
Persoonia 21, 2008: 17– 27
www.persoonia.org	 doi:10.3767/003158508X336576

© 2008	 Nationaal Herbarium Nederland
	 Centraalbureau voor Schimmelcultures

RESEARCH  ARTICLE

INTRODUCTION

The ascomycetous teleomorph genus Debaryomyces is gener-
ally recognised by the production of persistent asci by mother 
cell-bud conjugation and the formation of warty ascospores, 
usually one or two per ascus. The most common species is 
the type species D. hansenii, described in 1952. This species 
has been isolated from a large diversity of natural sources, 
like fruit, air, water, soil, but most frequently from processed 
food products, in particular dairy products (Fröhlich-Wyder 
2003), meat and sausages (Samelis & Sofos 2003), but also 
from sake-moto, wine, tobacco, coffee beans, brines, where 
it is important for the ripening and flavour composition of the 
products. Additionally, the species has been recovered from 
man and animals (Nishikawa et al. 1996, de Hoog et al. 2000, 
Pfaller et al. 2005).

Based on partial sequences of the nuclear large subunit ribo
somal (LSU) DNA, Kurtzman & Robnett (1997, 1998) studied 
the phylogeny of ascomycetous yeasts including 15 Debaryo-
myces species. These 15 taxa were separated into four clades, 
exemplified by the species D. hansenii, D. polymorphus, D. melis- 
sophilus and D. etchellsii, respectively. The clade represented 
by D. hansenii included five more teleomorph species, D. nepal
ensis, D. maramus, D. coudertii, D. robertsiae and D. udenii, 
and is here referred to as the D. hansenii clade sensu Kurtz-
man & Robnett (1998). According to highly similar D1/D2 LSU 
sequences (V. Robert, unpubl. data), this clade also includes 
D. prosopidis, a species that resembles D. hansenii physiologi-

cally. Phaff et al. (1998) distinguished both by the inability of 
D. prosopidis to grow on cellobiose and salicin, low DNA reas-
sociation values and opposed electrophoretic karyotypes.

Debaryomyces subglobosus, D. kloeckeri and D. nicotianae 
were combined as synonyms with D. hansenii by Kreger-van Rij 
(1970) because several strains showed intermediate reactions 
in lactose assimilation and formation of dry, creeping pellicles 
on liquid media, so far considered as distinctive characteris-
tics of these species. Comprehensive taxonomic studies of 
D. hansenii and related species were published by Nakase & 
Suzuki (1985a, b). DNA reassociations of above 68 % within 
groups and 47–66 % between groups, the presence/absence of 
glucose-6-phosphate dehydrogenase activity and the maximum 
growth temperatures (MGTs) of 31–35 °C or 36–39 °C were 
used to establish two subgroups among isolates identified as 
D. hansenii for which the varieties hansenii and fabryi were 
introduced (Nakase & Suzuki 1985b). Twenty-two species were 
placed in synonymy with the variety hansenii, for which Candida 
famata var. famata was recognised as anamorph and three spe-
cies were placed in synonymy with the variety fabryi, for which 
C. famata var. flareri was recognised as anamorph. Among the 
synonyms of D. hansenii var. fabryi was also D. subglobosus, 
although Price et al. (1978) had found only 39.7 % DNA 
relatedness between D. subglobosus CBS 792T and D. han- 
senii CBS 767T. Between the type strains of the anamorphs 
of the two varieties of D. hansenii, C. famata var. famata CBS 
1795T and C. famata var. flareri CBS 1796T, differences of the 
electrophoretic patterns of ten enzymes were found (Yamazaki 
& Komagata 1982). Debaryomyces subglobosus was continued 
to be assigned to D. hansenii based on the difficulty of separat-
ing them by the commonly employed taxonomic characteristics 
(Kreger-van Rij 1984). Further heterogeneity was recognised 
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by Nishikawa et al. (1996), who found an intermediate DNA 
reassociation value of 63 % between the type strains of D. han- 
senii var. fabryi CBS 789T and its anamorph C. famata var. 
flareri CBS 1796T. Prillinger et al. (1999) examined 12 strains 
of D. hansenii isolated from different types of cheeses from 
four European countries phenotypically and genotypically. Us-
ing RAPD-PCR including the type strains of D. hansenii var. 
hansenii and D. hansenii var. fabryi, these authors considered 
the varieties hansenii and fabryi as two genetically distinct enti-
ties and reinstated the varieties at the species level. However, 
Barnett et al. (2000) maintained both varieties of D. hansenii. 
The number of 23 nucleotide differences between partial actin-1 
(ACT1) gene sequences of D. hansenii var. fabryi CBS 789T and 
its anamorph C. famata var. flareri CBS 1796T also indicated 
interspecific variation (Daniel & Meyer 2003). 

In view of the heterogeneity of D. hansenii and its inconsistent 
species delineation, a polyphasic approach was used in this study 
to provide a basis for its re-classification. A total of 65 D. han- 
senii strains, including 27 type and syntype strains, were ex-
amined using MGTs and PCR fingerprinting, an approach that 
has shown its value in previous studies (Cadez et al. 2002, 
Smith et al. 2005, Knutsen et al. 2007). In selected strains, DNA 
reassociations, ascospore morphology and DNA sequences 
were determined. 

MATERIALS AND METHODS

Strains

The strains examined in this study, their origin and original des-
ignation according to the catalogue of the Centraalbureau voor 
Schimmelcultures (www.cbs.knaw.nl) are listed in Table 1.

PCR fingerprint analyses

Extraction of high-molecular weight DNA was performed by a 
combination of the Qiagen DNeasy protocol and the Invisorb® 
Spin Plant Mini Kit (Invitek, Germany) with modifications. From 
a culture grown on DYPA (2 % dextrose, 0.5 % yeast extract, 
1 % peptone, 2 % agar) for 72 h at 25 °C, three 10 µL loops 
of cells were resuspended in 600 µL of Sorbitol Buffer (1 M 
sorbitol, 100 mM sodium EDTA, 14 mM β-mercaptoethanol) and 
200 U of lyticase (L4025, Sigma, Belgium). The samples were 
shaken overnight at 30 °C, the suspension was centrifuged for 
2 min at 12 000 rpm and the supernatant was discarded. Four 
hundred µL lysis buffer P and 20 µL proteinase K were added, 
the mix was homogenised with a pipette tip and incubated for 
30 min at 65 °C. The solution was transferred onto a spin filter 
and centrifuged for 5 min at 12 000 rpm. Twelve µL of RNAse 
A (100 mg/mL in molecular biology grade water) were added to 
the filtrate, which was vortexed briefly and incubated for 30 min 
at room temperature. Two hundred µL of binding buffer P were 
added, the sample was vortexed briefly, transferred to a fresh 
spin filter and centrifuged for 1 min at 12 000 rpm. Five hundred 
and fifty µL of wash buffer I were added to the spin filter, the 
filter was centrifuged as before and the filtrate was discarded. 
A similar treatment using wash buffer II and a final treatment 
with 400 µL wash buffer II and centrifugation for 2 min at 12 000 
rpm concluded the DNA purification. The DNA was then eluted 
with 100 µL molecular biology grade water (preheated to 65 °C) 	
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for 3 min and centrifuged for 1 min at 10 000 rpm. This DNA, 
stored at 4 °C for short term preservation and at -20 °C for long 
term preservation, was used for PCR fingerprinting and DNA 
sequence determinations.

PCR fingerprinting was performed using the minisatellite-
specific oligonucleotide derived from the core sequence of the 
bacteriophage M13 (Vassart et al. 1987) with the sequence 
5’-GAG GGT GGC GGT TCT-3’ and the microsatellite-specific 
oligonucleotides (GACA)

4
, (GTG)

5
 and (ATG)

5
 as single PCR 

primers. PCR amplifications were performed in a 25 µL reaction 
volume, containing 10 ng of genomic DNA, 0.13 µM primer, 0.2 
mM dNTPs, 4.5 mM MgCl

2
 and 2.5 U AmpliTaq DNA polymer-

ase (Applied Biosystems, USA). Amplifications were carried 
out in an Eppendorf Mastercycler programmed for 35 cycles 
(20 s at 94 °C, 60 s at 50 °C, 20 s at 72 °C), followed by 6 min 
of final extension at 72 °C and cooling to 4 °C. Amplified DNA 
fragments were separated by electrophoresis in 1.4 % (w/v) 
agarose dissolved in 1× TBE buffer, stained with 0.6× GelRed 
(approximately 0.8 µg/mL, Biotium, USA) and photographed 
under UV light. The PCR fingerprint profiles were analysed us-
ing BioloMICS v. 7.5.71 (BioAware, Belgium). Similarities of the 
patterns of each primer were calculated using the CloseSym 
similarity coefficient. A dendrogram was generated using the 
UPGMA method. 

DNA reassociations and DNA G+C content

Cultures were grown in 2 L yeast malt (YM) broth (Yarrow 1998) 
for 2 d and the DNA was extracted by hydroxyapatite column 
chromatography as previously applied by Smith et al. (1995a). 
The mol % G+C and the DNA reassociation analyses were 
done using the methods described by Smith et al. (1995a). 
The values were obtained using a UV-VIS spectrophotometer 
Lambda 20 (PerkinElmer, Netherlands).

Phenotypic characterisation

Growth tests at 30 °C, 35 °C, 37 °C and 40 °C were performed 
on GPYA medium (4 % glucose, 0.5 % peptone, 0.5 % yeast 
autolysate, 2 % agar) for 7 d. Ascus formation and ascospore 
morphology were examined on dilute V8 ascosporulation 
medium (Yarrow 1998) or by examining GPYA cultures aged 
at least 3 mo.

Ribosomal RNA and actin gene amplification, sequencing 
and data analysis

The FastDNA kit (BIO 101, Carlsbad, California) was used ac-
cording to the manufacturer’s instructions to isolate genomic 
DNA of cultures grown on GPYA plates for 4 d at 24 °C. Primers 
V9G (de Hoog & Gerrits van den Ende 1998) and LR5 (Vilgalys 
& Hester 1990) were used to amplify the rDNA as described 
by Knutsen et al. (2007). A 1 kb fragment of the ACT1 gene 
was amplified using the primers and conditions described by 
Fukuda et al. (2004). The amplification reactions were per-
formed using a GeneAmp PCR System 9600 (Perkin-Elmer, 
Norwalk, Connecticut). The PCR products were separated by 
electrophoresis at 80 V for 40 min on a 0.8 % (w/v) agarose 
gel containing 0.1 µg/mL ethidium bromide in 1× TAE buffer 
(0.4 M Tris, 0.05 M NaAc, and 0.01 M EDTA, pH 7.85) and 
visualised under UV-light. 

The amplicons were sequenced in both directions using the 
PCR primers for the actin gene fragment and primers NL1, NL4 
(O’Donnell 1993), ITS1 and ITS4 (White et al. 1990) for the  
D1/D2 domain of the 26S rRNA gene and the ITS region 
(ITS1, ITS2 and the intervening 5.8S rRNA), respectively. The 
DYEnamic ET Terminator Cycle Sequencing kit (Amersham 
Biosciences, Roosendaal, The Netherlands) was used accord-
ing to the manufacturer's recommendations and the products 
were analysed on an ABI Prism 3700 DNA Sequencer (Perkin- 
Elmer, Foster City, California). A consensus sequence was 
computed from the forward and reverse sequences with Seq-
Man v. 7.2.1 from the Lasergene package (DNAstar, Madison, 
Wisconsin). 

The sequences were assembled using Sequence Alignment 
Editor v. 2.0a11 (Se-Al; A. Rambaut, distributed by the author 
at http://evolve.zoo.ox.ac.uk/software/Department of Zoology, 
University of Oxford, Oxford, UK), and manual adjustments 
were made by eye where necessary. The actin sequence data 
were analysed by Phylogenetic Analysis Using Parsimony 
(PAUP) v. 4.0b10 (Swofford 2003). A maximum parsimony 
analysis was performed using the heuristic search option with 
100 random taxa additions and tree bisection and reconstruc-
tion (TBR) as the branch-swapping algorithm. Branches of 
zero length were collapsed. The robustness of the trees was 
evaluated by 100 bootstrap replications (Hillis & Bull 1993). 
Other measures calculated included tree length, consistency 
index, retention index and rescaled consistency index (TL, 
CI, RI and RC). The resulting tree was printed with TreeView  
v. 1.6.6 (Page 1996). The sequences were deposited in Gen-
Bank (accession numbers ITS: EU816226–EU816290, D1/D2 
LSU: EU816291–EU816355, ACT1: shown in Fig. 2) and the 
alignment in TreeBASE. 

RESULTS

PCR fingerprints of D. hansenii strains 

To select strains for intraspecific DNA reassociations, PCR 
fingerprints of 65 D. hansenii strains including 27 type and 
syntype strains were determined. The UPGMA analyses in 
combination with visual inspection of the banding patterns 
obtained with the M13 (Fig. 1a), (ATG)

5
 (Fig. 1b), (GTG)

5,
 (data 

not shown) and (GACA)
4 
(data not shown) primers separated 

the strains of both varieties of D. hansenii into six clusters. 
For the remainder of the manuscript these will be referred to 
as clusters. 

Cluster 1 included 21 strains, of which all except one were cata-
logued as D. hansenii var. hansenii. Seven strains represented 
type strains of species placed in synonymy with this variety. 
Strain CBS 5139 was the only one catalogued as D. hansenii 
var. fabryi. The second cluster covered 26 strains, all, except 
two (CBS 1099 and CBS 1121), catalogued as D. hansenii var. 
hansenii, including its type strain CBS 767T, and eight type 
strains of synonyms of this variety. Cluster 3 comprised three 
isolates from pickling brine all catalogued as D. hansenii var. 
hansenii. Cluster 4 covered five strains, all catalogued as D. han‑ 
senii var. hansenii, including four type strains of synonyms of 
this variety. Cluster 5 covered four isolates, two catalogued as 
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D. hansenii var. hansenii, and the remaining listed as D. han- 
senii var. fabryi of which two represented type strains of syno-
nyms of D. hansenii var. fabryi. Cluster 6 consisted of six strains, 
including the type strain of D. hansenii var. fabryi CBS 789T, 
and three type strains designated as synonyms of the variety 
D. hansenii var. hansenii (Table 1). By visual inspection of the 
patterns and under consideration of the identification labels, 
two to six strains were selected from each of the six clusters 
for DNA reassociation, resulting in 20 strains (Table 1) and for 
phylogenetic analyses of partial ACT1 sequences, resulting in 
21 strains (Fig. 2).
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Fig. 2   One of two equally most parsimonious trees obtained from a heuristic 
search with 100 random taxon additions of the ACT1 sequence alignment. 
The scale bar shows a single change and bootstrap support values from 100 
replicates are shown at the nodes. The tree was rooted to the D. polymorphus 
var. polymorphus strain CBS 186 and the type strains of the reinstated species 
are indicated in bold. The PCR fingerprint cluster number of each strain is 
indicated by the subscript number in front of the CBS number.

Intraspecific and interspecific DNA reassociations 

	 Nuclear base compositions — The nuclear base compositions 
of all strains examined are presented in Table 1. The calculated 
G+C content ranged from 32.4–36.2 mol % except for D. ro
bertsiae of which the value ranged from 39.5–40.3 mol %. 

	 Reassociations among strains of D. hansenii — The DNA 
reassociation values among strains selected from the six 
clusters obtained by PCR fingerprinting are shown in Table 2. 
Among the selected strains of cluster 6, including the type of 
D. hansenii var. fabryi CBS 789T, they ranged from 92–100 %, 
confirming conspecificity. Reassociation values ranging from 
73–100 % were observed among selected strains of clusters 
1–4, including the type strain CBS 767T of D. hansenii var. han- 
senii belonging to cluster 2. Based on these values, all isolates 
of clusters 1–4 were considered conspecific with the latter taxon 
and were correctly identified except for CBS 1099, CBS 1121 
and CBS 5139, catalogued as D. hansenii var. fabryi, which 
were here re-identified as D. hansenii var. hansenii. Among 
the three strains representing cluster 5, values of 98 % and 
100 % were recorded between CBS 1128 and CBS 1796 and 
between CBS 1128 and CBS 2659 respectively, indicating 
their conspecificity. The reassociation values between cluster 6 
strains and strains of other clusters ranged from 34–68 %, the 
values between cluster 1–4 strains and strains of other clusters 
ranged from 34–67 % and the values between cluster 5 strains 
and strains of other clusters ranged from 40–68 % (Table 2). 
These values were considered low enough to recognise the 
strains of these two clusters as separate species. The reas-
sociation results correlate with the similarity tree derived from 
fingerprint data (Fig. 1) that shows higher similarities within the 
group composed of clusters 1–4 than between clusters 1–4, 
compared to cluster 5 and cluster 6.

	 Interspecific reassociations — To evaluate the genetic 
relatedness of the above delimited Debaryomyces groups to 
the teleomorph taxa of the D. hansenii clade sensu Kurtzman 
& Robnett (1998), interspecific DNA reassociations were per-
formed with the inclusion of D. prosopidis, a species resembling 
D. hansenii, introduced by Phaff et al. (1998). Debaryomyces 
udenii could not be included in this study, due to the fact that 
the employed DNA extraction method did not result in suitable 
DNA yields. The reassociation values of the D. hansenii strains 
with five additional Debaryomyces species ranged from 0–47 % 
(Table 3). These low interspecific reassociation values confirm 
the separation of Debaryomyces clusters 1–4, cluster 5 and 
cluster 6 from their most closely related known species.

Sequence variation and phylogenetic analyses

No variation was found in the D1/D2 LSU and the ITS rRNA 
regions of the D. hansenii isolates and these sequences were 
therefore not subjected to phylogenetic analyses. At least two 
isolates from each of the six PCR fingerprint clusters (Table 1)  
and the type strains of D. nepalensis and D. polymorphus var. 
polymorphus, the latter as outgroup, were included in sequence 
and phylogenetic analyses of the nuclear encoded actin gene. 
Comparisons of partial ACT1 gene sequences between clade 1 
and clade 2 strains showed 16 nucleotide differences; between 
clade 1 and the type strain of D. hansenii CBS 767T, contained 
in clade 3, 24 differences were found and between clade 2 and 
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the type strain of D. hansenii, 33 differences were found. Further 
pairwise comparisons of strains in the more variable clade 3 
resulted in 11 nucleotide differences between CBS 790 and 
CBS 767T and 14 differences between CBS 766 and CBS 767T. 
Both basally located strains CBS 790 and CBS 766 compared 
to each other showed 14 nucleotide differences. For pairwise 
comparisons within the core of clade 3, excluding CBS 790 and 
CBS 766, zero to seven nucleotide differences were found.

The ACT1 alignment, containing 24 strains including D. hansenii 
var. hansenii CBS 7848 (Fukuda et al. 2004) and the outgroup 
sequence, had a total length of 752 characters, of which 623 
were constant, 73 were parsimony-uninformative, and 56 were 
parsimony-informative. Parsimony analysis resulted in two 
equally most parsimonious trees, one of which is shown in Fig. 2  
(TL = 164 steps; CI = 0.841; RI = 0.876; RC = 0.737). Three 
distinct and well-supported clades were obtained within D. han- 
senii by phylogenetic analysis of partial ACT1 sequences. The 
first clade contained the strains representing cluster 6 with 93 % 
bootstrap support. The second clade contained the strains 
representing cluster 5 with a bootstrap support of 100 % and 

the third clade grouped strains representing the clusters 1–4 
with a bootstrap support of 89 %. Within the third clade some 
variation was observed among the isolates, with two strains 
from cluster 4 in a basal position relative to this clade and 
the majority of fingerprint cluster 2 representatives forming a 
subclade with 81 % bootstrap support. 

Phenotypic characterisation 

Nakase & Suzuki (1985b) proposed differences in maximum 
growth temperatures (MGTs) to distinguish the two varieties of 
D. hansenii. Since DNA reassociations and sequence analyses 
segregated the analysed strains of D. hansenii into three distinct 
groups, the ability to grow at 30 °C, 35 °C and 37 °C was re-
examined in triplicate. All 55 strains in the fingerprint clusters 
1–4 grew at 30 °C and most of them were unable to grow at 
35 °C with the exception of CBS 771, CBS 1795 and CBS 5139. 
None of the strains in clusters 1–4 were able to grow at 37 °C. 
The four strains of cluster 5 were able to grow at 30 °C, 35 °C 
and 37 °C, but not at 40 °C. All six strains of cluster 6 grew at 
30 °C and 35 °C, but not at 37 °C.

			   Cluster 1	 Cluster 2	 Cluster 3	 Cluster 4	  Cluster 5	 Cluster 6
			   CBS 2844	 CBS 5139	 CBS 767T	 CBS 1959	 CBS 766	 CBS 790	 CBS 1128	 CBS 2659	 CBS 789T	 CBS 5138

D. hansenii	 Cluster 1	 CBS 1120	 100		  95							     
		  CBS 1124	 100		  99			   83			   58	
		  CBS 5139	 100					     89	 45		  51	 34

	 Cluster 2 	 CBS 767T							       41		  38	 49
		  CBS 1098	 100		  100	 77		  76		  52	 34	 39
		  CBS 1099	 100									       

	 Cluster 3	 CBS 1960	 96		  93	 100			   47	 54	 54	

	 Cluster 4	 CBS 117	 100		  80			   76	 40	 45	 67	
		  CBS 766		  74				    88	 61		  48	 52
		  CBS 772						      88				  
		  CBS 790	 89		  73				    40			 

D. subglobosus	 Cluster 5	 CBS 1796		  42			   50		  98			 
		  CBS 2659							       100			 

D. fabryi	 Cluster 6	 CBS 789T					     48		  68			 
		  CBS 796	 62							       68		  100
		  CBS 2330	 57		  40						      98	 92

Table 2   DNA-DNA reassociation values among strains of the reinstated species currently classified in Debaryomyces hansenii. Only values of selected 
pairwise comparisons were determined. For better readability cells representing comparisons for which no reassociation experiments were performed were 
left empty. Clusters 1 through 6 refer to the grouping by PCR fingerprint analyses and thickened lines delimit comparisons that are considered as intra-species 
with the current reinstatements.

Debaryomyces	 hansenii 	 subglobosus	 fabryi 	 coudertii 	 maramus 	 nepalensis 	 prosopidis 	 robertsiae 

hansenii 	 90							     

subglobosus	 43	 99						    

fabryi	 49	 47	 96					   

coudertii	 8	 29	 25	 –				  

maramus	 26	 24	 16	 41	 89			 

nepalensis	 8	 18	 21	 26	 23	 92		

prosopidis	 42	 47	 45	 28	 10	 22	 –	

robertsiae	 14	 12	 8	 26	 15	 18	 0	 93

Table 3   Interspecific DNA-DNA reassociation values among Debaryomyces hansenii and related species. An average value was calculated for the 
total number of reassociations performed among strains of two species.
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Ascus formation and ascospore morphology of strains in cluster 
5 were studied to confirm their taxonomic designation. The teleo- 
morph characteristics of mother bud conjugation and warty asco- 
spores, typical for species assigned to the genus Debaryo
myces, were observed in CBS 792 and CBS 1128, but were 
not found in the rest of the strains present in that cluster.

Taxonomy 

The results obtained from PCR fingerprinting, DNA reassocia-
tions, partial ACT1 gene sequences, and MGTs indicated that 
strains of the two D. hansenii varieties, D. hansenii var. hansenii 
and D. hansenii var. fabryi, can be separated into three distinct 
groups represented by the fingerprint clusters 1–4, cluster 5 
and cluster 6. 

The strains of clusters 1–4 have here been identified as D. han- 
senii var. hansenii by the inclusion of its type strain CBS 767T 
in one of these clusters. Clusters 1–4 were delineated as one 
taxon, currently named D. hansenii var. hansenii, by DNA reas-
sociation values of 73–100 %, highly similar PCR fingerprints 
with the primers M13 and (GTG)

5
 and partial ACT1 gene 

sequence differences of zero to 14 nucleotides. This taxon is 
proposed to be reinstated as D. hansenii. The detected intra-
cluster variability was contrasted by inter-cluster differentiation 
by DNA reassociation values of 34–67 %, dissimilar PCR 
fingerprints and partial ACT1 gene sequence differences of 
24–36 nucleotides of clusters 1–4 versus clusters 5 and 6.

Cluster 5 was unified by 98–100 % DNA reassociation, 
identical partial ACT1 gene sequences and highly similar 
PCR finger-prints with all four primers. This cluster was dis-
tinguished from the former two species by DNA reassociation 
values of 40–68 %, partial ACT1 gene sequence differences 
of 16–36 nucleotides, differentiating PCR fingerprint patterns 
with all four primers and its ability to grow at 37 °C. Cluster 5 
contains two type strains, CBS 1796T Blastodendrion flareri 
(Ciferri & Redaelli 1935), later considered as Candida famata 
var. flareri and anamorph of D. hansenii var. fabryi and CBS 
792T Eutorulopsis subglobosa (Wolfram & Zach 1934), later 
considered under the name D. subglobosus as a synonym of  
D. hansenii var. fabryi. Based on the nomenclatural priority of 
D. subglobosus, it is proposed to reinstate this name for cluster 
5 strains with CBS 792T as type strain, which produces warty 
ascospores by mother cell-bud conjugation, currently named 
D. hansenii var. fabryi. 

Cluster 6 contains D. hansenii var. fabryi CBS 789T and CBS 
2330T as well as CBS 1793T of species previously placed in syn-
onymy with D. hansenii var. fabryi and CBS 796T and CBS 5138T 
of species previously placed in synonymy with D. hansenii var. 
hansenii, which can presently be considered as synonyms of 
D. hansenii var. fabryi. Based on DNA reassociation values of 
92–100 %, highly similar PCR fingerprints with all four prim-
ers and identical partial ACT1 gene sequences within cluster 
6 contrasted by DNA reassociation values of 34–68 %, highly 
dissimilar PCR fingerprints and partial ACT1 gene sequence 
differences of 16–33 nucleotides between cluster 6 and the 
others, it is proposed to reinstate the name D. fabryi for the 
currently named taxon D. hansenii var. fabryi. 

The current study supports the proposal by Prillinger et al. 
(1999) that D. hansenii and D. fabryi are two distinct species that 
are part of the D. hansenii complex. From the data presented 
in the current study, a third species, D. subglobosus, is also 
hereby reinstated in this complex.

Debaryomyces fabryi M. Ota, Dermatol. Wochenschrift 78: 
287. 1924

	 Basionym. Debaryomyces fabryi M. Ota, Dermatol. Wochenschrift 78: 
287. 1924.

Debaryomyces hansenii (Zopf) Lodder & Kreger-van Rij, in: 
Lodder & Kreger-van Rij, The yeasts, a taxonomic study: 
280. 1952.

	 Basionym. Saccharomyces hansenii Zopf, Ber. Deutsch. Bot. Ges. 7: 94. 
1889.
	 Anamorph. Candida famata (F.C. Harrison) S.A. Mey. & Yarrow var. 
famata, Int. J. Syst. Bacteriol. 28: 612. 1978. 

Debaryomyces subglobosus (Zach) Lodder & Kreger-van 
Rij, in: Lodder & Kreger-van Rij, The yeasts, a taxonomic 
study: 290. 1952.

	 Basionym. Eutorulopsis subglobosa Zach, Wolfram & Zach, Arch. F. Derm.  
& Syph. 170: 688. 1934.
	 Anamorph. Candida famata (F.C. Harrison) S.A. Mey. & Yarrow var. 
flareri (Cif. & Redaelli) Nakase & M. Suzuki, J. Gen. Appl. Microbiol. 31: 83. 
1985.

DISCUSSION

The current re-classification was based on a more restrictive 
interpretation of intermediate DNA reassociation values in view 
of additional data from MGTs, PCR fingerprints and partial ACT1 
gene sequences. Nakase & Suzuki (1985a, b) delimited the va-
rieties by a lower value of 68 % reassociation within the variety 
D. hansenii var. fabryi supported by the presence/absence of 
glucose-6-phosphate dehydrogenase activity and the MGTs of 
31–35 °C or 36–39 °C. In this study, a reassociation value of 
68 % was considered as indicative of different species, which 
was supported by PCR fingerprint profiles, partial ACT1 gene 
sequences and in part also by different MGTs. 

On the basis of RAPD analyses, Prillinger et al. (1999) pro-
posed to reinstate the varieties D. hansenii var. hansenii and D. 
hansenii var. fabryi as two genotypically distinct species, D. han- 
senii and D. fabryi. The estimated similarity value between the 
individual patterns was in the range of 30–50 % which was con-
sidered to be characteristic for closely related species (Messner 
et al. 1994, Cooke et al. 1996). However, Barnett et al. (2000) 
maintained both varieties of D. hansenii. The current polyphasic 
re-examination of the D. hansenii strains supports the proposal 
to raise the varieties D. hansenii var. hansenii and D. hansenii 
var. fabryi, to D. hansenii and D. fabryi, respectively. 

A number of strains, formerly included in one of the two D. han- 
senii varieties, were found to have phenotypic and geno-
typic characters that are distinct from those of D. hansenii and  
D. fabryi. The presence of an ascospore-producing ex-type 
strain of the synonymous species D. subglobosus among those 



25M. Groenewald et al.: Debaryomyces hansenii revision

distinct strains allowed reinstating this group as an additional 
species. This reinstatement further resolves the heterogeneity 
of D. hansenii indicated already by DNA reassociations values 
of 39.7 % between D. subglobosus CBS 792T and D. hansenii 
CBS 767T (Price et al. 1978) and 63 % between D. hansenii 
var. fabryi CBS 789T and its anamorph Candida famata var. 
flareri CBS 1796T (Nishikawa et al. 1996).

Several species have previously been synonymised with the two 
D. hansenii varieties and are now proposed as synonyms of the 
newly proposed species (Table 1). CBS 796T, CBS 1793T and 
CBS 2330T are ex-type strains of species previously placed in 
synonymy with D. hansenii var. hansenii, which should presently 
be considered as synonyms of D. fabryi. CBS 1796T, the ex-type 
strain of Blastodendrion flareri, was placed in synonymy with 
D. hansenii var. fabryi by Nakase & Suzuki (1985b) and is now 
proposed as synonym of a different species, D. subglobosus.

The PCR fingerprint patterns as well as the phylogenetic analy-
ses showed considerable variation within D. hansenii, which 
represents the most populated group in this study. This varia-
tion was interpreted as interspecies variation. Specifically the 
strains CBS 766 and CBS 790, located basal to the D. hansenii 
group in the phylogenetic analysis and showing a relatively high 
reassociation value of 88 % with each other as opposed to a 
lower value with another member of D. hansenii (74 % with 
CBS 5139) might give rise to different interpretations, namely to 
establish new varieties or more species. Although CBS 766 also 
showed differences in the fingerprinting profiles with primers 
(GTG)

5
, (ATG)

5
 and (GACA)

4
 and CBS 790 showed some rela-

tively low reassociation values with other members of D. han- 
senii (76 % with CBS 1098, 76 % with CBS 117, 73 % with CBS 
767), the further splitting of D. hansenii was avoided as this 
would be based on very limited data of single strains, which 
bears a high potential of causing taxonomic instability. In addi-
tion, a number of high reassociation values connect CBS 790 
with other members of D. hansenii (89 % with CBS 2844, 83 % 
with CBS 1124, 89 % with CBS 5139, 88 % with CBS 772). Ac- 
cording to literature (Smith et al. 1995a, b, 2000, Knutsen et al.  
2007), strains with reassociation values in this range are con- 
specific. Electrophoretic mobility of glucose-6-phosphate 
dehydrogenase showed two different relative values among 
strains of D. hansenii var. hansenii, also depicting a certain 
heterogeneity of this taxon (Nakase & Suzuki 1985b). How-
ever, CBS 766 = JCM 2098 shared the same enzyme mobility 
with other strains of D. hansenii (CBS 1795 = JCM 1521, CBS 
767 = JCM1990), adding confidence to its current placement 
within this species.

The similarity trees calculated from the PCR fingerprints should 
not be regarded as reconstructions of genetic relationships 
because of possible co-migration of non-homologous DNA 
fragments and the difficulty to recognise allelic or otherwise 
linked variants of fingerprint markers (Weising et al. 1995). This 
explains the changing basal branching pattern of the similarity 
trees from different primers, and the distribution of clusters 1  
and 2 over several branches in the M13 tree. We have judged 
these instabilities as an additional hint towards a closer relation-
ship between strains of clusters 1–4 (= clade 3 = D. hansenii) 
than between cluster 5 (= clade 2 = D. subglobosus) and cluster 
6 (= clade 1 = D. fabryi). 

The comparison of the detected variation of partial ACT1 gene 
sequences with previously determined data was difficult (Daniel 
& Meyer 2003) because a 227 bp shorter fragment has currently 
been analysed. An examination of a 979 bp fragment of the 
ACT1 gene in 80 species of ascomycetous yeasts, allowing 37 
intraspecific pairwise comparisons, resulted in an intraspecific 
variation of up to 11 nucleotides and interspecific variation 
starting at 17 nucleotides (Daniel & Meyer 2003). Debaryomy-
ces fabryi and D. subglobosus were clearly differentiated from 
D. hansenii CBS 767T by 24 and 33 nucleotide differences, 
respectively. The variation of 16 nucleotides between D. fabryi 
and D. subglobosus is in the lower range of values previously 
interpreted as interspecific values for this gene, likely due to the 
shorter alignment in the present analysis. The basal position 
of strains CBS 766 and CBS 790 relative to D. hansenii in the 
phylogenetic tree is a reflection of their sequence variability (11 
and 14 nucleotides compared with CBS 767T and 14 nucleotides 
in comparison with each other, exceeding the upper level of up 
to 11 nucleotide differences interpreted so far as intraspecific 
variation). However, taking into account the high reassociation 
values linking CBS 790 with other strains of D. hansenii and the 
similarity in the electrophoretic mobility of glucose-6-phosphate 
dehydrogenase of CBS 766 and that of other D. hansenii strains 
(Nakase & Suzuki 1985b), the placement of these two strains 
in D. hansenii is credible, despite of the variability found in the 
ACT1 sequences.

MGTs have been considered a complementary characteristic in 
yeast identification (Yarrow 1998) and MGTs as well as growth 
rates at different temperatures have been used successfully in 
fungal identification (Groenewald et al. 2005). However, little is 
known about a practical and general tolerance to delimit species 
using this characteristic. Differences in MGTs were recognised 
as an important criterion in the classification of Debaryomyces 
species and introduced by Nakase & Suzuki (1985b) to dis-
tinguish the two varieties of D. hansenii. Among 34 strains of  
D. hansenii var. hansenii, Nakase & Suzuki (1985b) found MGTs 
of 31–35 °C and among six strains of D. hansenii var. fabryi, 
they found 36–39 °C, with three strains growing at 36–37 °C 
and the remaining three strains at 37–38 °C and 38–39 °C. 
Two of the strains with higher MGTs (CBS 792 = JCM 1989 and 
CBS 1796 = JCM 2166) were here assigned to the reinstated  
D. globosus, while the third strain was not included in the 
present study. The newly defined taxa delimited the MGTs of 
D. fabryi as below 37 °C and the MGTs of a subset of strains 
from the former variety fabryi, now named D. subglobosus, as 
below 40 °C, while the MGTs of D. hansenii was the lowest with 
below 35 °C. Taking into account the different methodologies 
of MGTs tests in both studies, these results are compatible by 
differentiating further the strains showing higher MGTs. This 
differentiation follows the trend of a more refined delimitation of 
potentially clinically relevant taxa. Species of potential clinical 
importance are often able to grow at 37 °C as is the case for  
D. subglobosus, but not for D. hansenii and D. fabryi, a char-
acteristic of potential practical value for preliminary species as-
signment. Although most D. fabryi strains could be distinguished 
from D. hansenii strains by their ability to grow at 35 °C, this 
criterion is unsuitable for identification as three D. hansenii 
strains were also able to grow at 35 °C. Differences in MTGs 
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can be considered an adaptation to different ecological niches 
and therefore constitute a biologically relevant character.

Although the D1/D2 LSU and ITS rDNA are the most frequently 
used sequence markers for species identification of yeasts, the 
D1/D2 LSU has been recognised not to distinguish some closely 
related ascomycetous yeast species e.g. Pichia guilliermondii 
and P. caribbica, Candida mucifera and Stephanoascus ciferii, 
Kluyveromyces marxianus and K. lactis (Daniel & Meyer 2003). 
This problem has less frequently been encountered for the 
ITS region, for example in Saccharomyces pastorianus and  
S. bayanus (Huffman et al. 1992, Kurtzman & Robnett 2003), two  
species that are linked by interspecies hybridisation (Hansen 
& Kielland-Brandt 1995). Among several species of the genus 
Debaryomyces, including members of the D. hansenii clade 
sensu Kurtzman & Robnett (1998), highly conserved ITS and 
D1/D2 LSU sequences were reported (Martorell et al. 2005), 
while ACT1 sequences showed more variability and were 
considered a suitable tool to differentiate these species. In the 
case of the two morphologically identical fungal species Cer-
cospora apii and C. beticola, only one out of five gene regions 
sequenced, namely the calmoduline gene, was informative for 
species identification (Groenewald et al. 2005). The present 
study confirms the value of multigene approaches and the actin 
gene for resolving closely related species such as D. hansenii, 
D. fabryi and D. subglobosus, while other protein-coding genes 
e.g. RNA polymerase large subunits 1 and 2 and mitochondrial 
cytochrome oxidase subunit 2 (Kurtzman & Robnett 2003, Tsui 
et al. 2008) can also be expected to contribute to a more natural 
and realistic delineation of Debaryomyces species.
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