, with two short stigmatic lobes. Disk round. Fruit schizocarp, 4-celled; mericarps 1–4 by abortion, exocarp fleshy, relatively thin; endocarp stony, smooth. Seed one per mericarp.

Distribution — Three species: in Samoa (1), Tonga (1), Fiji (2), Vanuatu (1), Solomon Islands (2), New Guinea (1), New Ireland (2), Australia (1), Aru Islands (1), Seram (1), Talaud Island (1) and Sabah (1). In Van Balgooy (1971) the North and South Tuamotu Islands are erroneously included as part of the distribution. The distribution pattern of Faradaya is characterised by Van Balgooy as a genus which is restricted to, or centred in, East Malesia and Australia (type 6a).

Notes — 1. The type of the fungus species Phyllosticta faradayae, was found growing on a Faradaya specimen and was named after the genus (Anonymous, 1957).
2. A more detailed literature list is given in Moldenke (1982a, b) and De Kok (1997).

KEY TO THE SPECIES

 b. Inflorescence pendulous to erect. Calyx lobes glabrous or velutinous at apex only, erect to completely reflexed when fruiting. Corolla bucket-shaped to hypocrateriform, glabrous or velutinous at the apex of the lobes only. Ovaries glabrous to velutinous 2

2a. Calyx lobes reflexed when fruiting. Ovaries glabrous. Fruit bright red when mature 1. F. amicorum
 b. Calyx lobes erect when fruiting. Ovaries velutinous, seldom glabrous. Fruit white to yellow when mature 3. F. splendidula

1. Faradaya amicorum (Seem.) Seem. — Fig. 1, Map 1

Clerodendrum ovalifolium A. Gray, Proc. Amer. Acad. Art. Sci. 6 (1862) 50 'Clerodendron ovalifolium'. — Faradaya ovalifolia (A. Gray) Seem., J. Bot. 3 (1865) 258; Fl. Vit. (1866) 189;

Faradaya amicorum (Seem.) Seem. var. salomonensis Bakh., J. Arnold Arbor. 16 (1935) 71.

Faradaya salomonensis (Bakh.) Moldenke, Phytologia 4 (1952) 54; 51 (1982) 391, 396; 52 (1982) 35. — Syntypes: Brass 3399 (L, BM, BO), Solomon Islands, Isabel Island; Brass 2635 (BISH, BO), Solomon Islands, San Cristobal. Syn. nov.

Liane or small tree, 3–23 m high. Stem 5–30 cm diam.; internodes round, hollow, glabrous or somewhat scabrous, smooth, sometimes with a granular layer. Leaves leathery, decussate or ternate, shiny; blade elliptic to oblong to broadly obovate, 2.2–23 by 1.2–13.8 cm, index 0.68–3, glabrous to few patent hairs abaxial at base, apex round to acuminate, cuspidate or emarginate, base cuneate; venation sometimes 3-palmate at base; big glands oval to round, craterlike, 0.4–10 by 0.2–3 mm, scattered or concentrated at base, few; petiole 6.5–35 by 0.5–2.8 mm, shallowly channelled to half terete in cross section, glabrous to scabrous, sometimes covered with glands. Inflorescence 1.6–24.2 by 1.1–3.8 cm, axillary and/or terminal, sometimes cauline, determinate thyrs, pendulous to erect, borne on old and young wood, glabrous to villous; hairs non-transparent, simple. Calyx campanulate, 6–17 by 5.5–12 mm,
2–4-lobed, round in cross section, glabrous to few hairs at base, cartilaginous to fleshy, (light) green to pure white; lobes 0.8–8.2 by 3–9 mm, apex round to acute, glabrous or with a few hairs at apex, all open and erect during flowering, completely reflexed during fruiting; glands round to oval, craterlike, 0.3–0.8 by 0.4–0.6 mm, brown,

Fig. 1. *Faradaya amicorum* (Seem.) Seem. a. Habit; b. flower; c. fruit; d. inflorescence; e. lateral view of ovary; f. flower; g. flower [a, b: Gibbs 576 (BM); c: De Kok 561 (K); d–f: De Kok 564 (K); g: De Kok 563 (K)]. — Scale bars are 1 cm long.
abundant adaxially; glandular hairs subsessile, few to abundant, abaxially. *Corolla* hypocrateriform to almost bucket-shaped, 32–60 mm long, (creamy to yellow) white, erect to pendulous, fleshy, sometimes scented; tube 32–55 mm long, 1.4–7.5 mm wide at base, gradually broadening to 7–18 mm at mouth; lobes round to oblong or spatulate, all equal, 4.8–12 by 4.8–12 mm, apex round to emarginate, first erect, after shedding of the pollen erect or reflexed; glandular hairs 0.3–1 mm long, subsessile, around the mouth and on the lobes, multicellular, transparent. *Stamens*: filaments 13–35 by 0.4–1 mm, inserted centrally or in upper third of the corolla, (cream) white, exserted, first erect, after shedding of pollen reflexed; hairs 0.22–1 mm long, base to middle part, many, multicellular, transparent, patent, sometimes glandular; anthers 2.5–5 by 1–2 mm, glabrous, straight to curled up when dehisced, yellow to (dark) brown; pollen yellow. *Ovary* lobes light green, round to conical, 1–2 by 1 mm, glabrous or with craterlike glands; style 32–46 by 0.5–1 mm, glabrous, (cream) white; stigma linear to round, 0.5–0.8 mm long. *Disk* 0.3–2 mm high, 1.8–4 mm wide, glabrous, very light green. *Fruit* (bright) red to orange with small white spots; mericarps clavate, 16–40 by 9–18 by 5.5–13.2 mm (dried), glabrous, smooth, 1–4 developing per fruit; endocarp 0.6–0.8 mm thick, smooth. *Seed* smooth, yellow.

Distribution — Solomon Islands and Bismarck Archipelago: New Ireland, Vanuatu, Fiji, Samoa, Tonga. Common in Vanuatu (Chanel, pers. comm.; De Kok, 1997), Fiji (De Kok, 1997) and Samoa (*Spence* 490).

Habitat — Growing in primary to secondary coastal to montane forest at 0–1160 m altitude, in well drained soil, in forest dominated by *Agathis* in Vanuatu (*Chew Wee Lek* 129), *Serianthes, Elmerrillia & Syzygium* in New Ireland (*LAE 57177*). Flowering and fruiting all year round.

Local names — Solomon Islands: Kwalo ebo (Kwara’ae language, *BSIP* 2460, 2781, 10991, 11468, 15897); Santa Isabel Island: Naosokoño (Bakhuizen van den Brink, 1935); Guadalcanal: Kwalongarimadio Kwao (Kwara’ae language, *BSIP* 8124), Kwalo Duri (Kwara’ae language, *BSIP* 9177) or Ala-ta-homa (*Kajewski* 2543); Georgia, Guadalcanal and Kolombangara Island: Kwalo alomae (Kwara’ae language, *BSIP* 9177).

Map 1. Distribution of *Faradaya amicorum* (Seem.) Seem.
4931, 5076, 8914). Vanuatu: Efate: Naas peta (Cabalion 1117); Aneityum: Nao masi jal (Cabalion 1894); Erromango: Nosortenton (Cabalion 1704); Espiritu Santo: Ashtamala (Cabalion 2779) and Wonag wona (Cabalion 888); Ngunu: Nas navu (Cabalion 1704). Fiji: Wa Korovudi, Wa kuru vundi or Wakarovungi (Degener 14621; Gillespie 2670, 3640; Smith 4752, 5799, 5859, 7032, 7388, 7523, 7764; St. John 18274); Wa vatu (Smith 1717, 1845); Wa vundi (Tuisawau AT0056); Ngakawa (Smith 81); Karavau (MacDaniels 1052); Wa masi (St. John 18308); Beta (De Kok 563), Wa vutiai and Wa Kuroyudi or Wa Kurovudi (Cambie & Ash, 1994; Parham, 1972a). Samoa: Filitavati’o or more commonly Tavatit’o (Krämer, 1903; Powell, 1868), Mamalupe (Powell, 1868; Christophersen, 1935; Reinecke, 1898; Garber 671); Tutuila: Afa or Avalupe (Reinecke, 1898; Bryan 956); Savai’i: Fue or Fue vai (Bristol 2131; Christophersen 340). Tonga: Fufula (Whistler, 1992); Tofua: Mamange (Whistler, 1991).

Uses — Solomon Islands: Guadalcanal: In common with other vines this species is used for treating gonorrhoea. The bark is macerated with water, the resulting concoction being drunk (Kajewski 2543). Vanuatu: Erromango: Bark and leaves from the top branches of the plant are used as a medicine in curing what the islanders call the illness of the Yam (Cabalion 1704). Fiji: A decoction of the chewed or grated leaves is reported to be a very effective mild purgative (Cambie & Ash, 1994). Samoa: The bark was used as a medicine against infantile fever. The fruit of a Fagraea species and scrapings of the bark of Faradaya amicorum were ground in water. The liquid was then given to the child to drink (Krämer, 1903). The flowers are also used in chaplets at weddings (Satchell, 1924). Tonga: Eua: The woody stems of the plants are collected, and sold to native healers in the markets of Nuku’alofa. An infusion of the bark is taken as a potion to relieve stomach-ache by acting as a purge (Whistler, 1992). The bark is also used against cancer (Whistler, 1991).

Notes — 1. In his description of F. amicorum var. salomonensis, Bakhuisen van den Brink (1935) gives only the glabrous corolla as the difference from the typical form. The abundance of hairs on the corolla in the whole geographical range of F. amicorum varies greatly and no clear distinction between glabrous and less glabrous forms can be drawn.

The presence or absence of the hairs on the inflorescence is very variable and a whole range of intermediates between glabrous and velutinous specimens can be found. The taxa F. vitiensis var. puberulenta, F. neo-ebudica var. degeneri and F. ovalifolia var. glabra were entirely based on this variation.

The shape of the corolla varies greatly in this species. The corollas can be hypocrateriform in shape (Fig. 1b, g) to almost bucket-shaped (Fig. 1d, f). In between these two extremes, all possible intermediates can be found (see also Gibbs, 1909). The type of F. ovalifolia is hypococrateriform, while the types of F. vitiensis and F. amicorum are more bucket-shaped.

Faradaya vitiensis was said to differ from F. amicorum only in having a cauline, rather than a terminal and/or axillary inflorescence. During field work in Fiji specimens were seen with both cauline and terminal and/or axillary inflorescences (see also the F. splendida discussion).

A number of forms were described as local entities: F. gordonii, F. savaiiensis and F. neo-ebudica, but no characters can be found on the type specimens to separate these from F. amicorum.
From the description, it is clear that *F. powellii* is a *Faraday*ya. Given the collection locality of the type it is probably conspecific with *F. amicorum*. Van Steenis had expressed the same opinion in a letter to Moldenke (Moldenke, 1982b) and in his article on *Schizopremna* (Van Steenis, 1955).

2. Named after the Friendly Islands (Tonga) where the type specimen was collected (Seemann, 1862).

3. The flowers are visited by birds, most likely honeyeaters (De Kok, 1997) and by bees (*Cabalion 888*).

4. Fruit said to be eaten by pigeons (*St. John 18274*), in one case *Ducula latrans* (*De Kok 562*). One of the Samoan names for the species (*Mama lupe*) means pigeon’s food (Parham, 1972b).

2. Faradayya lehuntei (Horne ex Baker) A.C. Sm. — Fig. 2, Map 2

Liane 4 m tall. Stem 10 cm diam.; internodes round, glabrous, smooth. Leaves decussate, leathery; blade obovate, 5.9–9.4 by 3.9–6 cm, index 1.5–1.57, glabrous, apex acute to round, base cuneate; big glands oval to round, craterlike, 0.2–0.8 by 0.2 mm, basal, few; petiole 9.8–23 by 0.8–3 mm, semi-terete in cross section, glabrous. Inflorescence 5.1–7.1 by 1.5–2.5 cm, determinate double thyrse with decussate bracts, axillary and/or terminal, velutinous, pendulous; pedicel 8–18 mm long. Calyx campanulate, 7 by 7–11 mm, fleshy, light green to white, velutinous abaxially and adaxially, base 0.8 mm long; lobes 4.5–7 by 4.2–5 mm, apex acute, all open and erect during flowering, completely reflexed when fruiting. Corolla bucket-shaped, 17.2–19 mm long, tube 10–11 by 4–10.5 mm, mouth square in cross section, fleshy, velutinous, (cream) white; lobes spatulate, all equal, 7.2–9 mm long, 7 mm wide at apex, apex emarginate to 4 mm. Stamens: filaments 27 by 0.5 mm, inserted in upper third of the corolla, greatly exerted, (cream) white; hairs 0.22–0.5 mm long, multicellular, transparent, patent, basal to middle part of stamen; anthers 5 by 1.5 mm, glabrous, straight, cream white; pollen white. Ovary lobes round, 2 by 2 mm glabrous, light green at first later bright green; style 47 by 0.7 mm, glabrous, white; stigma linear, 0.4 mm long. Disk 2 by 3.5 mm glabrous, light green. Fruit: mericarps clavate, 29–32 by 13–14 by 7–9 mm (dried), glabrous, smooth, colour unknown, four developing per fruit; endocarp 0.5–1.8 mm thick, smooth. Seed smooth.

Distribution — Fiji, Viti Levu. Restricted to the northern part of the Rairaimatuku plateau, where it is very common (De Kok, 1997).

Habitat — Growing in primary and secondary forest at 725–850 m altitude. Flowering from August to September. Fruiting from September to November.

Local name — Wavundi (*Gillespie 3166*).

Notes — 1. Baker, who first validly published the name *Clerodendrum lehuntei*, cites one specimen: *Horne 1002* (Baker, 1884). In 1978, Smith transferred the name from *Clerodendrum* to *Faradayya*; in discussion about the typification he cites the cor-
rect type (*Horne 1002* at Kew), but then states "the holotype is essentially identical with Moldenke's concept of *F. neo-ebudica var. puberulenta*, typified by *Smith 5799*" (Smith, 1978). This is a bit odd as the specimen *Horne 1002* differs from *Smith 5799* in exactly those characters (velutinous corolla, shape of corolla, number of flowers per

Fig. 2. *Faradaya lehuntei* (Home ex Baker) A.C. Sm. a. Habit; b. flower; c. vertical section of ovary; d. fruit [a–c: *De Kok 560* (K); d: *Gillespie 3166* (BISH)]. — Scale bars are 1 cm long.
inflorescence, etc.) which made him describe a completely new taxon (F. ampliflora) in 1991 (Smith & Darwin, 1991). From the descriptions given by Smith & Darwin in their treatment of the genus, and from their cited specimens it is clear that F. lehuntei sensu A.C. Sm. is identical with F. amicorum F. Muell. and not with C. lehuntei Baker.

3. The flowers are visited by birds, most likely honeyeaters, and by bees who rob the nectar through a hole at the base of the flower (De Kok, 1997).

3. Faradaya splendida F. Muell. — Fig. 3, Map 3

Faradaya dimorpha Pulle var. cauliflora Moldenke, Phytologia 4 (1952) 53. — Type: Brass 7427 (hilo L), Papua, Fly River, Oroville camp. Syn. nov.

[?Faradaya parviflora Warb. var. angustifolia H.J. Lam ex Moldenke, Phytologia 31 (1975) 398, nom. in synon.]

Liane 6–25 m tall. Stem 2.5–10 cm diam.; internodes round, glabrous to scabrous, smooth, sometimes covered in gland secretion. Leaves decussate or ternate, cartilaginous to subcoriaceous, sometimes shiny; blade ovate to elliptic, 9–29 by 5.2–16.2 cm, index 1.16–2.64, apex acute to acuminate, base cordate to rounded, glabrous to scabrous at base and midvein; venation 3-palmate at base; big glands round to oval, craterlike, 0.2–2.2 by 0.6–1.6 mm, brownish, at base, few; petiole 15–54 by 1.2–3 mm, half-terete in cross section, glabrous to scabrous abaxial; glands round, 0.12–0.32 mm diam., raised, covered or partly covered. Inflorescence 6.2–35 by 2.5 cm, axillary and/or terminal, determinate double thyrses with decussate bracts, erect, glabrous to covered with patent hairs; glands craterlike, 0.06–0.7 mm diam., few. Calyx campanulate, linear to bulbous, 8–23 by 4–8 mm, 1–4 lobes, split irregularly during flowering, erect during flowering, persistent, fleshy to membranous, greenish white to (pale) green, abaxially glabrous to covered with patent transparent hairs, erect when
Fig. 3. *Faradaya splendida* F. Muell. a. Habit; b. fruit; c. part of inflorescence and flower; d. section of ovary; e. inflorescence; f. flower; g. sections of ovaries [a: Brass 8069 (L); b: Carr 14951 (K); c, d: Van Royen 4611 (K); e–g: Mabberley & Siaguru 2428 (FHO)]. — Scale bars are 1 cm long.
fruiting; lobes 7–18 by 4–11 mm, 0.1–1 mm thick, apex acute to acuminate or mucronate; glands round, craterlike, 0.06–0.9 mm diam., outside brown, few. **Corolla** narrowly infundibular, 22–76 mm long, tube 10–30 by 2–7 mm, abaxially glabrous or middle to apex with few multicellular transparent hairs, (weak to strong) sweet scented, fragile or fleshy, white or greenish-white; lobes spatulate to oblong, 5–54 mm long, 8–33 mm wide at apex, 6–15 mm at base, erect, apex entire to lobed or emarginate to 0–10 mm. **Stamens**: filaments 16–75 by 0.3–1 mm, usually equal, in upper third of the tube, exerted to greatly exerted, white; hairs 0.3–1 mm long, from base to middle part, absent to abundant, multicellular, transparent, patent; anthers 2.5–4 by 1–2 mm, glabrous, brownish; pollen orange yellowish to yellow. **Ovary** lobes round, 1–2 by 1–2 mm, velutinous to glabrous, light green, sometimes with craterlike glands; style 45–80 by 0.6–1 mm, glabrous, white; stigma triangular, 2-lobed, 0.2–1.5 mm long. **Disk** 0.5–1.4 mm high, 1.6–3.5 mm wide, glabrous, light green. **Fruit** ellipsoid to egg-shaped, falcate, white to pale or creamy yellow; mericarp 38–60 by 18.2–30 by 17–30 mm (dried), 55–70 by 45–55 mm (fresh; Munir, pers. comm.), sparingly scabrous; glands round, 1–1.5 mm diam.; seed coat 1–3 mm thick, with 2 mm high irregular ridges. **Seed** smooth.

Habitat — Growing in primary to secondary forest, in swamp and flood forest to hill forest, altitude 0–2000 m, in humus or clay soils. Often common (**Docters van Map 3. Distribution of Faradaya splendida F. Muell.**)
Leeuwen 9101, Hoogland & Womersley 3243, Brass 8200). Found growing on Incarcarpus fagifer (Van Royen 3124), Timonius (Streimann 28826), Neonauclea (Van Royen 4518), Nypa (Takeuchi 4620) and Heritiera littoralis (Van Royen 4611) and in sago swamps (Van Royen & Sleumer 6605). Flowering all year round but mainly from June to October. Fruiting all year round but mainly from September to January.

Local names — Talaud Island: Latára (Lam 3342). Irian Jaya: Sijai (Bian dialect, Van Royen 4611); Gieselompoes (Mooi language, Boswezen 12762); Rieraroh (Argoeni language, Versteeg 7582). Papua New Guinea: Northern Prov.: Pitutu (Orokaiva language, Hoogland & Womersley 3243); Western Highlands: Bemingkan (Yoowi dialect, Hagen-Chimbu language, Vink 16396); Eastern Highlands: Nekamanoei (Okapa language, Wheeler 5887); E Sepik Prov.: Tek ontrek (Miyanmin language, Frodin et al. 2636); Bougainville, Siuai: Kuteha (Waterhouse 364b). Australia: Fragrant Faradaya (Munir, 1987); Tully River Natives: Buku (Bailey, 1909); Dunk Island Natives: Koeyan (Bailey, 1909).

Uses — Australia: The stripped outer bark is used as a fish poison. The middle layer of the bark is carefully scraped off and rubbed onto stones previously heated by fire. The stones are then thrown into a creek or a little lagoon, with fatal results to all fish and other marine animals. The bark contains sapotoxin, which even in a great dilution is an effective and rapid fish poison. Agitation, subsequent stupefaction and approach to the surface quickly sets in, and death comes in as little as one hour (Hamlyn-Harris & Smith, 1916). Papua New Guinea: In 1974, the toxicity of F. splendida was part of a criminal investigation in Madang. It appeared that sap, or perhaps an infusion of the bark, had been given to the victim (Henty, 1980). The fruit is said to be edible (Moldenke & Moldenke, 1983).

Ornamental climber which can be grown in tropical and subtropical regions, in open sunny places with plenty of water (Elliot & Jones, 1986).

Notes — 1. Faradaya albertisii, F. splendida and F. dimorpha var. cauliflora used to be distinguished by the type of inflorescence only (lateral, terminal or cauliflorous) (Munir, 1987; Moldenke, 1982b). Field observations in Madang Province (Papua New Guinea), showed that the shoot apices flower first, followed by the shoots back along the axis so that, dependent on the time during a flowering event that collections are made, plants may seem to have ‘terminal’ or ‘lateral’ or both types of inflorescence (Mabberley, 1992). This can even be seen in dried material, the specimen Kajewski 1293 (K) showing both types of inflorescence. Other specimens with cauliflorous and lateral and/or terminal inflorescence have also been found.

The two varieties of F. dimorpha were based on the difference in the leaf insertion (opposite or ternate, Lam, 1919). However, after finding a plant in the botanical garden in Bogor with both character states, Lam & Bakhuizen van den Brink dropped these varieties (Lam & Bakhuizen van den Brink, 1921).

The acuminate apex of the calyx was one of the first distinguishing characters mentioned in the genus Faradaya (Seemann, 1865). This character, however, only occurs in F. splendida and is very variable and sometimes even absent. There is a clear line from the southern part of the species range to the northern in which this acuminate apex reduces into an acute apex. The same is true for the consistency of the calyx and the stamens/corolla tube length/length ratio. Specimens from the northern
part of the species range often have greatly exserted stamens, while specimens from
the southern part only have stamens which just exceed the corolla tube. In southern
Papua New Guinea all possible intermediate forms between the ‘Northern’ and ‘South-
ern’ form can be found. The types of Faradaya papuana, F. ternifolia, F. dimorpha,
F. magniloba, F. matthewsii and F. excellens are all representatives of intermediates.

A number of specimens from New Guinea and the Bismarck Archipelago, in-
cluding the type of F. hahlii, have distinctly didynamous stamens (Lam, 1919; Moldenke,
1982b). However, the difference in length between the pair of stamens varies consid-
erably and cannot be used as a distinguishing character.

From the original description it is clear that F. peekelli has a 3-lobed calyx, irregular
unequal stamens and a fragile 4-lobed corolla. Markgraf originally placed it in Clero-
dendrum sect. Tridens. But this was rejected by Lam in a personal communication to
Van Steenis (Moldenke, 1982b). Lam based his arguments on observations of Peekel
145, and on his belief that Clerodendrum species are shrubs and not lianes like Peekel
696 (Moldenke, 1982b). Moldenke subsequently transferred the name from Clero-
dendrum to Faradaya. Peekel (1984) gives a drawing and description of the taxon in his
Illustrated Flora of the Bismarck Archipelago. He cites three specimens, one of which
is the type. It is not clear however if the type specimen is the one which is depicted.
The drawings and description do not differ greatly from the original description by
Markgraf (1927), and fall within the variability of F. splendida. On the basis of this
drawing and description, Mabberley (1992) placed it in the synonymy of F. splendida.

From the descriptions, it is clear that F. parviflora and F. nervosa belong to Far-
daya and, given the collection locality of the types, they are probably conspecific
with F. splendida.

2. On North Borneo sterile and fruiting collections of a liane species of Gmelina
are often confused with collections of this species (Van Balgooy, pers. comm.).

3. Faradaya splendida is named as one of the food-plants of the larvae of the
Australian butterfly Narathura micale amphis (Burns & Rotherham, 1969).

4. The flowers of a plant growing in the botanical garden in Bogor were attacked
by a beetle (Sphaerometopa sp.); bees robbed the nectar and ants are attracted by the
extrafloral nectaries (Nieuwenhuis-von Üsküll-Güldenbandt, 1907). The leaves are
often insect-galled (Moldenke & Moldenke, 1983).

5. Saponins, possibly triterpenoid or steroidal, were detected in the leaf, stem and
roots (Simes et al., 1959). Alkaloids have been isolated from plants in the botanical
garden in Bogor (Greshoff, 1898). The roots of a plant from Cairns in Queensland
tested positive for alkaloids, while the leaves tested negative (Webb, 1949). Stem ma-
terial tested negative for the presence of syringin, and negative for the HCL/Methanol
test (Gibbs, 1974). The presence of iridoid glucosides, 8β-hydroxy-iridoids and 4-un-
substituted iridoids is recorded by Rimpler et al. (1992).

EXCLUDED SPECIES

Schutzgeb. Südsee (1905) 370. — Type: F.H. Brown s.n. [B, n.v; iso NSW (‘158’)],
New Guinea, Astrolabe Range = Deplanchea tetraphylla (Bignoniaceae). See Lam
& Meeuse (1938).

According to the original description and key, this plant differs from all other Faradaya species in having a dense inflorescence and stellate hairs on the adaxial side of the leaves. Because the type specimen is incomplete and only had buds, Lam expressed doubt about his basing a new species on such poor material (Lam, 1919). Dense inflorescences are common in the genus, but stellate hairs are unknown, which makes it unlikely that it belongs to Faradaya.

ACKNOWLEDGEMENTS

The authors wish to thank the directors of the following herbaria for sending loans and/or allowing visits to their institutions: BISH, BM, CANB, CGE, FHO, K, L, MEL, NOU, NSW, NY, OXF, P, PVV, SUVA, TCD, TI and W. We also wish to thank A. Paton, A. Sing, A. Strugnell and R. Wise in England; M. Doyle and D. Fuller for their help while De Kok was in Fiji; and S. Chanel and H. Corrigan in Vanuatu. The first author was supported by a grant from the ‘EC Human Capital and Mobility Programme, Cooperative Network in the Botanical Diversity of the Indo-Pacific Region’, which is gratefully acknowledged. The Hugo de Vries-fonds provided most welcome financial support towards the illustrations.

REFERENCES

IDENTIFICATION LIST

Faradaya: 1 = F. amicorum; 2 = F. lehuntei; 3 = F. splendida

Aet 508: 3; 512: 3; 533: 3 — Aet & Idjan 833: 3 — Anonymous XV.F.9: 3; 7195: 1 — Ash 19851: 1.

Barclay 3373: 1 — Boden Kloss camp I: 3; camp III: 3 — Boswezen 3623: 3; 12762: 3 — Brass 1631: 3; 2635: 1; 2642: 1; 3399: 1; 7427: 3; 7442: 3; 7770: 3; 7873: 3; 8069: 3; 8200: 3; 13918: 3; 23923: 3 — Bristol 1961: 1; 2026: 1; 2131: 1; 2300: 1 — Bryan 205: 1; 284: 1; 341: 1; 612: 1; 956: 1; 970: 1 — BSIP 2460: 1; 2781: 1; 4931: 1; 5076: 1; 6194: 3; 8124: 1; 8837: 1; 8914: 1; 9177: 1; 9748: 1; 10991: 1; 11468: 1; 12258: 1; 12825: 1; 14401: 1; 15692: 1; 15892: 1; 15897: 1; 16122: 1 — Buwalda 5888: 3.

Cabanion 888: 1; 1117: 1; 1704: 1; 1894: 1; 2779: 1 — Cambage 16269: 3 — Carr 11594: 3; 12618: 3; 14951: 3 — Chaney 89: 1 — Chew Wee-Lek RSNH 129: 1 — Christophersen 188: 1; 299: 1; 340: 1; 781: 1; 990: 1; 3478: 1 — Christophersen & Hume 2173: 1 — Clemens 1067: 3; 1719: 3; 6715: 3 — Comins 18b: 1 — Cox 98: 1; 349: 1; 368: 1 — Crosby 293: 1 — Cruttwell 876: 3; 1140: 3.

De Kok 560: 2; 561: 1; 562: 1; 563: 1; 564: 1; 565: 1 — Degener 14621: 1; 15333: 1 — Degener & Ordonez 13619: 1; 13762: 1 — Dieffenberger 1: 1; 12: 1; 28: 1 — Djamhari 378: 3 — DK, SV & Peter 16974: 1 — Docters van Leeuwen 9101: 3; 9948: 3; 10991: 3 — Durand 5710: 3.

Eyma 5100: 3.
Garber 552: 1; 671: 1; 913: 1 — Garrett & Staples 645: 3 — Gibbs 559a: 1; 559b: 1; 576: 1 — Gillespie 2182: 1; 2596: 1; 2616: 1; 2670: 1; 2881: 1; 2979: 1; 3166: 2; 3290: 1; 3513: 1; 3640: 1; 3738: 1; 4530: 1 — Gillison 22481: 3 — Gjellerup 729: 3 — Graeff 1361: 1; 1579: 1 — Greenwood 462a: 1; 462b: 1; 462c: 1; 966: 1.
Hann 144: 3 — Hartley 12283: 3 — Henty & Sayers 20530: 3; 20587: 3 — Hoogland 5158: 3 — Hoogland & Craven 10125: 3 — Hoogland & Womersley 3243: 3 — Horne 36: 1; 1002: 2 — Hotta 5015: 1.
Jacobs 9551: 3.
Kajewski 813: 1; 1293: 3; 2543: 1 — Kanis 1081: 3 — Katik 70807: 3 — Kornnaris 886: 3 — Koroiveiba 10798: 1; 10801: 1; 10806: 1; 12373: 1; 12821: 1; 13546: 2; 14057: 1; 14480: 1 — Kuruvoli 15424: 1.
LAE series 57177: 1 — Lam 475: 3; 3342: 3; 6871: 1 — Lauterbach 528: 3 — Ledermann 7318: 3; 7925: 3 — Ledua 10993: 1.
Mabberley & Siaguro 2428: 3 — MacDaniels 1052: 1 — MacKee 2893: 1; 2945: 1 — Meebold 16485: 1; 16486: 1; 21356: 1; 26582: 1 — Melville 7125: 1; 7129: 1 — Melville, Melville & Parham 12735: 1 — Millar 14606: 3; 18885: 3; 22626: 3; 35136: 3; 48608: 3 — Millar & Vanderberg 35208: 3 — Mitchell 504: 1 — Morat 6509: 1.
Nagata 1211: 1.
Parham 8518: 2; 11497: 1; 16685: 1 — Parks 16137: 1; 16185: 1; 16216: 1; 16372: 1; 20036: 1; 20386: 1; 20439: 1 — Pleyte 478: 3; 645: 3.
Rechinger 141: 1; 173: 1; 3728: 1; 3927: 3 — Regalado & Vodonaivalu 592: 1; 878: 2.
Saula & Lepani 18156: 1 — Saunders 560: 3 — Sayers 18981: 3 — Schiffer 2465: 3 — Schlechter 16411: 3 — Schmid 3816: 1 — Seouli 40: 1 — Setchell 64: 1 — Setchell & Parks 15062: 1 — Siwatiibu 18005: 1 — Smith 81: 1; 1570: 1; 1717: 1; 1845: 1; 4077: 1; 4636: 1; 4752: 1; 4905: 3; 5505: 2; 5799: 1; 5822: 2; 5859: 1; 7032: 1; 7388: 1; 7523: 1; 7764: 1; 8385: 1; 9004: 1; 9091: 1; 9199: 1 — Spence 490: 1 — St. John 18274: 1; 18308: 1 — Streimann 28826: 3; 34086: 3 — Streimann & Lelean 18437: 3.
Takeuchi 4620: 3 — Teijmsman 6773: 3 — Teroaoka & Kennedy 77: 1 — Thomsen 633: 3 — Tothill & Tothill 412: 1; 497: 1; 559: 1; 658a: 1; 668: 1; 671: 1; 672: 1 — Tuisawau AT0056: 1 — Turner 76: 3.
Van Balgooy 6657a: 3 — Van Royen 3124: 3; 4518: 3; 4611: 3 — Van Royen & Sleumer 6605: 3 — Vaughan 3179: 1; 3215: 1 — Veillon 3977: 1 — Verdcourt 4931a: 3 — Versteeg 1045: 3; 7582: 3 — Vink 16396: 3 — Villamil 253: 3 — Vodonaivalu & Lepani 18156: 1 — Von Römer 146: 3 — Vinubobo 3284: 1.
Yuncker 9174: 1; 9301: 1; 9387: 1; 9445: 1; 15242: 1; 15368: 1.

INDEX OF NAMES

Numbers refer to the species number as used in this revision. The genus name, together with its synonyms have been page number. The accepted names are in bold type and synonyms are in italics. For the excluded taxa the abbreviation excl. is used.

Clerodendrum L.
sect. Tetrathyranthus A. Gray [p. 324]
sect. Terminallioidea Soland. ex Seem. [p. 324]
amicorum Seem. 1
arthurgordonii Horne 1
fissicallyx Scheff. ex Moldenke 3
lehunetei Horne 2
ovalifolium A. Gray 1
(Clerodendrum)
peekelli Markgr. 3
powellii (Seem.) Drake 1
Faradaija Wigman [p. 324]
Faraday F. Muell. [p. 324]
Albertisii F. Muell. 3
amicorum (Seem.) Seem. 1
var. salomonensis Bakh. 1
(Faradaya)
ampliflora A.C. Sm. & S.P. Darwin 2
chrysoclada K. Schum. [excl.]
dimorpha Pulle 3
 var. α opposita H.J. Lam 3
 var. β ternata H.J. Lam 3
 var. cauliflora Moldenke 3
excellens K. Schum. ex Moldenke 3
glaabra (Moldenke) A.C. Sm. &
 S.P. Darwin 1
gordonii Baker 1
hahlii Rech. 3
lehuneti (Horne ex Baker) A.C. Sm. 2
 var. degeneri (Moldenke) Moldenke 1
lehuneti sensu A.C. Sm. non (Horne ex Baker)
 A.C. Sm. 1
magniloba Wernham 3
matthewsii Merr. 3
neo-ebudica Guillaumin 1
 var. degeneri Moldenke 1
 var. puberulenta (Moldenke) Moldenke 1

(Faradaya)
nervosa H.J. Lam 3
ovalifolia (A. Gray) Seem. 1
 var. glabra Moldenke 1
papuaana Scheff. 3
parviflora Warb. 3
 var. α typica H.J. Lam 3
 var. β angustifolia H.J. Lam 3
 var. angustifolia H.J. Lam ex Moldenke 3
 var. parviflora 3
peekelli (Markgr.) Moldenke 3
 powellii Seem. 1
salomonensis (Bakh.) Moldenke 1
savaiiensis Rech. 1
splendida F. Muell. 3
squamata H.J. Lam [excl.]
srifolia F. Muell. 3
vitakensis Seem. 1
 var. puberulenta Moldenke 1
Schizopremna Baill. [p. 324]
timorensis Baill. 1