Two new classes of Ascomycota: Xylobotryomycetes and Candelariomycetes

H. Voglmayr¹, J. Fournier², W.M. Jaklitsch^{1,3}

Key words

Ascomycota **Dothideomycetes** Eurotiomycetes five new taxa multigene phylogenetic analyses pyrenomycetes Sordariomycetes

Abstract Phylogenetic analyses of a combined DNA data matrix containing nuclear small and large subunits (nSSU, nLSU) and mitochondrial small subunit (mtSSU) ribosomal RNA and the largest and second largest subunits of the RNA polymerase II (rpb1, rpb2) of representative Pezizomycotina revealed that the enigmatic genera Xylobotryum and Cirrosporium form an isolated, highly supported phylogenetic lineage within Leotiomyceta. Acknowledging their morphological and phylogenetic distinctness, we describe the new class Xylobotryomycetes, containing the new order Xylobotryales with the two new families Xylobotryaceae and Cirrosporiaceae. The two currently accepted species of Xylobotryum, X. andinum and X. portentosum, are described and illustrated by light and scanning electron microscopy. The generic type species X. andinum is epitypified with a recent collection for which a culture and sequence data are available. Acknowledging the phylogenetic distinctness of Candelariomycetidae from Lecanoromycetes revealed in previous and the current phylogenetic analyses, the new class Candelariomycetes is proposed.

Article info Received: 25 April 2018; Accepted: 13 June 2018; Published: 27 July 2018.

INTRODUCTION

Xylobotryum is an enigmatic stromatic ascomycete genus characterised by a unique suite of characters, i.e., perithecioid ascomata on erect, branched or unbranched stromata, a hamathecium of true paraphyses with apically free ends, bitunicate fissitunicate asci with an apically or laterally rupturing ectotunica and a thick endotunica with an inamyloid apical ring, and bicellular brown ellipsoid ascospores with 3-5 longitudinal germ slits per ascospore cell (Ju & Rogers 1994). Currently, two species are accepted in the genus, Xylobotryum andinum and X. portentosum, of which the former is widely distributed in tropical to subtropical areas worldwide, whereas the latter is so far only known from the tropical to subtropical Americas (Rossman 1976, Ju & Rogers 1994). Due to an unusual combination of morphological characters, its systematic position has historically been controversial, and it has been moved among various ascomycete lineages. In the original description of Xylobotryum, Patouillard (in Patouillard & Lagerheim 1895) noted similarities to Xylaria and Kretzschmaria, and it was placed in the heterogeneous, ill-defined Sphaeriaceae by, e.g., Saccardo (1895), Gäumann (1964) and Müller & Von Arx (1973), while Lindau (1897) placed Xylobotryum in Xylariaceae. Möller (1901) established the genus Trachyxylaria for T. phaeodidyma (a synonym of X. portentosum), again within Xylariaceae, while Smith (1901) described Xyloceras elliottii as yet another synonym of Xylobotryum portentosum. Based on a similar branching pattern of stromata, Lloyd (1920) combined the generic type *Xylobotryum andinum* in *Thamnomyces* (Xylariaceae), but accepted Xylobotryum for X. portentosum and X. rickii (Lloyd 1925). Rodway (1926) established the new

The peculiar monotypic coelomycetous genus Cirrosporium has been described from New Zealand by Hughes (1980) and was beautifully illustrated in the detailed study of Réblová & Seifert (2012). It is characterised by large, cylindrical, tubular, dark brown pycnidia up to 4-5 mm long with vertical ribs and a unique meristem arthric conidium ontogeny producing dark

© 2018-2019 Naturalis Biodiversity Center & Westerdijk Fungal Biodiversity Institute

You are free to share - to copy, distribute and transmit the work, under the following conditions

You must attribute the work in the manner specified by the author or licensor (but not in any way that suggests that they endorse you or your use of the work). Non-commercial You may not use this work for commercial purposes

For any reuse or distribution, you must make clear to others the license terms of this work, which can be found at http://creativecommons.org/licenses/by-nc-nd/3.0/legalcode. Any of the above conditions can be waived if you get permission from the copyright holder. Nothing in this license impairs or restricts the author's moral rights.

genus and species Melanobotrys tasmanicus, a synonym of Xylobotryum andinum, without a familial affiliation. Miller (1949) excluded Xylobotryum from Xylariaceae due to 2-celled ascospores and asci lacking a xylariaceous apical apparatus, but did not propose an alternative classification. Acknowledging substantial morphological differences, Müller & Von Arx (1962) considered the similarities to Xylaria to be superficial and classified the genus in *Diatrypaceae* (*Xylariales*, *Sordariomy*cetes), which was also followed by Dennis (1970). Rossman (1976) did not assign Xylobotryum to a family but assumed pyrenomycetous affinity as well, based on her observations of unitunicate asci and true unbranched paraphyses. Conversely, Rogerson et al. (1990) observed fissitunicate ascus dehiscence and placed Xylobotryum in Pleosporales ('Loculoascomycetes'; now Dothideomycetes). Barr (1987, 1990) tentatively classified the genus within the *Didymosphaeriaceae* (*Dothideomycetes*) based on asci and 1-septate ascospores she considered being similar to Didymosphaeria, but highlighting its unique stipitate stromata within the family. Huhndorf (1994) hypothesised that Xylobotryum might be affiliated with Hypsostromataceae (Dothideomycetes). After detailed morphological and pure culture studies, Ju & Rogers (1994) did not assign the genus to a family or order but tentatively also assumed loculoascomycetous affinities in light of the functionally bitunicate asci and the stromatic nature of the ascomata. This treatment was subsequently followed by Eriksson & Hawksworth (1988) and Kirk et al. (2008), who placed Xylobotryum in Dothideales and Dothideomycetes incertae sedis, respectively. Finally, Eriksson & Hawksworth (1995) and Lumbsch & Huhndorf (2007, 2010) referred it to Ascomycota incertae sedis, a position which, in lack of new data, has not changed since. No asexual morph is known for Xylobotryum.

¹ Division of Systematic and Evolutionary Botany, Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, 1030 Wien, Austria; corresponding author e-mail: hermann.voglmayr@univie.ac.at.

² Las Muros, 09420 Rimont, France.

³ Institute of Forest Entomology, Forest Pathology and Forest Protection, Department of Forest and Soil Sciences, BOKU-University of Natural Resources and Life Sciences, Hasenauerstraße 38, 1190 Wien, Austria.

brown, 3-septate conidia, which are aggregated in conspicuous, compact, up to 2.5 mm long columnar cirrhi at the pycnidial apex (Hughes 1980, Réblová & Seifert 2012). In their molecular phylogenetic analyses of a multigene sequence matrix, Réblová & Seifert (2012) revealed a phylogenetic position of *Cirrosporium* within *Eurotiomycetes* as sister-group to *Mycocaliciales*; however, this placement received only low support. Owing to its isolated phylogenetic position, Réblová & Seifert (2012) concluded that *Cirrosporium* may warrant placement in a family and order of its own, but they did not formally describe them.

Recent fresh collections made by the second author enabled us to study the morphology of both *Xylobotryum* species in detail, to isolate *X. andinum* in pure culture and to obtain sequence data for *X. andinum* and *X. portentosum* to investigate their phylogenetic affinities. Remarkably and unexpectedly, in phylogenetic analyses *Xylobotryum* and *Cirrosporium* formed a highly supported monophyletic lineage in an isolated position. We here give detailed descriptions and illustrations of both accepted *Xylobotryum* species, and we propose a new formal higher-level classification for the genera *Xylobotryum* and *Cirrosporium* according to the results of the molecular phylogenies.

The above analyses attracted our attention to a group of lichenised *Ascomycota*, which has recently been elevated to a subclass of *Lecanoromycetes*, the *Candelariomycetidae* (Lücking et al. 2017). This subclass contains the single order *Candelariales* with 2 families, *Candelariaceae* and *Pycnoraceae*. As characterised by Jaklitsch et al. (2016), members of this group are mostly epiphytic on bark and rock, they have mostly bright yellow crustose to squamulose thalli, apotheciate ascomata with amyloid paraphyses, clavate amyloid asci, hyaline ellipsoid to citriform, 0–1-septate ascospores, chlorococcoid photobionts, and pycnidial asexual morphs having aseptate hyaline conidia. *Candelaria* is among the most widespread urban lichens.

Owing to our phylogenetic analyses, the *Candelariales* are separate from the *Lecanoromycetes*. We therefore propose a new formal higher-level classification for this order.

MATERIALS AND METHODS

Culture preparation, isolates and specimens

Single ascospore isolates of X. andinum were prepared on 2 % malt extract agar (MEA) and grown on MEA and 2 % corn meal agar (CMA, Sigma-Aldrich) supplemented with 2 % w/v dextrose (CMD). The isolate of X. andinum obtained in the present study has been deposited at the Westerdijk Fungal Biodiversity Centre (CBS-KNAW), Utrecht, The Netherlands; strain identifiers including NCBI GenBank accession numbers of gene sequences used to generate the phylogenetic trees are listed in Table 1. Details of the specimens used for morphological investigations are listed in the Taxonomy section under the respective descriptions. The following specimen was sequenced for the phylogenetic analyses but is not further treated here: Pycnora sorophora: Austria, Oberösterreich, Bez. Schärding, St. Ägidi, Flenkental 6, 560 masl, N48°30'01" E13°43'10", on old board of a barn, 4 July 2016, F. Berger 30916 (WU 39968). Specimens have been deposited in the Fungarium of the Institute of Botany, University of Vienna (WU).

Morphological observations

For light microscopy, hand sections of ascomata were made using a razor blade and mounted in heated chlorallactophenol on a microscope slide and covered with a cover slip. Ascomatal contents containing asci and paraphyses were transferred to a drop of 1 % sodium dodecyl sulfate (SDS), gently torn apart with a preparation needle when necessary and observed directly in 1 % SDS or transferred to a drop of Congo red in 1 % SDS, chlo-

razol black or diluted India ink. Amyloidity of asci was assessed using both Melzer's reagent and Lugol's solution. Photomacrographs were taken with a Nikon Coolpix 995 digital camera either directly mounted on a stand or, for higher magnifications, through the eyepiece of an Olympus SZ60 stereomicroscope, by the means of a 30 mm diam adapter. Photomicrographs were taken with the same camera mounted on the trinocular port of a Leitz Orthoplan microscope. The digitalised photographs were processed with Adobe Photoshop Elements 10. Measurements are reported as maxima and minima in parentheses and the range representing the mean plus and minus the standard deviation of a number of measurements given in parentheses. For scanning electron microscopy (SEM), ascospores were prepared according to the method described in Voglmayr & Mehrabi (2018) and examined in a Jeol JSM-6390 scanning electron microscope at 10 kV.

DNA extraction and sequencing methods

The extraction of genomic DNA from pure culture was performed as reported previously (Voglmayr & Jaklitsch 2011, Jaklitsch et al. 2012) using the DNeasy Plant Mini Kit (QIAgen GmbH, Hilden, Germany). DNA extraction from ascomata followed the method described in Voglmayr et al. (2012). The following loci were amplified and sequenced: the complete internal transcribed spacer region (ITS1-5.8S-ITS2) and a c. 0.9 kb fragment of the large subunit nuclear ribosomal DNA (nLSU rDNA), amplified and sequenced as a single fragment with primers V9G (De Hoog & Gerrits van den Ende 1998) and LR5 (Vilgalys & Hester 1990), or as two separate fragments for ITS and LSU with primer pairs V9G/ITS4 (White et al. 1990) and LR0R (Vilgalys & Hester 1990)/LR5, respectively; a c. 1.7 kb fragment of the small subunit nuclear ribosomal DNA (nSSU rDNA) with primers SL1 (Landvik et al. 1997) and NS24mod (Voglmayr & Jaklitsch 2011); partial mitochondrial small subunit ribosomal DNA (mtSSU) with forward primers mrSSU1 (Zoller et al. 1999) or MSU1 and reverse primers MSU2 or MSU7 (Zhou & Stanosz 2001); a c. 1.2 kb fragment of the RNA polymerase II subunit 2 (rpb2) gene with primers dRPB2-5f and dRPB2-7r (Voglmayr et al. 2016) or fRPB2-7cr (Liu et al. 1999); and a c. 1.2 kb fragment of the RNA polymerase II subunit 1 (*rpb1*) gene with primers RPB1-6R1asc (Hofstetter et al. 2007) and RPB1-Af (Stiller & Hall 1997). For Pycnora sorophora, an additional fragment covering the terminal part of the nSSU and the complete ITS region was amplified with primers nSSU1088 (Kauff & Lutzoni 2002) and ITS4 to confirm the correctness of the nSSU, and the nLSU was additionally amplified with primers LIC24Rm (5'-GAAAAGAAACCAACAGGGATTG-3', a modification of LIC24R of Miądlikowska & Lutzoni 2000) and LIC2044 (Kauff & Lutzoni 2002). PCR products were purified using an enzymatic PCR cleanup (Werle et al. 1994) as described in Voglmayr & Jaklitsch (2008). DNA was cyclesequenced using the ABI PRISM Big Dye Terminator Cycle Sequencing Ready Reaction Kit v. 3.1 (Applied Biosystems, Warrington, UK) with the same primers as in PCR; in addition, primers ITS4, LR2R-A (Voglmayr et al. 2012) and LR3 (Vilgalys & Hester 1990) were used for the complete ITS-LSU region and nSSU1088 (Kauff & Lutzoni 2002) for the SSU region. Sequencing was performed on an automated DNA sequencer (3730xl Genetic Analyzer, Applied Biosystems).

Phylogenetic analyses

For phylogenetic analyses, combined matrices of nLSU, nSSU, mtSSU, rpb1 and rpb2 sequences were produced. GenBank sequences of the classes of *Leotiomyceta* were selected from Réblová & Seifert (2012), Prieto et al. (2013) and Réblová et al. (2017) and supplemented with additional GenBank sequences.

 Table 1
 Sources/Strains and NCBI GenBank accessions used in the phylogenetic analyses of the combined multigene matrix of selected *Pezizomycotina*.

 Sequences in **bold** were generated during the present study.

Taxon		GenBank accession no.					
	Source/Strain	nLSU	nSSU	mtSSU	rpb1 (A-F)	rpb2 (5-7)	
Acarospora schleicheri	AFTOL-ID 345/1005	AY640945	AY640986	AY584694	DQ782859	AY641026	
Acarosporina microspora	AFTOL-ID 78 = CBS 338.39	AY584643	AY584667	AY584612	DQ782818	AY584682	
Aleuria aurantia	AFTOL-ID 65	AY544654	AY544698	-	DQ471120	DQ247785	
Arachnomyces glareosus	CBS 116129	FJ358273	FJ358341	FJ225785	FJ358405	_	
Arthonia dispersa	UPSC 2583	AY571381	AY571379	AY571383	- -	_	
Ascosphaera apis Aspergillus fumigatus	CBS 402.96 INFU/Jc/KF/6, F-A, Af293	FJ358275 FM179606	FJ358343 GU980961	– JQ346808	FJ358406 XM_741647	– XM_741647	
Aspergilius ruriligatus Baeomyces placophyllus	AFTOL-ID 347	AF356658	AF356657	AY584695	DQ870936	AY641028	
Buellia stillingiana	AFTOL-ID 571	-	DQ912319	DQ912287	DQ912368	DQ912391	
Bulgaria inquinans	AFTOL-ID 916 = CBS 118.31	DQ470960	DQ471008	_	DQ471152	DQ470910	
Caliciopsis pinea	AFTOL-ID 1869 = CBS 139.64	DQ678097	DQ678043	FJ190653	-	EF411067	
Caloplaca flavorubescens	AFTOL-ID 2090/2379	AF279887	AF241540	AY143403	DQ915593	_	
Calosphaeria pulchella	CBS 115999	AY761075	AY761071	_	_	GU180661	
Camarops ustulinoides	AFTOL ID 4700 (2002)	DQ470941	DQ470989	FJ190588	DQ471121	DQ470882	
Candelaria concolor Candelariella aurella	AFTOL-ID 1706/2388 AFTOL-ID 2390/2389	DQ986791	_	DQ986806 AY853313	EF436462 DQ915594	DQ992419	
Candelariella aurella Candelariella reflexa	AFTOL-ID 2390/2369 AFTOL-ID 1271	AY853361 DQ912331	– DQ912309	DQ912272	DQ913394 DQ912354	– DQ912380	
Candelariella terrigena	AFTOL 227	DQ986745	DQ912309 DQ986730	- DQ912272	DQ912334 DQ986816	DQ992427	
Capnodium coffeae	AFTOL-ID 939 = CBS 147.52	DQ247800	DQ247808	FJ190609	DQ471162	DQ247788	
Catolechia wahlenbergii	AFTOL-ID 1743	DQ986794	DQ986704	DQ986811	KJ766824	DQ992424	
Cetraria islandica	AFTOL-ID 211	DQ912334	DQ912311	DQ912277	DQ912356	DQ912382	
Chaenotheca furfuracea	Wedin 6366 (UPS)	JX000087	JX000068	JX000121	JX000137	_	
Chaenothecopsis savonica	Tibell 15876 (UPS)	AY796000	U86691	_	_	_	
Chaetosphaeria ciliata	ICMP 18253	GU180637	GU180614	-	-	GU180659	
Chlorociboria aeruginosa	AFTOL-ID 151	AY544669	AY544713	AY544734	DQ471125	DQ470886	
Cirrosporium novae-zelandiae	CBS 123236	HQ878612	HQ878613	JQ437441	JQ437440	HQ878614	
Cladonia caroliniana	AFTOL ID 3	AY584640	AY584664	AY584614	DQ782816	AY584684	
Coenogonium leprieurii	AFTOL-ID 351 MCA2498, CBS 114054	AF465442 DQ286199	AF465457 M55640	AY584698 FJ190626	– AY489659	AY641032 DQ858455	
Colletotrichum gloeosporioides Corynelia uberata	UME 31276	DQ200199	AF242262	- -	A1409009	DQ636433	
Dactylospora haliotrepha	AFTOL-ID 758	FJ176855	FJ176802	KJ766382	_	FJ238344	
Dactylospora mangrovei	AFTOL-ID 2108	FJ176890	FJ176836	KJ766383	KJ766849	FJ238375	
Dermatocarpon miniatum	AFTOL-ID 91, Wedin 6362 (UPS)	AY584644	AY584668	AY853319	DQ782821	DQ782863	
Dermea acerina	AFTOL-ID 941 = CBS 161.38	DQ247801	DQ247809	DQ976373	DQ471164	DQ247791	
Diaporthe phaseolorum	AFTOL-ID 357 = NRRL 13736	U47830	L36985	AY584703	FJ238426	AY641036	
Dibaeis baeomyces	AFTOL-ID 358/3475	AF279385	AF085473	AY584704	DQ842011	AY641037	
Diploschistes actinostomus	AFTOL-ID 98	AF279389	AF279388	AY584692	DQ870943	AY641039	
Dirinaria applanata	AFTOL-ID 839	DQ973035	DQ973011	DQ972983	-	DQ973098	
Dolabra nepheliae	CBS 122120 AFTOL-ID 1359 = CBS 737.71	GU332517	- DO470022	GU332519	GU332521	_ DO470036	
Dothiora cannabinae Elaphomyces granulatus	AFTOL-ID 1359 = CBS 737.71 AFTOL-ID 436	DQ470984 KT232217	DQ479933 KT232240	FJ190636 KT232222	DQ471182	DQ470936 KT232234	
Endocarpon pallidulum	AFTOL-ID 661	DQ823097	DQ823104	FJ225674	DQ840552	DQ840559	
Eremascus albus	UCB 50-026, CBS 975.69	AY004345	M83258	-	FJ358410	_ _	
Exophiala dermatitidis	AFTOL-ID 668 = CBS 207.35	DQ823100	X79312	FJ225740	DQ840555	DQ840562	
Fusichalara minuta	CBS 709.88	KX537758	KX537773	KX537762	KX537766	KX537770	
Gelasinospora tetrasperma	AFTOL-ID 1287	DQ470980	DQ471032	FJ190627	DQ471178	DQ470932	
Geoglossum nigritum	AFTOL-ID 56	AY544650	AY544694	AY544740	DQ471115	DQ470879	
Graphis scripta	AFTOL-ID 2091/2525/7428	AY640029	AF038878	AY853322	DQ870947	HM244793	
Gyalecta jenensis	AFTOL-ID 361, Spribille s.n. (GZU)	AF279391	AF279390	AY584705	KR017455	AY641043	
Gyromitra californica	AFTOL ID 875	AY544673	AY544717	AY544741	DQ471130	DQ470891	
Icmadophila ericetorum Lasallia pustulata	AFTOL-ID 875 AFTOL-ID 554	DQ883694 DQ883690	DQ883704 DQ883700	DQ986897 DQ986889	DQ883723 DQ883719	DQ883711 DQ883707	
Lasama pustulata Lecanora contractula	AFTOL 877	DQ986746	DQ883700 DQ986741	DQ986898	DQ883719 DQ986817	DQ863707	
Lecidea fuscoatra	AFTOL-ID 589/4523	DQ912332	AF088239	DQ912275	DQ912355	DQ912381	
Lempholemma polyanthes	AFTOL-ID 367	AF356691	AF356690	AY584709	-	AY641050	
Leotia lubrica	AFTOL-ID 1	AY544644	L37536	AY544746	DQ471113	DQ470876	
Leptosphaeria maculans	AFTOL-ID 277 = DAOM 229267	DQ470946	DQ470993	_	DQ471136	DQ470894	
Lichina pygmaea	Schultz 04011/04069	_	AF282909	KX984061	_	_	
Lobarina scrobiculata	AFTOL-ID 128	AY584655	AY584679	AY584621	DQ883736	DQ883749	
Microglossum rufum	AFTOL-ID 1292	DQ470981	DQ257358	-	DQ471179	DQ470933	
Monascus purpureus	AFTOL-ID 426 = CBS 109.07	AF364966	DQ782881	FJ225780	DQ842012	DQ782869	
Monilochaetes infuscans	CBS 379.77	GU180645	GU180619	- -	- IX000141	GU180658	
Mycocalicium subtile	Wedin 6889 (UPS), Wedin 6353 (S), Wedin 8492 (S)	AY853379	JX000072	AY853330	JX000141	-	
Orceolina kerguelensis	AFTOL-ID 296	AF274116	DQ366257	AY212853	DQ366255	DQ366256	
Peltigera degenii	AFTOL-ID 230 AFTOL-ID 134	AY584657	AY584681	AY584628	DQ300233 DQ782826	AY584688	
Peltula umbilicata	AFTOL-ID 891	DQ832334	DQ782887	AY584711	DQ782855	DQ832335	
Penicillium freii	AFTOL-ID 378 = DOAM 216705	AY640958	AY640998	AY584712	-	AY641058	
Phaeomoniella chlamydospora	CBS 229.95/UCR-PC4	AF353609	_	genome ¹	genome ¹	genome ¹	
Phyllobaeis imbricata .	AFTOL-ID 852	DQ986781	DQ986739	DQ986895	_	DQ992472	
Placopsis perrugosa	AFTOL-ID 383	AF356660	AF356659	AY584716	_	AY641063	
Pleopsidium chlorophanum	AFTOL-ID 1004	DQ842017	DQ525540	DQ991756	DQ782858	DQ525442	
Preussia terricola	AFTOL-ID 282 = DAOM 230091	AY544686	AY544726	AY544754	DQ471137	DQ470895	
		1147440	A E E 40 = 0 =	E 1740007	AN/4000=0	DO 500 155	
Pseudonectria rousseliana Pycnora praestabilis	AFTOL-ID 191 = CBS 114049 AFTOL-ID 4927	U17416 KJ766644	AF543767	FJ713627 KJ766478	AY489670 KJ766886	DQ522459	

Table 1 (cont.)

Taxon	Source/Strain	GenBank accession no.					
		nLSU	nSSU	mtSSU	rpb1 (A-F)	rpb2 (5-7)	
Pycnora xanthococca	Hermansson 11849	AY853388	_	AY853339	_	_	
Pyrenula reebiae	AFTOL-ID 387	AY640962	AY641001	AY584720	DQ840558	AY641068	
Pyrgillus javanicus	AFTOL-ID 342	DQ823103	NG013194	FJ225774	DQ842010	DQ842009	
Pyxine subcinerea	AFTOL-ID 686	DQ883802	DQ883793	DQ912292	DQ883745	DQ883758	
Ramichloridium anceps	AFTOL-ID 659 = CBS 181.65	DQ823102	AY554292	FJ225752	DQ840557	DQ840564	
Rhizocarpon oederi	AFTOL-ID 1372	_	DQ983486	DQ986788	_	DQ992477	
Rhopalophora clavispora	CBS 637.73	KX537757	KX537772	KX537761	KX537765	KX537769	
Roccellographa cretacea	AFTOL-ID 93	DQ883696	DQ883705	FJ772240	DQ883716	DQ883713	
Schismatomma decolorans	AFTOL-ID 307	AY548815	AY548809	AY548816	_	DQ883715	
Sclerophora farinacea	Wedin 6414 (UPS)	JX000095	JX000078	JX000130	JX000144	_	
Solorina bispora	AFTOL-ID 127	DQ973044	DQ973021	DQ972994	_	DQ973082	
Sordaria fimicola	SMH 4106, MUCL 937, CBS 723.96	AY780079	X69851	_	_	DQ368647	
Spathularia velutipes	AFTOL-ID 1291	FJ997861	FJ997860	_	_	FJ997863	
Sphinctrina turbinata	AFTOL-ID 1721, Lofgren 637	EF413632	U86693	FJ713611	_	EF413633	
Spiromastix warcupii	AFTOL-ID 430	DQ782909	AB015768	FJ225794	EF413613	_	
Stemphylium vesicarium	AFTOL-ID 940 = CBS 191.86	DQ247804	DQ247812	FJ190610	DQ471163	DQ247794	
Stenocybe pullatula	Tibell 17117	AY796008	U86692	_	_		
Sticta beauvoisii	AFTOL-ID 1242	DQ986769	DQ986713	DQ986867	_	DQ992456	
Stictis radiata	AFTOL-ID 398	AF356663	U20610	AY584727	_	AY641079	
Symbiotaphrina kochii	CBS 250.77	AY227719	AY227717	genome1	genome1	genome1	
Talaromyces flavus	CBS 310.38 = NRRL 2098, FRR 2386	EU021596	GU733356	L14508	_	EU021620	
Thamnolia vermicularis	AFTOL-ID 2071/3340	AY853395	AF085472	AY853345	DQ915599	AY485634	
Thelotrema lepadinum	AFTOL 83/2025	AY300866	_	DQ972997	DQ973067	DQ973085	
Trapelia placodioides	AFTOL 962	AF274103	AF119500	AF431962	DQ366259	DQ366260	
Trichocoma paradoxa	CBS 788.83	FJ358290	FJ358354	FJ225782	_	JN121550	
Trichoglossum hirsutum	AFTOL-ID 64/408	AY544653	AY544697	AY584733	DQ471119	DQ470881	
Trinosporium guianense	CBS 132537	JX069853	_	_	genome ¹	genome1	
Umbilicaria arctica	AFTOL-ID 1266	DQ986772	DQ986717	DQ986872	DQ986841	DQ992460	
Usnea antarctica	AFTOL-ID 813	DQ883692	DQ883702	DQ990920	DQ883721	DQ883709	
Varicellaria hemisphaerica	AFTOL-ID 959	AF381556	DQ902340	DQ973000	DQ902341	DQ902342	
Verrucaria muralis	AFTOL-ID 2265	EF643803	EF689878	FJ225708	EF689805	_	
Xanthoria parietina	Gaya 8	JQ301589	JQ301641	JQ301530	JQ301734	JQ301784	
Xylaria hypoxylon	AFTOL-ID 51	AY544648	AY544692	AY544760	DQ471114	DQ470878	
Xylobotryum andinum	XA1 = CBS 144327 = WU 39969	MH468791	MH468791	-	MH468798	MH468794	
Xylobotryum portentosum	XP = WU 33543	MH468792	MH468792	_	MH468799	MH468795	
Xylona heveae	TC161	JQ838237	JQ838238	genome ¹	genome ¹	genome ¹	

¹ Sequence retrieved from genome deposited at JGI-DOE (http://genome.jgi.doe.gov/).

For some strains for which the whole genome data are available, sequences were retrieved from JGI-DOE (http://genome. jgi.doe.gov/). The sequence selection of Lecanoromycetes was cross-checked with the supplemental table S1 of Migdlikowska et al. (2014) to exclude misidentified taxa or obvious contaminant sequences. Two taxa of Pezizomycetes (Aleuria aurantia and Gyromitra californica) were added as outgroup according to Réblová & Seifert (2012). All alignments were produced with the server version of MAFFT (www.ebi.ac.uk/Tools/mafft), checked and refined using BioEdit v. 7.0.9.0 (Hall 1999). For the protein-coding genes (rpb1, rpb2), a preliminary sequence alignment was produced and single-base inserts (sequencing errors) causing reading frame shifts in some GenBank sequences and introns were removed from well-aligned blocks. Subsequently, the amino acid codons were determined, and the nucleotide alignment was then manually refined according to the reading frame of the amino acid alignment. After exclusion of ambiguously aligned regions, long gaps and introns, the final matrix contained 5949 nucleotide characters, i.e., 1158 from the nLSU, 1652 from the nSSU, 772 from the mtSSU, 1140 from rpb1 and 1227 from rpb2.

In Maximum likelihood (ML) and Bayesian analyses (BI), substitution model parameters were calculated separately for the different gene regions included in the combined analyses, and for the protein-coding genes (*rpb1*, *rpb2*) also separately for the first, second and third codon positions. Maximum likelihood analyses were performed with RAxML 8.2.10 (Stamatakis 2006) via the CIPRES Science Gateway v. 3.3 (Miller et al. 2010) using the ML + rapid bootstrap setting and the GTRCAT substitution model with 1000 bootstrap replicates.

The substitution models for Bayesian analyses were selected using the Bayesian Information Criterion (BIC) as implemented in MEGA7 (Kumar et al. 2016). The GTR model (Rodríguez et al. 1990) with an estimated proportion of invariable sites and with a gamma distribution (GTR+I+G) was selected for all loci. Bayesian analyses were performed with the computer program MrBayes (v. 3.2.6; Huelsenbeck & Ronquist 2001) via the CIPRES Science Gateway v. 3.3 (Miller et al. 2010). Two parallel runs of four incrementally heated, simultaneous Markov chains were performed over 6.5 million generations of which every 500th tree was sampled in each run. The first 2000 trees sampled of each run were discarded and a 90 % majority rule consensus of the remaining trees was computed to obtain posterior probabilities.

Maximum parsimony (MP) bootstrap analysis was performed with PAUP v. 4.0a161 (Swofford 2002), with 1000 bootstrap replicates using five rounds of heuristic search replicates with random addition of sequences and subsequent TBR branch swapping (MULTREES option in effect, steepest descent option not in effect) during each bootstrap replicate. All molecular characters were unordered and given equal weight; analyses were performed with gaps treated as missing data; the COLLAPSE command was set to minbrlen.

In the phylogenetic tree (Fig. 1), bootstrap support below 70 % was not considered, and from Bayesian analyses only maximum posterior probabilities (1.0) were added. In the Results and Discussion, bootstrap values below 70 % are considered low, between 70–90 % medium and above 90 % high.

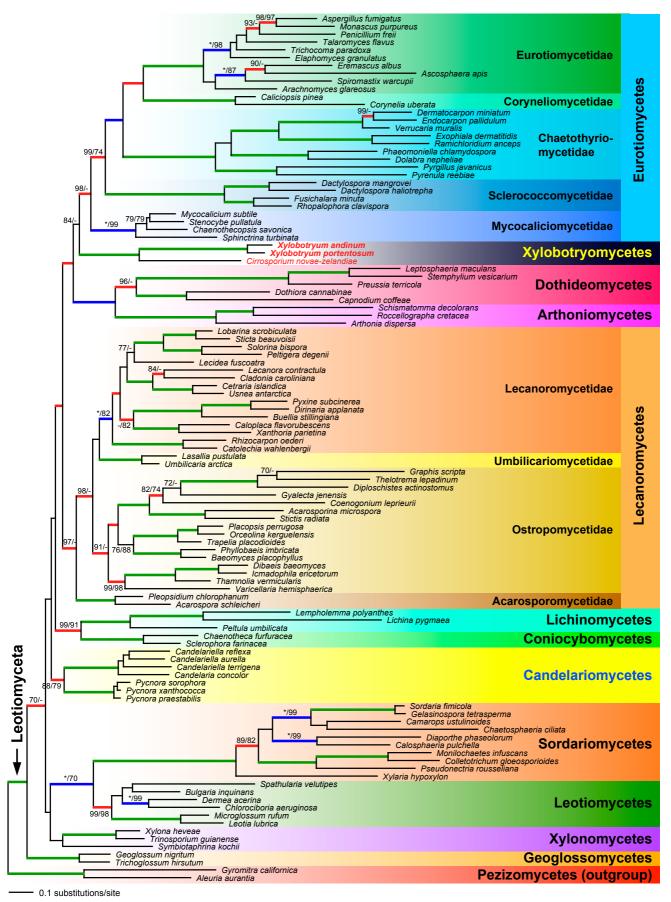


Fig. 1 Phylogram of the best ML tree (InL = -170318.7567) revealed by RAxML from an analysis of the combined nLSU-nSSU-mtSSU-rpb1-rpb2 matrix of selected *Pezizomycotina*, showing the phylogenetic position of *Xylobotryum* and *Cirrosporium* (*Xylobotryomycetes*) and *Candelariomycetes*. Thickened nodes in red denote maximum support by BI (1.0 PP), in blue by BI and ML (1.0 PP/100 %) and in green by BI, ML and MP (1.0 PP/100 %/100 %); ML and MP bootstrap support between 70 and 99 % is given at the first and second position, respectively, above or below the branches; with asterisks (*) denoting ML bootstrap support of 100 %.

RESULTS

Molecular phylogeny

Despite extensive PCR trials using various primer combinations, annealing temperatures and DNA polymerases, no clean mtSSU rDNA sequences could be obtained for the two *Xylobotryum* species. As no nSSU sequences are available for *Pycnora* in GenBank, the nSSU sequence obtained for *Pycnora sorophora* could not be verified as correct by BLAST searches which revealed *Symbiotaphrina kochii* (*Xylonomycetes*) as closest match (99 % sequence identity), followed by various *Leotiomycetes*. However, the sequence of the overlapping nSSU-ITS fragment amplified with primers nSSU1088/ITS4 completely matched the separately amplified nSSU and ITS-nLSU sequences in its respective parts, confirming that the correct nSSU fragment was amplified.

Of the 5949 nucleotide characters of the combined matrix, 3049 are parsimony informative (484 of nLSU, 493 of nSSU, 457 of mtSSU, 795 of *rpb1* and 820 of *rpb2*). Fig. 1 shows the phylogram of the best ML tree (InL = -170318.7567) obtained by RAXML.

Phylogenetic relationships of classes within Leotiomyceta were mostly unsupported in all analyses (Fig. 1). However, except Xylonomycetes which were consistently unsupported, all classes received maximum support in Bayesian analyses, and almost all also high to maximum support in ML analyses (Fig. 1). MP bootstrap support was commonly lower, but most classes also supported by ML and Bayesian analyses still received support above 70 % (Fig. 1); notable exceptions are the Dothideomycetes (56 %), Eurotiomycetes (61 %) and Lecanoromycetes (57 %). Candelariales consistently did not cluster with Lecanoromycetes and are thus recognised as a class of their own, Candelariomycetes, which received maximum support in Bayesian analyses and medium support in ML (88 %) and MP (79 %) analyses. The genera Xylobotryum and Cirrosporium were revealed as closest relatives with maximum support and were sister group to the Eurotiomycetes with low (57 % MP) to medium (84 % ML) support. However, in Bayesian analyses the Xylobotryum-Cirrosporium clade was placed outside Eurotiomycetes as sister clade to the Dothideomycetes-Arthoniomycetes clade with 0.93 PP. Monophyly of the clade containing Arthoniomycetes, Dothideomycetes, Eurotiomycetes and Xylobotryomycetes received maximum support in Bayesian analyses, but no support in MP and ML bootstrap analyses. Due to this result and their unique morphological features, Xylobotryum and Cirrosporium are here classified in the new class Xylobotryomycetes within Pezizomycotina and placed in two monotypic families *Xylobotryaceae* and *Cirrosporiaceae*, respectively, within the order Xylobotryales.

Taxonomy

Candelariomycetes Voglmayr & Jaklitsch, class. nov. — Myco-Bank MB826790

Holotype order. Candelariales Miądl., Lutzoni & Lumbsch. Holotype genus. Candelaria A. Massal.

A new class of the phylum *Ascomycota* containing the single order *Candelariales* with the two families *Candelariaceae* and *Pycnoraceae*. *Thallus* crustose to squamulose, peltate-subumbilicate, or microfoliose, rarely lichenicolous and without thallus, often bright yellow; photobiont chlorococcoid; cephalodia absent. *Ascomata* apothecial, lecanorine or rarely biatorine (*Candelariaceae*) or lecideine (*Pycnoraceae*). *Hamathecium* consisting of

unbranched to slightly branched paraphyses, amyloid. *Asci* with apical tholus, clavate; outer wall amyloid, tholus weakly amyloid except for a darker amyloid, ring-shaped structure in the lower part; containing 8 to many (64) ascospores (*Candelariaceae*). *Ascospores* hyaline, non-septate to (indistinctly) 1–3-septate, ellipsoid to citriform, non-amyloid. *Asexual morphs* where known pycnidial. *Conidia* hyaline, non-septate, ellipsoid to bacillar, sometimes curved. *Secondary chemistry*: pulvinic acid derivates (*Candelariaceae*) or depsides (alectorialic acid; *Pycnoraceae*).

Habitat — On rock (many *Candelariaceae*), rarely on bryophytes or soil or epiphytic on bark, or typically on wood (*Pycnoraceae*).

Notes — The diagnosis above was slightly modified from the diagnosis of subclass *Candelariomycetidae* published in Lücking et al. (2017).

Xylobotryomycetes Voglmayr & Jaklitsch, class. nov. — Myco-Bank MB826791

Holotype order. Xylobotryales Voglmayr & Jaklitsch.

Holotype genus. Xylobotryum Pat.

A new class of the phylum *Ascomycota* containing the single order *Xylobotryales* with the two families *Cirrosporiaceae* and *Xylobotryaceae*. Saprobic or possibly parasitic. *Sexual morphs* where known stromatic. *Stromata* branched or unbranched, bearing superficial ascomata. *Ascomata* perithecioid. *Ostiolar canal* periphysate. *Hamathecium* consisting of filiform, septate paraphyses with free ends. *Asci* bitunicate, fissitunicate, apex with an apical ring. *Ascospores* pigmented, septate, with longitudinal germ slits. *Asexual morphs* where known pycnidial, unilocular. *Conidiogenesis* meristem arthric. *Conidia* pigmented, septate.

Xylobotryales Voglmayr & Jaklitsch, ord. nov. — MycoBank MB826792

Etymology. Referring to the name of the type genus, Xylobotryum.

Holotype family. Xylobotryaceae Voglmayr & Jaklitsch.

Other family. Cirrosporiaceae Voglmayr & Jaklitsch.

Saprobic or possibly parasitic on wood or bark. Sexual morphs where known stromatic. Stromata large, upright, stipitate, branched or unbranched, bearing superficial ascomata. Ascomata perithecioid, sessile or stipitate. Ostioles periphysate. Paraphyses filiform, with free ends. Asci bitunicate, fissitunicate; apex with an apical ring. Ascospores 2-celled, brown, with longitudinal germ slits. Asexual morphs where known pycnidial, cylindrical, unilocular, consisting of a sterile basal part and a fertile upper part with an apical ostiole. Conidiogenous cells forming a meristem, producing pigmented, septate arthroconidia.

Cirrosporiaceae Voglmayr & Jaklitsch, fam. nov. — MycoBank MB826793

Etymology. Referring to the name of the type genus.

Type genus. Cirrosporium S. Hughes.

Saprobic on wood or bark. Sexual morphs unknown. Pycnidia large, dark brown, upright, cylindrical, elongate, unilocular, consisting of a sterile basal part and a fertile tubular upper part with a wide apical ostiole. Conidiogenous cells growing as a meristem from the basis of the pycnidial cavity upwards, hyaline, producing brown to black, transversely septate, catenate arthroconidia being ejected in black cirrhi.

Xylobotryaceae Voglmayr & Jaklitsch, fam. nov. — MycoBank MB826794

Etymology. Referring to the name of the type genus.

Type genus. Xylobotryum Pat.

Saprobic or possibly parasitic on wood or bark. Stromata dark brown to black, upright, stipitate, branched or unbranched, bearing superficial ascomata. Ascomata perithecioid, subglobose to ellipsoid, sessile or stipitate, black. Ostioles inconspicuous to papillate; ostiolar canal lined with periphyses. Paraphyses abundant, filiform, with free ends, septate, hyaline, thin-walled, embedded in a gelatinous matrix. Asci bitunicate, fissitunicate, with a long stipe; containing 8 (sometimes 4 fully developed and 4 aborted) ascospores; apex with an inamyloid apical ring; ectotunica firm, elastic, rupturing apically, laterally or basally; endotunica swelling after dehiscence. Ascospores ellipsoid to fusiform, 2-celled, brown, with longitudinal germ slits. Asexual morphs unknown.

Xylobotryum Pat., in Patouillard & De Lagerheim, Bull. Herb. Boissier 3 (1): 69. 1895.

Type species: Xylobotryum andinum Pat.

Synonyms. Melanobotrys Rodway, Pap. & Proc. Roy. Soc. Tasmania 1925: 168. 1926.

Trachyxylaria Möller, Bot. Mitt. Tropen 9: 308. 1901. *Xyloceras* A.L. Sm., J. Linn. Soc., Bot. 35 (no. 242): 16. 1901.

Saprobic or possibly parasitic on wood or bark. Stromata large, dark brown to black, upright, stipitate, branched or unbranched, bearing numerous superficial ascomata. Ascomata perithecioid, subglobose to ellipsoid or oval, sessile or short-stipitate, occasionally laterally collapsed; surface black, texture leathery when dry, rubbery when moist; contents hyaline, slightly gelatinous when rehydrated. Peridium pseudoparenchymatous, 3-layered: outermost layer of dark brown, thick-walled angular cells; median layer subhyaline, of thin-walled hyphal to prismatic cells; inner layer pale brown, of similar, more pigmented cells. Stromatic tissues continuous with the ascomatal walls, with an outermost dark brown layer similar to that of ascomata; inner layer composed of subhyaline prismatic to elongate cells: hyphae of the innermost tissue loosely intertwined. Ostioles inconspicuous to papillate; ostiolar canal densely lined with hyaline periphyses with bluntly rounded ends. Paraphyses abundant, filiform, with free ends, 1-3 µm wide, hyaline, thin-walled, remotely septate, unbranched in the upper part, embedded in a gelatinous matrix. Asci bitunicate, fissitunicate, peripheral, narrowly clavate to slightly fusiform, apically broadly rounded, straight to contorted at base, with a long stipe and a swollen furcate base; containing 8 (sometimes 4 fully developed and 4 aborted) obliquely uniseriate to irregularly biseriate ascospores; apex with an apical ring stained by Congo red but not reacting in Lugol and Melzer's reagent; ectotunica slightly refractive, firm, elastic, rupturing apically, laterally or basally; endotunica swelling after dehiscence. Ascospores ellipsoid to slightly fusiform, equilateral, with broadly rounded ends, 2-celled, pale brown, with several longitudinal germ slits in each cell extending over the entire length, without appendages or hyaline sheath visible in India ink. Asexual morph unknown.

Notes — Six species have been described in *Xylobotryum*, of which two, *X. andinum* and *X. portentosum*, are currently accepted in the genus and two (*X. coralloides*, *X. dussii*) are considered synonyms of *X. andinum* (Müller & Von Arx 1962, Rossman 1976). The remaining two *Xylobotryum* species belong elsewhere. After type studies, Dennis (1977) recognised *X. caespitosum* as a calicioid fungus that is now classified as *Chaenothecopsis caespitosa* in *Mycocaliciaceae* (Hawksworth

1980, Hawksworth et al. 2014), and Rossman (1976) confirmed *Xylobotryum rickii* to be a true *Xylaria* in which it had originally been described.

Xylobotryum seems to be confined to tropical and subtropical regions, where it is widely distributed. It is commonly considered a saprobe, but Agnihothrudu & Barua (1960) assumed that X. andinum could be a parasite of tea bushes in India, and Rodway (1926) recorded growth on galls of Nothofagus. Collection MJF 07074 of X. andinum likewise comes from a living stump. Both currently accepted Xylobotryum species are indistinguishable by ascus and ascospore characters, but their stromata are markedly distinct. While X. andinum shows branched stromata with branches terminally bearing clusters of 2–5 ascomata, X. portentosum has unbranched, erect, fusiform stromata with a large fertile apical part densely covered by numerous superficial ascomata.

Xylobotryum andinum Pat., in Patouillard & De Lagerheim, Bull. Herb. Boissier 3 (1): 69. 1895. — Fig. 2, 3

Synonyms. Thamnomyces andinus (Pat.) Lloyd, Mycol. Writings 6 (Letter 62): 908. 1920.

Xylobotryum dussii Pat., in Duss, Enum. Champ. Guadeloupe (Lons-le-Saunier): 77. 1903.

Melanobotrys tasmanicus Rodway, Pap. & Proc. Roy. Soc. Tasmania 1925: 168. 1926.

Xylobotryum coralloides Syd., Ann. Mycol. 36 (4): 297. 1938.

Typification. Ecuador, San Jorge, on decorticated wood, July 1892, G. Lagerheim (FH 01146514, holotype). – France, French West Indies, Martinique, Fort-de-France, forest trail of Fond Baron, hygrophilous rainforest, on a dead corticated trunk, 10 Aug. 2016, J. Fournier MJF 16201 (WU 39969, epitype designated here; ex-epitype culture CBS 144327 = XA1; MBT382221).

Stromata corymbose, 1-4 mm high, on a dark brown to black roughened stipe 0.5-0.8 mm diam, straight to furcate, ramifying upwards into 1–4 branches bearing a cluster of most often 2-5 fully exposed ascomata standing roughly at the same level; stromata either separate, upright and scattered, but more commonly compound, arising radially from a central common stipe 1–1.3 mm diam, forming dense, convex clusters 1–4.5 mm high \times 2–8.5 mm diam. Ascomata subglobose to oval, 0.35–0.85 mm high and 0.3-0.5 mm diam, occasionally laterally collapsed; apex rounded to bluntly conical; surface black, slightly roughened, texture leathery when dry, rubbery when moistened; contents hyaline, gelatinous when rehydrated. *Peridium* 55–100 µm thick, pseudoparenchymatous, 3-layered: outermost layer 22-54 µm thick, of dark brown angular cells 7-20 µm in their greatest dimension, unevenly thick-walled, wall 0.8-1.5 µm thick, with clusters of cells protruding outwardly; median layer 18–35 µm thick, subhyaline, of hyphal to prismatic thick-walled cells, wall to 2 µm thick; inner layer 14–23 µm thick, pale brown, merging with the median layer, of similar, more pigmented prismatic cells. Stipe with dark brown outermost layer similar to that of ascomata and interior solid, pale brown, textura oblita, composed of vertically oriented moderately thick-walled hyphae 5.5-7.5 µm wide, continuous with those of the median layer of ascomatal wall. Ostioles inconspicuous to conic-papillate, ostiolar canal densely periphysate, periphyses 25-35 µm long and $2.5-3.0 \mu m$ wide, hyaline, with bluntly rounded ends. Paraphyses abundant, filiform, with free ends, 1.5–2.2 µm wide, hyaline, thin-walled, remotely septate, unbranched, embedded in a gelatinous matrix, filling the ascomatal centre and converging upwards beneath the ostiole. Asci peripheral, bitunicate, fissitunicate, narrowly clavate to slightly fusiform, apically broadly rounded, pars sporifera $24-34 \times 6-7 \mu m$, stipe 18-62µm long, straight to most often contorted at the base, with a swollen furcate base; containing 8 or 4 obliquely uniseriate to irregularly biseriate ascospores at maturity with remnants of 4 aborted hyaline ascospores usually still visible; apex with an inconspicuous discoid thickening $0.7-1.0\times2.0-2.5\,\mu m$ (n = 10) stained by Congo red, not reacting in Melzer's reagent nor in Lugol's solution; ectotunica slightly refractive, firm, elastic, not easily ruptured, rupturing apically or basally under pressure on the cover slip; endotunica including the apical thickening swelling after dehiscence. *Ascospores* ellipsoid to slightly fusiform, equilateral, with broadly rounded ends, $(8.0-)9.0-9.5(-10.0)\times(2.9-)3.3-3.5(-3.7)\,\mu m$, I/w = (2.3-)2.6-2.8(-3.0) (n = 120), equally 2-celled, slightly constricted at the black, $0.9-1.2\,\mu m$ thick, occasionally slightly obliquely inserted septum, smooth-

walled, pale olivaceous brown, with 3–5 thin longitudinal germ slits in each cell extending over the whole length, without appendages or hyaline sheath visible in India ink.

Colonies on CMD reaching 60 mm diam after 5 d at 22 °C, covering the entire plate after 7 d, first colourless and translucent, later becoming cream. *Mycelium* immersed, cobweb-like, of widely spaced, radially growing tortuous hyphae; aerial hyphae absent (Fig. 3a). *Colonies* on 2 % MEA inconspicuous. *Mycelium* immersed, of very widely spaced radially growing tortuous hyphae. No asexual morph observed.

Habitat — On dead, rarely living bark and wood of various trees and shrubs.

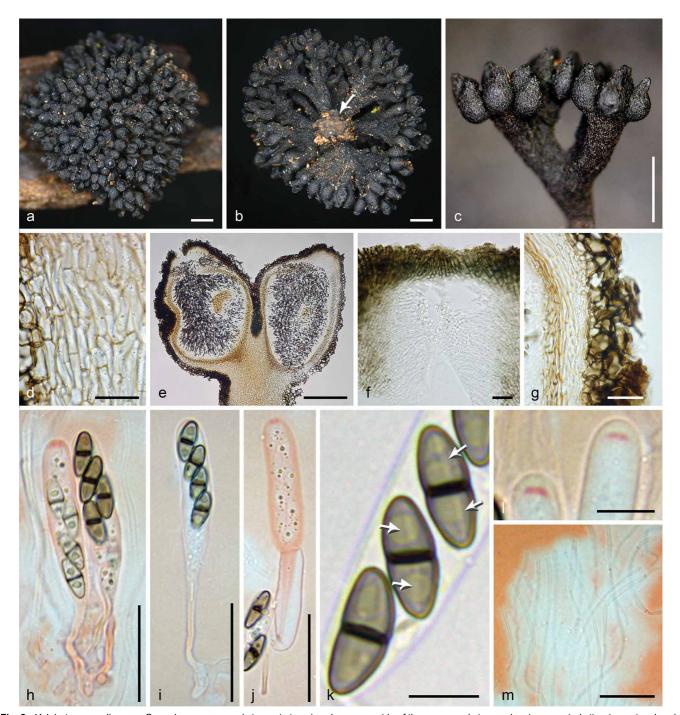


Fig. 2 *Xylobotryum andinum*. a. Corymbose compound stroma in top view; b. reverse side of the compound stroma showing a central stipe (arrow); c. heads of branched stroma showing ascomata; d. stipe in vertical section; e. two adjacent ascomata in vertical section; f. ostiolar region in vertical section showing the periphyses; g. ascomatal wall in vertical section showing the 3-layered peridium; h. 4-spored immature and mature asci lined by paraphyses, showing contorted stipes, aborted hyaline ascospores and apical thickening; i. mature ascus with remnants of aborted ascospores; j. dehiscing immature ascus showing the entire endotunica containing eight hyaline ascospores; k. mature ascospores, two of which showing faint longitudinal germ slits (arrows); l. apical thickenings of two immature asci; m. paraphyses embedded in gel matrix (d–g. in chloral-lactophenol; h–j, l, m. in Congo red in 1 % SDS; k. in 1 % SDS) (a, b, d–m: WU 39969 (epitype); c: MJF 07074). — Scale bars: a–c = 1 mm; d, f–j = 20 μm; e = 0.2 mm; k, l = 5 μm; m = 10 μm.

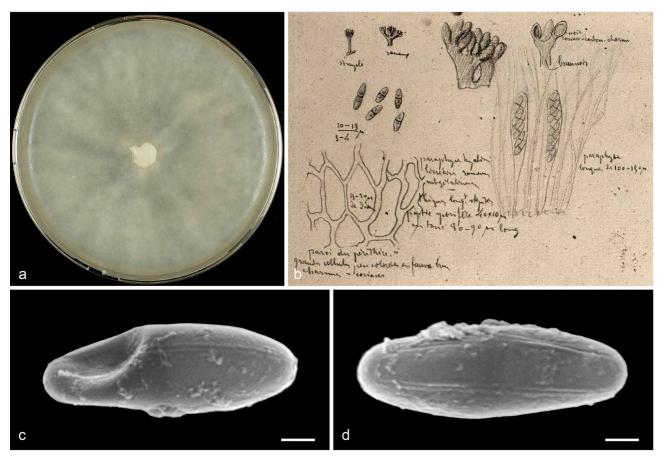


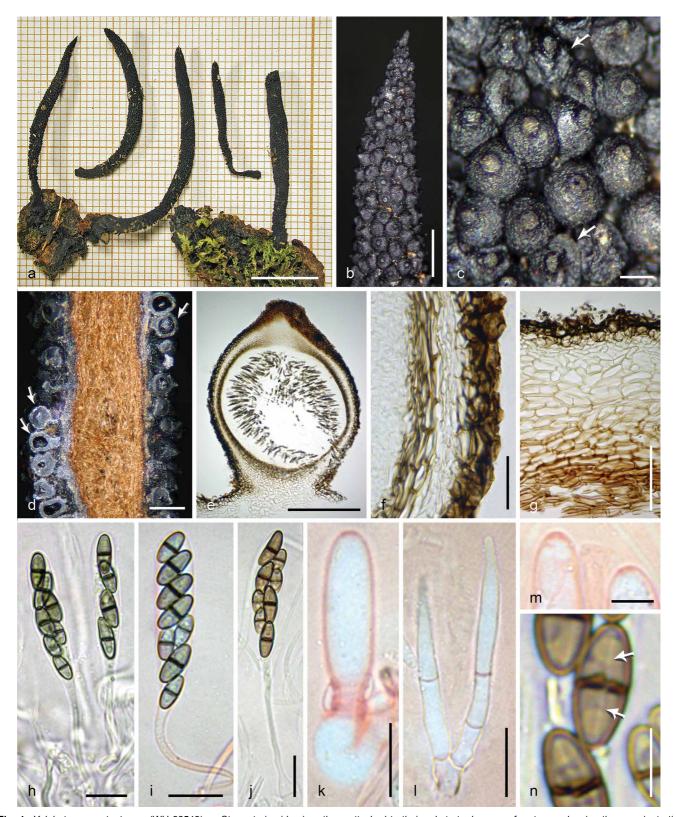
Fig. 3 Xylobotryum andinum. a Colony on CMD (22 °C, 28 d); b. line drawings by Patouillard attached to the holotype (FH 01146514); c, d. SEM pictures of ascospores showing the longitudinal germ slits (WU 39969, epitype). — Scale bars: c, d = 1 μm.

Distribution — Widely distributed in tropical, subtropical to warm temperate, humid areas throughout the world; recorded from Australia, China, Dominica, Ecuador, Grenada, Guadeloupe, Guyana, India, New Zealand, Puerto Rico, Taiwan, Trinidad, USA, Venezuela (Rossman 1976, Rogerson et al. 1990, Ju & Rogers 1994, MyCoPortal 2018).

Other material examined. France, French Guiana, Régina, Nouragues natural reserve, Inselberg field centre, entrance of the eastern track, on a dead corticated branch on the ground, 16 June 2012, *J. Fournier GYJF 12007* (WU 33542); Roura, Cacao, Molocoï trail, hygrophilous tropical rainforest, on a dead corticated trunk, 8 May 2008, *C. Lechat CLL 8133* (WU 39970); French West Indies, Martinique, Le Morne-Rouge, forest trail of La Propreté, hygrophilous tropical rainforest, on a living corticated stump, 24 Aug. 2007, *C. Lécuru MJF 07074*; ibid., on a dead corticated branch on the ground, 29 Aug. 2007, *J. Fournier MJF 07199* (immature).

Notes — The ascospores of our collections are slightly smaller than recorded in the literature (e.g., $10-13 \times 3-4 \mu m$ in Patouillard & De Lagerheim 1895; $10-12.5(-13) \times (3-)3.5-4 \mu m$ in Rossman 1976). In addition, in our collections usually only four ascospores reached maturity in the ascus, the other four being aborted. Although in the literature mainly asci with eight fully developed ascospores were recorded (Patouillard & De Lagerheim 1895, Müller & Von Arx 1962, Rossman 1976), we do not consider this feature to be taxonomically important as all other features are in line with the 8-spored collections. Also, Ju & Rogers (1994) reported the occurrence of asci with four normal and four incompletely developed ascospores in their investigations. This phenomenon may be connected to the peculiar mating system recorded by Ju & Rogers (1994), which involves the production of four homothallic and four heterothallic ascospores per ascus. The original line drawings of the holotype (FH 01146514) by Patouillard are reproduced here as Fig. 3b. The longitudinal germ slits are scarcely noticeable in LM (Fig. 2k), but clearly seen in SEM (Fig. 3c, d).

Xylobotryum portentosum (Mont.) Pat., Bull. Soc. Mycol. France 16 (4): 185. 1900. — Fig. 4


Basionym. Sphaeria portentosa Mont., Ann. Sci. Nat., Bot., sér. 2, 8: 358. 1837.

Synonyms. Sphaeria antilopea Lév., Ann. Sci. Nat., Bot., sér. 3, 5: 256. 1846.

Xylaria portentosa (Mont.) Mont., Syll. Gen. Sp. Crypt. (Paris): 201. 1856. Xyloceras elliottii A.L. Sm. (as 'elliotti'), J. Linn. Soc., Bot. 35 (no. 242): 6 1901

Trachyxylaria phaeodidyma Möller, Bot. Mitt. Tropen 9: 308. 1901.

Stromata upright, unbranched, terete to flattened, straight to curved, 18-43 mm high including the 4-8 mm long and 1.8-6 mm wide stipe, tapering into a fertile, flattened, obtuse or acuminate apex; surface black, roughened by superficial ascomata, stipe glabrous; interior loosely fibrous to woolly, fulvous. Ascomata subglobose, 0.25-0.55 mm diam, sessile or shortstipitate, occasionally laterally collapsed, apically papillate; surface black, slightly roughened, texture leathery when dry, rubbery when moist; contents hyaline, slightly gelatinous when rehydrated. Peridium 35-60 µm thick, pseudoparenchymatous, 3-layered: outermost layer 18-30 µm thick, of dark brown, angular cells 7-22 µm in their greatest dimension, unevenly thick-walled, wall 1–2 µm thick; median layer 7–16 µm thick, subhyaline, of elongate to prismatic thin-walled cells; inner layer 7-20 µm thick, pale brown, merging with the median layer, of similar, more pigmented prismatic cells; wall to 1 µm thick. Stromatal crust continuous with the ascomatal walls, with an outermost dark brown layer 20-38 µm thick, homologous with that of ascomata; inner layer 180-270 µm thick, composed of very thick-walled prismatic cells up to 60 µm in their greatest dimension, wall 3.5-4.5 µm thick, subhyaline, becoming gradually reddish brown inwardly; hyphae of the internal tissue loosely intertwined, 5.5-10 µm wide, reddish brown,

Fig. 4 *Xylobotryum portentosum* (WU 33543). a. Stromata in side view, three attached to their substrate; b. apex of a stroma showing the acuminate tip and the surface roughened by superficial ascomata; c. stromatal surface in close-up showing globose ascomata with raised-discoid ostioles and laterally collapsed ascomata (arrows); d. stroma in vertical section showing the black outer crust bearing superficial ascomata, some short-stipitate (arrows), and the fulvous, loosely fibrous to woolly interior; e. sessile ascoma in vertical section; f. lateral ascomatal wall in vertical section; g. stromatal crust in vertical section; h. 4- and 7-spored asci; i, j. 8-spored asci featuring large and smaller ascospores in equal parts; k. dehiscence of an immature ascus; l. branched base of a paraphysis; m. apical thickenings of two immature asci; n. mature ascospore showing faint longitudinal germ slits (arrows) (e–g. in chloral-lactophenol; h, n. in 1 % SDS; i, k–m. in Congo red in 1 % SDS; j. in chlorazol black). — Scale bars: a = 10 mm; b = 1 mm; c, c = 0.2 mm; d = 0.5 mm; d = 0.5 mm; d = 100 μm; d = 10 μm; d =

septate, thin-walled, wall to 0.8 µm thick. Ostioles conspicuous, bluntly papillate to raised-discoid, 80–170 µm diam at the base; ostiolar canal densely periphysate, periphyses 25-40 µm long and 2–2.8 µm wide, hyaline, with bluntly rounded ends. Paraphyses abundant, basally 2-3 µm wide and occasionally branched, filiform between and above asci and 1-1.8 µm wide, with free ends, hyaline, thin-walled, remotely septate, embedded in slightly gelatinous matrix, filling the ascomatal centre and converging upwards beneath the ostiole. Asci peripheral, bitunicate, fissitunicate, narrowly clavate to slightly fusiform, apically broadly rounded, pars sporifera 27–32 × 5.5–6.5 µm, stipe 18–45 µm long, straight to most often contorted at base, with a swollen furcate base; containing 8 obliquely uniseriate to irregularly biseriate ascospores, with four significantly smaller ascospores randomly distributed in the ascus (GYJF 12004); apex with an inconspicuous discoid thickening 0.8-0.9 x $2.0-2.5 \,\mu\text{m}$ (n = 6) faintly stained by Congo red, darker in fresh material, not reacting in Melzer's reagent nor in Lugol's solution; ectotunica slightly refractive, firm, elastic, not easily ruptured, rupturing apically or basally under pressure on the cover slip; endotunica swelling after dehiscence. Ascospores ellipsoid to slightly fusiform, equilateral, with broadly rounded ends, $(7.8-)8.8-10.2(-11.7) \times (3.0-)3.3-3.8(-4.1) \mu m, I/w = (2.2-)$ 2.6-2.7(-3.1) (n = 120), equally 2-celled, slightly constricted at the black, 0.8-1 µm thick, occasionally slightly obliquely inserted septum, smooth-walled, pale olivaceous brown, with 3–5 thin longitudinal germ slits in each cell extending over the whole length, without appendages or hyaline sheath visible in India ink. No asexual morph observed.

Habitat — On dead bark and wood of various trees and shrubs; commonly recorded from tree ferns (*Cyathea* spp.).

Distribution — Tropical and subtropical Central and South America; recorded from Brazil, Chile, Colombia, Costa Rica, Dominica, Ecuador, French Guiana, Guadeloupe, Guyana, Jamaica, Martinique, Nicaragua, Panama, Peru, Puerto Rico (Rossman 1976, Trierveiler-Pereira et al. 2008, Guzmán & Piepenbring 2011, Mushroom Observer 2018, MyCoPortal 2018).

Specimens examined. France, French Guiana, Régina, Nouragues Nature Reserve, track K, 50 m upstream from 'pont ficelle', on a corticated moss-covered branch on the ground, 16 June 2012, *J. Fournier GYJF 12004* (WU 33543 = XP); French West Indies, Guadeloupe, without place and exact date, 1998, on *Cyathea* sp., leg. *J. Vivant*, comm. *F. Candoussau*, det. *G.J. Samuels*, *JF* 98169 (WU 39971).

Notes — The collection from Guadeloupe features a larger stroma and larger ascomata than GYJF 12004. Its asci contain eight ascospores of roughly the same dimensions, unlike those of the Guianese collection. Smaller ascospores $6-7 \times 2.6-3.2$ μ m (mean = 6.7 × 2.9 μ m, n = 30) occurring in groups of four in most asci of collection GYJF 12004 were not taken into account in the above measurements. This is in comparison with X. andinum in which asci are either 8-spored (in literature) or 4-spored with four aborted hyaline ascospores (JF, pers. obs.; see above). Likewise (see above), ascospore dimensions of X. portentosum are fairly variable, those recorded here being slightly smaller than usually reported (e.g., $10-13 \times 3-4 \mu m$ in Patouillard 1900; $(9.5-)10-13(-15) \times 3-4(-4.5) \mu m$ in Trierveiler-Pereira et al. 2008). Based on co-occurrence of both Xylobotryum species at the same localities, Rogerson et al. (1990) suspected X. portentosum to be conspecific with X. andinum; however, our molecular and morphological data clearly disprove this. For additional illustrations of fresh collections of X. portentosum see Læssøe & Petersen (2008) and Guzmán & Piepenbring (2011).

DISCUSSION

Phylogenetic relationships and classification of Xylobotryum and Cirrosporium

The unique suite of characters of Xylobotryum not matching any other lineage of Ascomycota, in combination with mostly superficial morphological investigations and the lack of molecular data, resulted in uncertainties about its systematic affiliations, which up to now precluded a comprehensible higherlevel classification within Ascomycota. In the past, the genus has been either attributed to groups now classified in Sordariomycetes (e.g., Müller & Von Arx 1962, Dennis 1970, Rossman 1976) or Dothideomycetes (e.g., Barr 1987, 1990, Rogerson et al. 1990, Huhndorf 1994, Ju & Rogers 1994), but mostly without convincing evidence. For instance, Barr (1987) concluded that Xylobotryum should be best accommodated in the Didymosphaeriaceae based on ascus characters and 1-septate ascospores; however, at the same time she expressed doubts about her tentative disposition due to the unique stipitate stromata unparalleled in Dothideomycetes. In their detailed pure culture, light and electron microscopy study, which was the first thorough investigation of the micromorphology and life cycle of *Xylobotryum*, Ju & Rogers (1994) revealed the asci to be functionally bitunicate, indicating dothideomycetous affinities. However, in light of the unique character combination of *Xylobotryum*, they remained uncertain about its systematic affiliation. Since then, no new data on the genus Xylobotryum have become available.

Our molecular phylogenetic results, which place Xylobotryum neither in Sordariomycetes nor in Dothideomycetes but near the Eurotiomycetes, shed new light on the apparently conflicting evidence of the studies cited above. Considering that in the pre-molecular era part of the Eurotiomycetes (e.g., Chaetothyriomycetidae) were considered to have dothideomycetous affinities due to their fissitunicate asci, the results of our molecular phylogenies are not surprising. The Eurotiomycetes are a morphologically extremely heterogeneous lineage, which makes it impossible to give diagnostic features for the whole class (Geiser et al. 2015, Jaklitsch et al. 2016). They currently contain the five subclasses Chaetothyriomycetidae, Coryneliomycetidae, Eurotiomycetidae, Mycocaliciomycetidae and Sclerococcomycetidae (Réblová et al. 2017). Ascomata of Eurotiomycetes can be gymno- or cleistothecial (Eurotiomycetidae), perithecioid or rarely apothecial (Chaetothyriomycetidae, Coryneliomycetidae), apothecial (Sclerococcomycetidae) or apothecial-mazaediate (Mycocaliciomycetidae). Also the asci are highly variable: globose, thin-walled and evanescent in Eurotiomycetidae; unitunicate, non-amyloid with an external amyloid gelatinous cap ('Dactylospora-type' fide Bellemère & Hafellner 1982) in Sclerococcomycetidae; unitunicate, cylindrical, non-amyloid, with or without an apical thickening and sometimes evanescent in Mycocaliciomycetidae; initially bitunicate with early deliquescing ectotunica and an endotunica deliquescing at maturity in Coryneliomycetidae; and fissitunicate in Chaetothyriomycetidae. In their extensive analyses of Ascomycota, Schoch et al. (2009) resolved the ancestor of the Eurotiomycetes as fissitunicate, which is in line with our analyses where Xylobotryum and Cirrosporium are revealed as basal to the Eurotiomycetes (Fig. 1). A classification of Cirrosporium within Eurotiomycetes, close to the Mycocaliciales, possibly in a new order, was suggested by Réblová & Seifert (2012). They discussed and noted that morphological characters such as stipitate ascomata of the Coryneliales and Mycocaliciales and a dark brown ascospore wall of some species of the Mycocaliciales, bear some superficial similarity to the large, cylindrical pycnidia and the dark brown conidial cell walls with thick septa of Cirrosporium. They also hypothesized that the meristematic hyphal growth in some species of the *Chaetothyriales* and *Onygenales*, and the coelomycetous asexual morphs in the Mycocaliciales and Coryneliales support a relationship between Cirrosporium and the Eurotiomycetes. However, the extreme morphological and ecological heterogeneity of the Eurotiomycetes facilitates detection of convergences or similarities. Also, a discussion of each morphological character does not make much sense as, e.g., both the characters longitudinal germ slit (*Xylobotryum*) and meristem arthroconidia (Cirrosporium) are polyphyletic and occur in several unrelated classes of Ascomycota. Longitudinal germ slits in brown ascospores are particularly common in Sordariomycetes (e.g., Cainiaceae, Coniocessiaceae, Coniochaetaceae, Lopadostomataceae, Xylariaceae), but also occur in Dothideomycetes (e.g., Delitschiaceae, Hypsostromataceae, Sporormiaceae) and Leotiomycetes (Bulgaria; see Jaklitsch et al. 2014, 2016). Meristem arthroconidia occur, e.g., also in Leotiomycetes (Erysiphe, Trimmatostroma), Dothideomycetes (Hysterium) and other genera of unknown affinities (Réblová

Our phylogenetic tree (Fig. 1), which contains a more representative taxon selection and more DNA data than the earlier analyses of Réblová & Seifert (2012), shows a position of the Xylobotryum-Cirrosporium clade near the Mycocaliciomycetidae. However, the former is basal to the whole class Eurotiomycetes and does not exhibit a convincingly strong affiliation to this class. An affiliation of the clade to the Eurotiomycetes is only moderately supported by ML analyses (84 %), weakly supported by MP analyses (57 %) and unsupported in Bayesian analyses. In the latter, the Xylobotryum-Cirrosporium clade is located outside the Eurotiomycetes as sister to the Dothideomycetes-Arthoniomycetes clade with insignificant support (0.93 PP). Only if the results of ML analyses are considered alone, it may be possible to define this clade as a subclass of Eurotiomycetes, but this would only increase the extreme heterogeneity of this large class even more. Thus, low and inconsistent phylogenetic support and the unparalleled morphological traits of Xylobotryum and Cirrosporium warrant classification of these genera in a new class, the Xylobotryomycetes.

The close phylogenetic relationship of Xylobotryum and Cirrosporium is unexpected and remarkable. Morphological comparison of these genera is difficult, as neither an asexual morph of Xylobotryum nor a sexual morph of Cirrosporium is known. The large, cylindrical, tubular, dark brown pycnidia in combination with a unique meristem arthric conidium ontogeny producing brown, 3-septate conidia aggregated in conspicuous columnar cirrhi in Cirrosporium is unparalleled in ascomycetes (Hughes 1980, Réblová & Seifert 2012). Also, the combination of characters in Xylobotryum, viz. upright stipitate stromata bearing superficial ascomata, apically free paraphyses, fissitunicate asci and bicellular brown ascospores with several longitudinal germ slits, is unique. Considering the differences of these character combinations, it is unlikely that Cirrosporium and Xylobotryum are only distinct at the generic level, but they justify their classification as two distinct families Cirrosporiaceae and Xylobotryaceae within an order Xylobotryales.

Phylogenetic placement of Candelariales

There is some disagreement and incongruence about the phylogenetic placement, circumscription and classification of the *Candelariales*. In all phylogenetic analyses (e.g., Wedin et al. 2005, Miądlikowska et al. 2006, 2014, Hofstetter et al. 2007, Lumbsch et al. 2007, Schoch et al. 2009, Prieto et al. 2013), the *Candelariales* occupy an isolated phylogenetic position outside the core *Lecanoromycetes*, which, however, varies substantially, depending on the selection of taxa included in the analyses. In acknowledging their phylogenetic distinctness,

Miądlikowska et al. (2006) informally introduced the 'Candelariomycetidae', which was formally established as a subclass of Lecanoromycetes by Lücking et al. (2017). In the extensive analyses of Miądlikowska et al. (2014), the Candelariales formed a rather basal clade within Lecanoromycetes and were revealed as sister group of Dactylospora. This Candelariales-Dactylospora clade was placed between the more basal Acarosporomycetidae clade and the core Lecanoromycetes clade consisting of the subclasses Ostropomycetidae, Umbilicariomycetidae and Lecanoromycetidae. However, in their analyses the Pycnoraceae, which were revealed as sister group of Candelariaceae within Candelariales by Bendiksby & Timdal (2013), were not only placed outside the Candelariales but even outside the Lecanoromycetes. It has to be noted that the analyses of Miądlikowska et al. (2014), like most other studies focussing on Lecanoromycetes (e.g., Miądlikowska et al. 2006, Hofstetter et al. 2007, Lumbsch et al. 2007), seriously suffer from an insufficient outgroup selection that evidently greatly influences the topologies of the basal nodes of the trees. Migdlikowska et al. (2014) only included few species from Leotiomycetes, Lichinomycetes and Geoglossomycetes, but did not include any representatives of other classes of Leotiomyceta like Sordariomycetes, Dothideomycetes, and, most notably, *Eurotiomycetes*. This is well illustrated by the position of Dactylospora, which was revealed as a member of Eurotiomycetes by Réblová et al. (2017) where it was placed in their new subclass Sclerococcomycetidae with maximum support, a position fully matching our analyses (Fig. 1). Therefore, although the analyses of Miądlikowska et al. (2014) are highly conclusive for the core Lecanoromycetes, the highly biased outgroup selection does not allow for an evaluation of the phylogenetic position of basal lineages like Candelariales and Dactylospora in their tree.

Our analyses confirm the results of Schoch et al. (2009) and Prieto et al. (2013) that the Candelariales are phylogenetically separate from Lecanoromycetes. We argue that the results of the multigene analyses of Schoch et al. (2009), Prieto et al. (2013) and our analyses are more conclusive concerning the remote phylogenetic position of Candelariales due to the more significant taxon selection, including representatives from most (Schoch et al. 2009, Prieto et al. 2013) to almost all (our data set; all except Laboulbeniomycetes) currently accepted classes of Leotiomyceta. In our analyses, the Pycnoraceae are sister group to Candelariaceae with medium (88 % ML and 79 % MP) to maximum (1.0 PP) support (Fig. 1), confirming a close relationship and classification of both families within Candelariales. By providing new sequences for all five genes for *Pycnora sorophora*, the sequence data were significantly extended for a member of Pycnoraceae, compared to previous analyses which were, with the exception of a short rpb1 sequence for P. praestabilis, restricted to nLSU and mtSSU data, adding to increasing support for a sister group relationship of Pycnoraceae and Candelariaceae. The phylogenetic position of *Candelariales* is unstable and shifting around in the various analyses depending on the taxon selection and analysis method, but it was never revealed as belonging to Lecanoromycetes when a representative matrix of Leotiomyceta was included. We therefore argue that it should be recognised as a class of its own, Candelariomycetes.

Acknowledgements We thank F. Berger, C. Lechat and C. Lécuru for providing fresh specimens and F. Candoussau for having shared the collection of *X. portentosum* made by J. Vivant in Guadeloupe; the financial support of the National Forest Office for the field work in Martinique and that of Labex CEBA (National Center for Scientific Research) for the field work in French Guiana; Martina Réblová for providing sequence alignments and supplementary data. Hannah Merchant and Genevieve E. Tocci (FH) are gratefully

acknowledged for providing information and illustrations of the holotype of *X. andinum*, and Michaela Schmull (Harvard University Herbaria) for granting permission to use the original drawing of *X. andinum* in our publication. Financial support by the Austrian Science Fund (FWF; project P25870-B16) to WJ is gratefully acknowledged.

REFERENCES

- Agnihothrudu V, Barua GCS. 1960. Notes on fungi from North-East India VI. Xylobotryum andinum Pat. on tea [Camellia sinensis (L.) O. Kuntze]. Sydowia 14: 136–138.
- Barr ME. 1987. Prodromus to class Loculoascomycetes. Department of Botany, University of Massachusetts, Amherst, Massachusetts.
- Barr ME. 1990. Melanommatales (Loculoascomycetes). North American Flora, Series 2, part 13. New York Botanical Garden, New York.
- Bellemère A, Hafellner J. 1982. L'ultrastructure des asques de genre Dactylospora (Discomycetes) et son interet taxonomique. Cryptogamie Mycologie 3: 71–93.
- Bendiksby M, Timdal E. 2013. Molecular phylogenetics and taxonomy of Hypocenomyce sensu lato (Ascomycota: Lecanoromycetes): Extreme polyphyly and morphological-ecological convergence. Taxon 62: 940–956.
- De Hoog GS, Gerrits van den Ende AHG. 1998. Molecular diagnostics of clinical strains of filamentous basidiomycetes. Mycoses 41: 183–189.
- Dennis RWG. 1970. Fungus flora of Venezuela and adjacent countries. Kew Bulletin Additional Series 3. Cramer, Lehre.
- Dennis RWG. 1977. The identity of Xylobotryum caespitosum (Phillips) A.L. Smith. Sydowia Beiheft 8: 152–155.
- Eriksson OE, Hawksworth DL. 1988. Notes on ascomycete systematics Nos 552–732. Systema Ascomycetum 7: 59–101.
- Eriksson OE, Hawksworth DL. 1995. Notes on ascomycete systematics Nos 1885–2023. Systema Ascomycetum 14: 41–77.
- Gäumann E. 1964. Die Pilze: Grundzüge ihrer Entwicklungsgeschichte und Morphologie, 2nd edn. Birkhäuser, Basel, Stuttgart.
- Geiser DM, LoBuglio KF, Gueidan C. 2015. Pezizomycotina: Eurotiomycetes. In: McLaughlin DJ, Spatafora JW, Lemke PA (eds), The mycota VII, systematics and evolution, part B: 121–141, 2nd edn. Springer, Berlin, Heidelberg.
- Guzmán G, Piepenbring M. 2011. Hongos de Panamá. Introducción a la identificación de los macroscópicos. Instituto de Ecología, Xalapa.
- Hall TA. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series 41: 95–98.
- Hawksworth DL. 1980. Two little-known members of the Mycocaliciaceae on polypores. Transactions of the British Mycological Society 74: 650–651.
- Hawksworth DL, Aguirre-Hudson B, Ainsworth AM. 2014. Sphinctrina tigillaris, an overlooked species of Chaenothecopsis growing on Perenniporia meridionalis, a polypore new to the UK. The Lichenologist 46: 729–735.
- Hofstetter V, Miądlikowska J, Kauff F, et al. 2007. Phylogenetic comparison of protein-coding versus ribosomal RNA-coding sequence data: A case study of the Lecanoromycetes (Ascomycota). Molecular Phylogenetics and Evolution 44: 412–426.
- Huelsenbeck JP, Ronquist F. 2001. MrBayes: Bayesian inference of phylogenetic trees. Bioinformatics 17: 754–755.
- Hughes SJ. 1980. New Zealand fungi 30. Cirrosporium novae-zelandiae gen. nov., sp. nov. New Zealand Journal of Botany 18: 329–333.
- Huhndorf SM. 1994. Neotropical Ascomycetes 5. Hypsostromataceae, a new family of Loculoascomycetes and Manglicola samuelsii, a new species from Guyana. Mycologia 86: 266–269.
- Jaklitsch WM, Baral HO, Lücking R, et al. 2016. Syllabus of plant families A. Engler's Syllabus der Pflanzenfamilien Part 1/2: Ascomycota, 13th edn. Borntraeger, Stuttgart.
- Jaklitsch WM, Fournier J, Rogers JD, et al. 2014. Phylogenetic and taxonomic revision of Lopadostoma. Persoonia 32: 52–82.
- Jaklitsch WM, Stadler M, Voglmayr H. 2012. Blue pigment in Hypocrea caerulescens sp. nov. and two additional new species in sect. Trichoderma. Mycologia 104: 925–941.
- Ju YM, Rogers JD. 1994. Biological and developmental studies of Xylobotryum andinum (Ascomycetes, Loculoascomycetes). Cryptogamic Botany 4: 346–355.
- Kauff F, Lutzoni F. 2002. Phylogeny of Gyalectales and Ostropales (Ascomycota, Fungi): among and within order relationships based on nuclear ribosomal RNA small and large subunits. Molecular Phylogenetics and Evolution 25: 138–156.
- Kirk PM, Cannon PF, Minter DW, et al. 2008. Ainsworth and Bisby's dictionary of the fungi, 10th edn. CAB International, Wallingford, UK.
- Kumar S, Stecher G, Tamura K. 2016. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Molecular Biology and Evolution 33: 1870–1874.

- Læssøe T, Petersen JH. 2008. Svampelivet på ækvator (Equatorial fungi mycological biodiversity in Ecuador). Svampe 58: 1–52.
- Landvik S, Egger K, Schumacher T. 1997. Towards a subordinal classification of the Pezizales (Ascomycota): phylogenetic analyses of SSU rDNA sequences. Nordic Journal of Botany 17: 403–418.
- Lindau G. 1897. Sphaeriales. In: Engler A, Prantl K (eds), Die natürlichen Pflanzenfamilien 1(1): 384–491. Engelmann, Leipzig.
- Liu YL, Whelen S, Hall BD. 1999. Phylogenetic relationships among ascomycetes: evidence from an RNA polymerase II subunit. Molecular Biology and Evolution 16: 1799–1808.
- Lloyd CG. 1920. Mycological notes 62. Mycological Writings 6: 904–944.
- Lloyd CG. 1925. Mycological notes 75. Mycological Writings 7: 1349–1364.
- Lücking R, Hodkinson BP, Leavitt SD. 2017. The 2016 classification of lichenized fungi in the Ascomycota and Basidiomycota – approaching one thousand genera. The Bryologist 119: 361–416.
- Lumbsch HT, Huhndorf SM. 2007. Outline of Ascomycota 2007. Myconet 13: 1–58.
- Lumbsch HT, Huhndorf SM. 2010. Outline of Ascomycota 2009. Myconet 14: 1–64.
- Lumbsch HT, Schmitt I, Lücking R, et al. 2007. The phylogenetic placement of Ostropales within Lecanoromycetes (Ascomycota) revisited. Mycological Research 111: 257–267
- Miądlikowska J, Kauff F, Hofstetter V, et al. 2006. New insights into classification and evolution of the Lecanoromycetes (Pezizomycotina, Ascomycota) from phylogenetic analyses of three ribosomal RNA and two proteincoding genes. Mycologia 98: 1088–1103.
- Miądlikowska J, Kauff F, Hognabba F, et al. 2014. A multigene phylogenetic synthesis for the class Lecanoromycetes (Ascomycota): 1307 fungi representing 1139 infrageneric taxa, 317 genera and 66 families. Molecular Phylogenetics and Evolution 79: 132–168.
- Miądlikowska J, Lutzoni F. 2000. Phylogenetic revision of the genus Peltigera (lichen-forming Ascomycota) based on morphological, chemical, and large subunit nuclear ribosomal DNA data. International Journal of Plant Sciences 161: 925–958.
- Miller JH. 1949. A revision of the classification of the ascomycetes with special emphasis on the pyrenomycetes. Mycologia 41: 99–127.
- Miller MA, Pfeiffer W, Schwartz T. 2010. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. Proceedings of the Gateway Computing Environments Workshop (GCE), 14 Nov. 2010, New Orleans, LA: 1–8
- Möller A. 1901. Phycomyceten und Ascomyceten. Untersuchungen aus Brasilien. In: Schimper AFW (ed), Botanische Mittheilungen aus den Tropen 9. Fischer, Jena.
- Müller E, Von Arx JA. 1962. Die Gattungen der didymosporen Pyrenomyceten. Beiträge zur Kryptogamenflora der Schweiz 11, 2: 1–922.
- Müller E, Von Arx JA. 1973. Pyrenomycetes: Meliolales, Coronophorales, Sphaeriales. In: Ainsworth GC, Sparrow FK, Sussman AS (eds.) The Fungi an advanced treatise. Vol. 4A: 87–132. Academic Press, New York.
- Mushroom Observer. 2018. http://mushroomobserver.org/ [accessed on 12 June 2018].
- MyCoPortal. 2018. http://mycoportal.org/portal/index.php [accessed on 12 June 2018].
- Patouillard NT. 1900. Champignons de la Guadeloupe. Bulletin de la Société Mycologique de France 16: 175–188.
- Patouillard NT, De Lagerheim G. 1895. Champignons de l'Équateur (Pugillus IV). Bulletin de l'Herbier Boissier 3, 1: 53–74.
- Prieto M, Baloch E, Tehler A, et al. 2013. Mazaedium evolution in the Ascomycota (Fungi) and the classification of mazaediate groups of formerly unclear relationship. Cladistics 29: 296–308.
- Réblová M, Seifert KA. 2012. Cirrosporium novae-zelandiae, an enigmatic coelomycete with meristem arthroconidia, with ancestors in the Eurotiomycetes. Mycologia 104: 1315–1324.
- Réblová M, Untereiner WA, Stepanek V, et al. 2017. Disentangling Phialophora section Catenulatae: disposition of taxa with pigmented conidiophores and recognition of a new subclass, Sclerococcomycetidae (Eurotiomycetes). Mycological Progress 16: 27–46.
- Rodríguez F, Oliver JF, Marin A, et al. 1990. The general stochastic model of nucleotide substitution. Journal of Theoretical Biology 142: 485–501.
- Rodway L. 1926. Notes on some rare and interesting cryptogams. Papers and Proceedings of the Royal Society of Tasmania 1925: 167–170.
- Rogerson CT, Harris RC, Samuels GJ. 1990. Fungi collected by Bassett Maguire and collaborators in the Guyana Highland, 1944–1983. Memoirs of the New York Botanical Garden 64: 130–164.
- Rossman AY. 1976. Xylobotryum andinum, a tropical pyrenomycete from northern California. Mycotaxon 4: 179–183.
- Saccardo PA. 1895. Sylloge Fungorum 11: 1-754. Padua.

- Schoch Cl, Sung GH, López-Giráldez F, et al. 2009. The Ascomycota Tree of Life: A phylum-wide phylogeny clarifies the origin and evolution of fundamental reproductive and ecological traits. Systematic Biology 58: 224–239.
- Smith AL. 1901. On some fungi from the West Indies. The Journal of the Linnean Society. Botany 35: 1–19.
- Stamatakis E. 2006. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22: 2688–2690.
- Stiller JW, Hall BD. 1997. The origin of red algae: implications for plastid evolution. Proceedings of the National Academy of Sciences, USA 94: 4520–4525.
- Swofford DL. 2002. PAUP* 4.0b10: phylogenetic analysis using parsimony (*and other methods). Sinauer Associates, Sunderland, Massachusetts.
- Trierveiler-Pereira L, Baltazar JM, Loguercio-Leite C. 2008. Xylobotryum portentosum (Mont.) Pat. (Ascomycota): a second record from Brazil after a hundred years. Nova Hedwigia 87: 169–174.
- Vilgalys R, Hester M. 1990. Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. Journal of Bacteriology 172: 4238–4246.
- Voglmayr H, Akulov OY, Jaklitsch WM. 2016. Reassessment of Allantonectria, phylogenetic position of Thyronectroidea, and Thyronectria caraganae sp. nov. Mycological Progress 15: 921–937.
- Voglmayr H, Jaklitsch WM. 2008. Prosthecium species with Stegonsporium anamorphs on Acer. Mycological Research 112: 885–905.

- Voglmayr H, Jaklitsch WM. 2011. Molecular data reveal high host specificity in the phylogenetically isolated genus Massaria (Ascomycota, Massariaceae). Fungal Diversity 46: 133–170.
- Voglmayr H, Mehrabi M. 2018. Molecular phylogeny and a new Iranian species of Caudospora (Sydowiellaceae, Diaporthales). Sydowia 70: 67–80.
- Voglmayr H, Rossman AY, Castlebury LA, et al. 2012. Multigene phylogeny and taxonomy of the genus Melanconiella (Diaporthales). Fungal Diversity 57: 1–44.
- Wedin M, Wiklund E, Crewe A, et al. 2005. Phylogenetic relationships of Lecanoromycetes (Ascomycota) as revealed by analyses of mtSSU and nLSU rDNA sequence data. Mycological Research 109: 159–172.
- Werle E, Schneider C, Renner M, et al. 1994. Convenient single-step, one tube purification of PCR products for direct sequencing. Nucleic Acids Research 22: 4354–4355.
- White TJ, Bruns T, Lee S, et al. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, et al. (eds), PCR protocols: A guide to methods and applications: 315–322. Academic Press, San Diego.
- Zhou S, Stanosz GR. 2001. Primers for amplification of mtSSU rDNA, and a phylogenetic study of Botryosphaeria and associated anamorphic fungi. Mycological Research 105: 1033–1044.
- Zoller S, Scheidegger C, Sperisen C. 1999. PCR primers for the amplification of mitochondrial small subunit ribosomal DNA of lichen-forming ascomycetes. Lichenologist 31: 511–516.