Key words
Disporopsis
Disporum
Liliaceae s.l.
Philippines
Taiwan
taxonomy

Abstract
Phytochemical characters of the plants that have been treated as Disporum luzoniense (Merrill & Merritt 1910) or Disporopsis fuscopicta (Jessop 1979) in the Philippines were compared with those of Disporum kawakamii and Disporopsis fuscopicta in Taiwan. The present phytochemical study revealed that Disporum kawakamii had luteolin, apigenin and chrysoeriol as free state, while these flavonoids were not detected in the Philippine plant and Disporopsis fuscopicta from Taiwan. Moreover, flavone O-glycosides were isolated from Disporum kawakamii, while flavone C-glycoside was isolated from the Philippine plant and Disporopsis fuscopicta from Taiwan. In conclusion, the present study suggests that the Philippine plant is chemotaxonomically related to Disporopis and this agrees with the taxonomic treatment of Jessop (1979).

INTRODUCTION

The genus Disporum Salisb. (Liliaceae s.l.; Colchicaceae sensu, APG II 2003) consist of 22 species primarily distributed in the temperate zone of eastern Asia (Kawano & Takasu 2004). On the other hand, the genus Disporopsis Hance (Liliaceae s.l.; Convallariaceae, APG II 2003) consists of 6 species that are primarily distributed in eastern Asia (Liang & Tamura 2000). In 1910 Merrill (Merrill & Merritt 1910) described Disporum luzoniense based on a type specimen collected from Benguet Province, Luzon, the Philippines (E.D. Merrill 6619, deposited in US). Thereafter, Jessop (1979) identified the Benguet plant as Disporopsis fuscopicta Hance based on morphological characters. His taxonomic treatment was taken up by Kumar & Brandham (1980) and Hara (1988).

Flavonoid compounds based on a fifteen-carbon skeleton consist of two phenyl rings (A- and B-rings) connected by a three-carbon bridge (C-ring). In most cases, the flavonoids are present as glycosides in flowers, leaves, stems or roots. They were divided into several classes, i.e., flavones, flavonols, flavanones, anthocyanins, etc. Numerous kinds of flavonoids have been found in plants by the combination of additional hydroxyl, methoxyl, methyl and/or glycosyl groups. At the present, more than 7 000 kinds of flavonoids have been reported as natural products (Andersen & Markham 2006). These flavonoids have frequently been used as chemotaxonomic markers (e.g. Iwashina et al. 1995, Yamazaki et al. 2007).

The aim of the present study is to assess the taxonomic status of the plant previously labelled as Disporum luzoniense from the Philippines by comparing the phytochemical characters with morphological and cytological observation and to compare this plant with specimens labelled as Disporum and Disporopsis from Taiwan.

MATERIAL AND METHODS

Plant materials
Plant materials from the experimental greenhouse of Tsukuba Botanical Garden, National Museum of Nature and Science were used for morphological, phytochemical and cytological study. Voucher specimens are deposited in the herbarium of the National Museum of Nature and Science (TNS).

Morphological characters
The following morphological characters of the specimens were observed in this study: presence/absence of corona inside of perianth and presence/absence of rhizomes.

One of two plants collected from Taiwan was morphologically identified as Disporum kawakamii Hayata in having an umbel type of inflorescence with few flowers (Fig. 1a), no corona inside the perianth and very thin or no rhizomes at all (Fig. 1d, Ying 2000); and another was identified as Disporopsis fuscopicta Hance var. arisanensis (Hayata) S.S.Ying in having an axillary inflorescence (Fig. 1c), well-developed rhizomes (Fig. 1f), and presence of a corona inside the perianth (Fig. 2, Ying 2000). The floral and rhizome morphologies of the plant from the Philippines were similar to those of Disporopsis fuscopicta var. arisanensis, and were also consistent with the description of Disporum luzoniense.

Chromosome study
Root tips were harvested, pretreated in 2 mM 8-hydroxyquinoline at 20 °C for 2h, and fixed in acetic ethanol (1 : 3) at 4 °C for 2h. The fixed root tips were macerated in 2 : 1 mixture of 1N hydrochloric acid and 45 % acetic acid at 60 °C for 10 seconds. Somatic chromosomes at mitotic metaphase were stained in 2 % aceto-orcein at 20 °C for 2h, and spread by the standard squash method.

Flavonoid extraction and isolation
Fresh leaves of Disporum kawakamii (25 g), Disporum luzoniense from the Philippines (129 g) and Disporopsis fuscopicta var. arisanensis (45 g) were extracted with methanol. The flavonoids were isolated by preparative paper chromatography

Published on 30 October 2009

DOI: 10.3767/000651909X474096
www.ingentaconnect.com/content/nhn/blumea

Blumea 54, 2009: 59–62
HPLC and PC survey of crude extracts

The MeOH extracts were surveyed for flavonoid composition by Shimadzu HPLC systems (Shimadzu Co., Japan) using Pegasil ODS (I.D. = 6.0 × 150 mm (Senshu Scientific Co., Japan)) at a flow rate of 1.0 mL min⁻¹, injection: 10 μl, detection wavelength of 190–700 nm, and eluents of MeCN/H₂O/H₃PO₄ (35 : 65 : 0.2) (Solvent I) for crude extracts and aglycones and MeCN/H₂O/H₃PO₄ (22 : 78 : 0.2) (Solvent II) for glycosides. Two-dimensional paper chromatography (2D-PC) was performed using solvent systems: BAW (1st) and 15 % HOAc (2nd).

Identification of flavonoids

The isolated compounds were identified by UV spectral survey according to Mabry et al. (1970), LC-MS, acid hydrolysis (in 12 % aq.HCl, 100 °C, 30 min), and direct TLC and HPLC comparisons with authentic specimens. TLC, UV, LC-MS and HPLC data of the isolated compounds were as follows.

Luteolin (1). TLC: R, 0.88 (BAW), 0.03 (15 % HOAc), 0.91 (BEW); UV - dark purple and UV/NH₃ - bright yellow. HPLC: retention time (Rt) 5.73 min (Solvent I). UV: λmax (nm) MeOH 255, 266sh, 349; +NaOMe 268, 326, 403 (inc.); +AlCl₃ 272, 422; +AlCl₃/HCl 257, 273sh, 296, 359, 385sh; +NaOAc 267, 396; +NaOAc/H₃BO₃ 262, 373. LC-MS: m/z 285 [M-H].

Luteolin 7-O-glucoside (4). TLC: R, 0.34 (BAW), 0.07 (15 % HOAc), 0.54 (BEW); UV - dark purple and UV/NH₃ - bright yellow. HPLC: Rt 6.01 min (Solvent II). UV: λmax (nm) MeOH 256, 268sh, 351; +NaOMe 268, 394 (inc.); +AlCl₃ 272, 417; +AlCl₃/HCl 262, 274sh, 293, 357, 383sh; +NaOAc 260, 405; +NaOAc/H₃BO₃ 258, 372. LC-MS: m/z 447 [M-H]. 285 [M-glucosyl-H].
RESULTS AND DISCUSSION

Chromosome numbers

The plant of Disporopsis fuscopicta var. arisanensis and the plant labelled as Disporum luzoniense had the same chromosome number of 2n = 40, which agrees with the findings of Chang & Hsu (1974) and Kumar & Brandham (1980) (Table 1, Fig. 3b, c). The chromosome number corresponds with the basic chromosome number of x = 20 in the genus Disporopsis (Darlington & Wylie 1955, Chang & Hsu 1974, Hong & Zhu 1990). On the other hand, Disporum kawakamii had a somatic chromosome number of 2n = 16 (Table 1, Fig. 3a). This number agrees with the findings of Chao et al. (1963), Chang & Hsu (1974) and Tamura et al. (1992).

Previously Kumar & Brandham (1980) detected the chromosome number of 2n = 40 for a plant collected from the type locality of Disporum luzoniense, and then cytotaxonomically supported Jessop (1979). Also the present cytological investigation upholds Jessop’s taxonomic treatment (1979) and also agrees with the findings of Kumar & Brandham (1980).

Phytochemical analysis and conclusion

Five major flavonoids were isolated from Disporum kawakamii (Table 2). They were completely identified as luteolin (1), luteolin 7-O-glucoside (4), luteolin 4’-O-glucoside (5), luteolin 7-O-diglucoside (6) and luteolin 7-O-rhamnosyglucoside (7).

Table 1: Comparison of morphological and cytological characters of plant materials studied.

<table>
<thead>
<tr>
<th>Species</th>
<th>Inflorescence</th>
<th>Rhizome</th>
<th>Corona</th>
<th>Chrom. no. (2n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disporum kawakamii (HS, Taiwan; GK 5207)</td>
<td>terminal</td>
<td>absent</td>
<td>absent</td>
<td>16</td>
</tr>
<tr>
<td>Disporum luzoniense sensu Merrill</td>
<td>axillary</td>
<td>present</td>
<td>present</td>
<td>40</td>
</tr>
<tr>
<td>Disporopsis fuscopicta sensu Jessop (Ilan, Taiwan; YS 346)</td>
<td>axillary</td>
<td>present</td>
<td>present</td>
<td>40</td>
</tr>
</tbody>
</table>

Table 2: Flavonoid characters.

<table>
<thead>
<tr>
<th>Species</th>
<th>Aglycones</th>
<th>Glycosides</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 2 3</td>
<td>O-glycosides</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4 5 6 7</td>
</tr>
<tr>
<td>Disporum kawakamii</td>
<td>* * *</td>
<td>* * *</td>
</tr>
<tr>
<td>Disporum luzoniense/Disporopsis fuscopicta (Philippines)</td>
<td>- - -</td>
<td>- - -</td>
</tr>
<tr>
<td>Disporopsis fuscopicta var. arisanensis</td>
<td>- - -</td>
<td>- - -</td>
</tr>
</tbody>
</table>

5 = luteolin 7-O-glucoside; 6 = luteolin 4’-O-glucoside; 7 = luteolin 7-O-rhamnosyglucoside; 8 = apigenin 6-C-hexoside-8-C-pentoside or 6-C-pentoside-8-C-hexoside.
Furthermore two minor flavonoids were inferred as apigenin (2) and chrysoeriol (3) by HPLC comparisons with authentic samples, but the two minor flavonoids could not be completely identified for lack of enough samples.

Previously a chemotaxonomic study has been done on three Asian Disporum species, e.g., D. calcaratum, D. cantoniense and D. sessile, and the three species revealed that their main flavonoids were luteolin glycosides (Williams et al. 1993). In the present survey, main flavonoids were also four luteolin glycosides (4, 5, 6 and 7) in Disporum kawakamii following Williams et al. (1993). However, out of five major flavonoids detected (1, 4, 5, 6 and 7), luteolin 7-O-rhamnosyglucoside (7) in D. kawakamii was different from that of luteolin 7-O-rutinoside (i.e. 7-O-rhamnopyranosyl-(1→6)-glucoside) in the three Disporum species (Williams et al. 1993). Further phytochemical study is necessary for clarifying chemotaxonomic relationships in the genus Disporum.

On the other hand, only one flavone C-glycoside (8) was isolated from the Philippine plant and Disporopsis fuscopicta var. arisanensis in Taiwan (Table 2), but any flavone O-glycosides and flavone aglycones were not isolated from the two plants differing from that of Disporum kawakamii.

The present phytochemical analysis reveals that the flavonoid composition of the plant labelled as Disporum luzoniense is completely consistent with Disporopsis fuscopicta var. arisanensis but distinctly different from those of Disporum kawakamii and the three Disporum species reported by Williams et al. (1993). In conclusion, the phytochemical study suggests that the Philippine plant that was previously identified as Disporum luzoniense is actually related to Disporopsis. Our phytochemical study result agrees with the taxonomic study of Jessop (1979) and Kumar & Brandham (1980).

Acknowledgements We sincerely thank Chien-I Huang, Hebarium (HAST), Biodiversity Research Center, Academia Sinica, Taiwan and Ray Ong (in Manila) for field assistance. This study was supported in part by a Research Fellowships of the Japan Society for the Promotion of Science for Young Scientists of JSPS (YS), and the project ‘Integration of Systematics and Molecular Phylogenetics in All Groups of Organisms’ of the National Science Museum (GK).

REFERENCES


